当前位置:首页 » 基础知识 » 第三章七年级上册数学知识点
扩展阅读
罗村零基础英语价格多少 2025-03-30 05:43:34
会怎样是什么歌的歌词 2025-03-30 05:27:15
已知秩怎么求基础解系 2025-03-30 05:20:53

第三章七年级上册数学知识点

发布时间: 2025-03-27 05:57:21

⑴ 七年级上册数学知识点归纳总结

下面是我整理的七年级上册数学知识点,便于同学们预习时可以更准确的知道知识点的重点是什么,供大家参考。

第一章:有理数的运算

本章节主要介绍概念性知识,通过图形或符号来区分数之间的关系。定义如下:

1、有理数的概念:正整数、0、负整数、正分数、负分数统称为有理数;数轴与原点:用一条直线上的点表示数,这条直线就叫做数轴,在这条直线上任取一个点表示0,这个点叫做原点,在原点的左边或原点下边的点到原点的距离用负数表示,在原点的右边或上边的数到原点的距离用正数表示,在数轴上与原点距离相反相等的两个点代表的两个数为相反数,在数轴上表示的点a到原点的距离叫这个数的绝对值。

2、有理数的加减法:同号的两个数相加,符号不变,绝对值相加;绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,并用较大的数的绝对值减较小的数的绝对值,互为相反数的两个数相加得0;一个有理数减去另一个有理数,相当于加这个数的相反数;

3、有理数的乘除法:同号两个数相乘,同号得正,异号得负,乘法的积为他们的绝对值相乘,除法为被除数乘以除数的倒数,除数不能为0;乘积是1的两个数互为倒数,0没有倒数;整数的乘法交换率和结合率同样适用于有理数;求n个相同因数的积的运算叫乘方,乘方的结果叫做幂,在a的n次方中a叫做底数,n叫做指数,写作a∧n;

4、有理数的混合运算:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行;

5、科学记数法:把一个大于10的数表示成a×10∧n的形式叫做科学计数法,其中a大于或等于1且小于10,n为正整数。

第二章:整式的加减

整式的加减即是合并同类项的计算;在一个式子中,所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项;把多项式中的同类项合并成一项叫做合并同类项,合并同类项后,所得项的系数是合并前各同类项的系数和,且字母连同他的指数不变;一般几个整数相加,如果有括号先去括号,然后在合并同类项,如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同,如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

第三章:一元一次方程

一个方程中,只含有一个未知数,且未知数的次数都是1,等号两边都是整数,这样的方程叫做一元一次方程;方程的两边同时加上或减去同一个数或式子结果仍相等,方程两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。

第四章:立体图形及几何图形

本章主要介绍立体图形及几何图形的认识;点、线、面、体的关系的认识;直线、射线、线段的认识;不同角的概念及大小的比较。

1、平面图形和立体图形:各部分都在同一个平面内的几何图形叫做平面图形;有些几何图形的各部分不在同一个平面上,它们被称为立体图形,如长方体、圆柱、圆锥等;有些立体图形是由一些平面图形围成的,将它们展开成平面图形,展开的平面图形就叫做这个立体图形的展开图;

2、点、线、面、体的认识:几何体叫做体,包围着体的叫做面,面和面相交的地方叫作线,线和线相交的地方叫做点,线由无数个点构成;

3、直线、射线、线段的认识:经过两个点由且只有一条直线,两点确定一条直线,两个点之间的连线,最短的叫做线段,线段的长度叫做这两点的距离,由线段向一端无限延长,叫射线;

4、角:如果两个角的和等于90°,那么这两个角互为余角;如果两个角的和等于180°,那么这两个角互为补角;从一个角的顶点出发。把这个角分成两个相等的角的射线叫做这个角的平分线,把这3个相等角的两条射线叫这个角的三分线。

第五章:整式

(一)整式

1.整式:单项式和多项式的统称叫整式。

2.单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。

3.系数;一个单项式中,数字因数叫做这个单项式的系数。

4.次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。

5.多项式:几个单项式的和叫做多项式。

6.项:组成多项式的每个单项式叫做多项式的项。

7.常数项:不含字母的项叫做常数项。

8.多项式的次数:多项式中,次数最高的项的次数叫做这个多项式的次数。

9.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。

10.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

(二)整式加减整式加减运算时,如果遇到括号先去括号,再合并同类项。

1.去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

⑵ 七年级上册人教版数学知识点归纳整理

第一章 有理数
1、正数和负数
2、有理数
3、有理数的加减法
4、有理数的乘除法
5、有理数的乘方
第二章 一元一次方程
1、从算式到方程
2、从古老的代数书说起
3、从"买布问题"说起
4、再探实际问题与一元一次方程
第三章 图形认识初步
1、多姿多彩的图形
2、直线、射线、线段
3、角的度量
4、角的比较与运算
第四章 数据的收集与整理
1、喜爱哪种动物的同学最多
2、调查中小学生的视力情况

⑶ 初一数学上册知识点归纳

七年级初一上册的数学知识点是奠定中学数学学习的基础,所以新初一的学生最好趁这个暑期将这部分内容学习好。我在这里整理了相关资料,希望能帮助到您。

目录

第一章 有理数

第二章 整式的加减

第三章 一元一次方程

第四章 几何图形初步

第一章 有理数

1.1 正数与负数

①正数:大于0的数叫正数。(根据需要,有时在正数前面也加上“+”)

②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。与正数具有相反意义。

③0既不是正数也不是负数。0是正数和负数的分界,是唯一的中性数。

注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等

1.2 有理数

1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;

(3)有理数:整数和分数统称有理数。

2、数轴(1)定义 :通常用一条直线上的点表示数,这条直线叫数轴;

(2)数轴三要素:原点、正方向、单位长度;

(3)原点:在直线上任取一个点表示数0,这个点叫做原点;

(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

3、相反数:只有符号不同的两个数叫做互为相反数。(例:2的相反数是-2;0的相反数是0)

4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。从几何意义上讲,数的绝对值是两点间的距离。

(2) 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

1.3 有理数的加减法

①有理数加法法则:

1、同号两数相加,取相同的符号,并把绝对值相加。

2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

3、一个数同0相加,仍得这个数。

加法的交换律和结合律

②有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法

①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;

任何数同0相乘,都得0;

乘积是1的两个数互为倒数。

乘法交换律/结合律/分配律

②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;

两数相除,同号得正,异号得负,并把绝对值相除;

0除以任何一个不等于0的数,都得0。

1.5 有理数的乘方

1、求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

2、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

3、把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a <10。


第二章 整式的加减

2.1 整式

1、单项式:由数字和字母乘积组成的式子。系数,单项式的次数. 单项式指的是数或字母的积的代数式.单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式.

2、单项式的系数:是指单项式中的数字因数;

3、单项数的次数:是指单项式中所有字母的指数的和.

4、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,常数项,多项式的次数就是多项式中次数最高的次数。多项式的次数是指多项式里次数最高项的次数,这里是次数最高项,其次数是6;多项式的项是指在多项式中,每一个单项式.特别注意多项式的项包括它前面的性质符号.

5、它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。

6、单项式和多项式统称为整式。

2.2整式的加减

1、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。

2、同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可.同类项与系数大小、字母的排列顺序无关

3、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。

4、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;

5、去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。

6、整式加减的一般步骤:

一去、二找、三合

(1)如果遇到括号按去括号法则先去括号. (2)结合同类项. (3)合并同类项


第三章 一元一次方程

3.1 一元一次方程

1、方程是含有未知数的等式。

2、方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。

注意:判断一个方程是否是一元一次方程要抓住三点:

1)未知数所在的式子是整式(方程是整式方程);

2)化简后方程中只含有一个未知数;

3)经整理后方程中未知数的次数是1.

3、解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

4、等式的性质: 1)等式两边同时加(或减)同一个数(或式子),结果仍相等;

2)等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。

注意:运用性质时,一定要注意等号两边都要同时变;运用性质2时,一定要注意0这个数.

3.2 、3.3解一元一次方程

在实际解方程的过程中,以下步骤不一定完全用上,有些步骤还需重复使用. 因此在解方程时还要注意以下几点:

①去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;去分母与分母化整是两个概念,不能混淆;

②去括号:遵从先去小括号,再去中括号,最后去大括号;不要漏乘括号的项;不要弄错符号;

③移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(移项要变符号) 移项要变号;

④合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式;

⑤系数化为1::字母及其指数不变系数化成1,在方程两边都除以未知数的系数a,得到方程的解。不要分子、分母搞颠倒。

3.4 实际问题与一元一次方程

一.概念梳理

⑴列一元一次方程解决实际问题的一般步骤是:①审题,特别注意关键的字和词的意义,弄清相关数量关系;②设出未知数(注意单位);③根据相等关系列出方程;④解这个方程;⑤检验并写出答案(包括单位名称)。

⑵一些固定模型中的等量关系及典型例题参照一元一次方程应用题专练学案。

二、思想 方法 (本单元常用到的数学思想方法小结)

⑴建模思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立一元一次方程的思想.

⑵方程思想:用方程解决实际问题的思想就是方程思想.

⑶化归思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a的形式. 体现了化“未知”为“已知”的化归思想.

⑷数形结合思想:在列方程解决问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来,体现了数形结合的优越性.

⑸分类思想:在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.

三、数学思想方法的学习

1. 解一元一次方程时,要明确每一步过程都作什么变形,应该注意什么问题.

2. 寻找实际问题的数量关系时,要善于借助直观分析法,如表格法,直线分析法和图示分析法等.

3. 列方程解应用题的检验包括两个方面:⑴检验求得的结果是不是方程的解;

⑵是要判断方程的解是否符合题目中的实际意义.

四、应用(常见等量关系)

行程问题:s=v×t

工程问题:工作总量=工作效率×时间

盈亏问题:利润=售价-成本

利率=利润÷成本×100%

售价=标价×折扣数×10%

储蓄利润问题:利息=本金×利率×时间

本息和=本金+利息


第四章 几何图形初步

4.1 几何图形

1、几何图形:从形形色色的物体外形中得到的图形叫做几何图形。

2、立体图形:这些几何图形的各部分不都在同一个平面内。

3、平面图形:这些几何图形的各部分都在同一个平面内。

4、虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。

立体图形中某些部分是平面图形。

5、三视图:从左面看,从正面看,从上面看

6、展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。这样的平面图形称为相应立体图形的展开图。

7、⑴几何体简称体;包围着体的是面;面 面相 交形成线;线线相交形成点;

⑵点无大小,线、面有曲直;

⑶几何图形都是由点、线、面、体组成的;

⑷点动成线,线动成面,面动成体;

⑸点:是组成几何图形的基本元素。

4.2 直线、射线、线段

1、直线公理:经过两点有一条直线,并且只有一条直线。即:两点确定一条直线。

2、当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。

3、把一条线段分成相等的两条线段的点,叫做这条线段的中点。

4、线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。

5、连接两点间的线段的长度,叫做这两点的距离。

6、直线的表示方法:如图的直线可记作直线AB或记作直线m.

(1)用几何语言描述右面的图形,我们可以说:

点P在直线AB外,点A、B都在直线AB上.

(2)如图,点O既在直线m上,又在直线n上,我们称直线

m、n 相交,交点为O.

7、在直线上取点O,把直线分成两个部分,去掉一边的一个部分,保留点0和另一部分就得到一条射线,如图就是一条射线,记作射线OM或记作射线a.葫芦岛英霸 教育 联盟http://www.yingbajiaoyu.com/ 18342389605

注意:射线有一个端点,向一方无限延伸.

8、在直线上取两个点A、B,把直线分成三个部分,去掉两边的部分,保留点A、B和中间的一部分就得到一条线段.如图就是一条线段,记作线段AB或记作线段a.

注意:线段有两个端点.

4.3 角

1. 角的定义:有公共端点的两条射线组成的图形叫角。这个公共端点是角的顶点,两条射线为角的两边。如图,角的顶点是O,两边分别是射线OA、OB.

2、角有以下的表示方法:

① 用三个大写字母及符号“∠”表示.三个大写字母分别是顶点和两边上的任意点,顶点的字母必须写在中间.如上图的角,可以记作∠AOB或∠BOA.

② 用一个大写字母表示.这个字母就是顶点.如上图的角可记作∠O.当有两个或两个以上的角是同一个顶点时,不能用一个大写字母表示.

③ 用一个数字或一个希腊字母表示.在角的内部靠近角的顶点

处画一弧线,写上希腊字母或数字.如图的两个角,分别记作∠、∠1

2、以度、分、秒为单位的角的度量制,叫做角度制。角的度、分、秒是60进制的。

1度=60分 1分=60秒 1周角=360度 1平角=180度

3、角的平分线:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线。

4、如果两个角的和等于90度(直角),就说这两个叫互为余角,即其中每一个角是另一个角的余角;

如果两个角的和等于180度(平角),就说这两个叫互为补角,即其中每一个角是另一个角的补角。

5、同角(等角)的补角相等;同角(等角)的余角相等。

6、方位角:一般以正南正北为基准,描述物体运动的方向。


初一数学上册知识点归纳相关 文章 :

1. 初一数学上册人教版知识点归纳

2. 初一数学知识点总结

3. 初一年级上册数学的21个热门知识点

4. 初一上册数学知识点手抄报

5. 初一上册数学第一单元知识点

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

⑷ 七年级数学上册、下册重要知识点总结

初一数学上册主要包括四个章节的内容;下册主要包括相六章内容。为帮助大家更好地掌握 七年级数学 每个章节的重要内容,我整理了一些知识点以供学习复习参考!

七年级数学上册知识点:第一章 有理数

一、知识框架

二.知识概念

1.有理数:

(1)凡能写成 形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

(2)有理数的分类: ① ②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.

3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)相反数的和为0 ? a+b=0 ? a、b互为相反数.

4.绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(2) 绝对值可表示为: 或 ;绝对值的问题经常分类讨论;

5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.

6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么 的倒数是 ;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数.

7. 有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

(3)一个数与0相加,仍得这个数.

8.有理数加法的运算律:

(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).

9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).

10 有理数乘法法则:

(1)两数相乘,同号为正,异号为负,并把绝对值相乘;

(2)任何数同零相乘都得零;

(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.

11 有理数乘法的运算律:

(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac .

12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, .

13.有理数乘方的法则:

(1)正数的任何次幂都是正数;

(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .

14.乘方的定义:

(1)求相同因式积的运算,叫做乘方;

(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.

16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.

17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.

18.混合运算法则:先乘方,后乘除,最后加减.

本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。重点利用有理数的运算法则解决实际问题.

体验数学发展的一个重要原因是生活实际的需要.激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。

七年级数学上册知识点:第二章 整式的加减

一.知识框架二.知识概念

1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.

2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.

3.多项式:几个单项式的和叫多项式.

4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。

通过本章学习,应使学生达到以下学习目标:

1. 理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。

2. 理解同类项概念,掌握合并同类项的 方法 ,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。在准确判断、正确合并同类项的基础上,进行整式的加减运算。

3. 理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。

4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。

在本章学习中,教师可以通过让学生小组讨论、合作学习等方式,经历概念的形成过程,初步培养学生观察、分析、抽象、概括等思维能力和应用意识。

七年级数学上册知识点:第三章 一元一次方程

本章内容是代数学的核心,也是所有代数方程的基础。丰富多彩的问题情境和解决问题的快乐很容易激起学生对数学的乐趣,所以要注意引导学生从身边的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力,体会数学思想方法。

一.知识框架

二.知识概念

1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.

2.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0).

3.一元一次方程解法的一般步骤: 整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… (检验方程的解).

4.列一元一次方程解应用题:

(1)读题分析法:………… 多用于“和,差,倍,分问题”

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.

(2)画图分析法: ………… 多用于“行程问题”

利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.

11.列方程解应用题的常用公式:

(1)行程问题: 距离=速度·时间 ;

(2)工程问题: 工作量=工效·工时 ;

(3)比率问题: 部分=全体·比率 ;

(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;

(5)商品价格问题: 售价=定价·折· ,利润=售价-成本, ;

(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab, C正方形=4a,

S正方形=a2,S环形=π(R2-r2),V长方体=abc ,V正方体=a3,V圆柱=πR2h ,V圆锥= πR2h.

七年级数学上册知识点:第四章 图形的认识初步

一、知识框架

本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形.通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系.在此基础上,认识一些简单的平面图形——直线、射线、线段和角.

二、本章书涉及的数学思想:

1.分类讨论思想。在过平面上若干个点画直线时,应注意对这些点分情况讨论;在画图形时,应注意图形的各种可能性。

2.方程思想。在处理有关角的大小,线段大小的计算时,常需要通过列方程来解决。

3.图形变换思想。在研究角的概念时,要充分体会对射线旋转的认识。在处理图形时应注意转化思想的应用,如立体图形与平面图形的互相转化。

4.化归思想。在进行直线、线段、角以及相关图形的计数时,总要划归到公式n(n-1)/2的具体运用上来。

>>>下一页更多精彩“七年级数学下册知识点”

⑸ 七年级上册数学知识点

第一章 丰富的图形世界

1、几何图形

从实物中抽象出来的各种图形,包括立体图形和平面图形。

2、点、线、面、体

(1)几何图形的组成

点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、生活中的立体图形

生活中的立体图形

柱:棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……

第二章 有理数

正有理数 整数

有理数 零 有理数

负有理数 分数

2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零

3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。

4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。

5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=-a,则a≤0。

正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。互为相反数的两个数的绝对值相等。

6、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。

7、有理数的运算:

(1)五种运算:加、减、乘、除、乘方

多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。

有理数加法法则:

同号两数相加,取相同的符号,并把绝对值相加。

异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

一个数同0相加,仍得这个数。

互为相反数的两个数相加和为0。

有理数减法法则:减去一个数,等于加上这个数的相反数!

有理数乘法法则:

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘,积仍为0。

有理数除法法则:

两个有理数相除,同号得正,异号得负,并把绝对值相除。

0除以任何非0的数都得0。

注意:0不能作除数。

有理数的乘方:求n个相同因数a的积的运算叫做乘方。

正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数。

(2)有理数的运算顺序

先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。

(3)运算律

加法交换律 加法结合律

乘法交换律 乘法结合律

乘法对加法的分配律

8、科学记数法

一般地,一个大于10的数可以表示成的形式,其中,n是正整数,这种记数方法叫做科学记数法。(n=整数位数-1)

第三章 整式及其加减

1、代数式

用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。

注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;

②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;

③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。

※代数式的书写格式:

①代数式中出现乘号,通常省略不写,如vt;

②数字与字母相乘时,数字应写在字母前面,如4a;

③带分数与字母相乘时,应先把带分数化成假分数,如应写作;

④数字与数字相乘,一般仍用“×”号,即“×”号不省略;

⑤在代数式中出现除法运算时,一般写成分数的形式,如4÷(a-4)应写作;注意:分数线具有“÷”号和括号的双重作用。

⑥在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如平方米。

2、整式:单项式和多项式统称为整式。

①单项式:都是数字和字母乘积的形式的代数式叫做单项式。单项式中,所有字母的指数之和叫做这个单项式的次数;数字因数叫做这个单项式的系数。

注意:1.单独的一个数或一个字母也是单项式;2.单独一个非零数的次数是0;3.当单项式的系数为1或-1时,这个“1”应省略不写,如-ab的系数是-1,a3b的系数是1。

②多项式:几个单项式的和叫做多项式。多项式中,每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数。

3、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

注意:①同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。

②同类项与系数无关,与字母的排列顺序无关;

③几个常数项也是同类项。

4、合并同类项法则:把同类项的系数相加,字母和字母的指数不变。

5、去括号法则

①根据去括号法则去括号:

括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号。

②根据分配律去括号:

括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的分配律用+1或-1去乘括号里的每一项以达到去括号的目的。

6、添括号法则

添“+”号和括号,添到括号里的各项符号都不改变;添“-”号和括号,添到括号里的各项符号都要改变。

7、整式的运算:

整式的加减法:(1)去括号;(2)合并同类项。

第四章 基本平面图形

2、直线的性质

(1)直线公理:经过两个点有且只有一条直线。(两点确定一条直线。)

(2)过一点的直线有无数条。

(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

3、线段的性质

(1)线段公理:两点之间的所有连线中,线段最短。(两点之间线段最短。)

(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

(3)线段的大小关系和它们的长度的大小关系是一致的。

4、线段的中点:

点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。AM = BM =1/2AB (或AB=2AM=2BM)。

5、角:

有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。

6、角的表示

角的表示方法有以下四种:

①用数字表示单独的角,如∠1,∠2,∠3等。

②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。

④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。

注意:用三个大写字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。

7、角的度量

角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。

把1°的角60等分,每一份叫做1分的角,1分记作“1’”。

把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。

1°=60’,1’=60”

8、角的平分线

从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

9、角的性质

(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。

(2)角的大小可以度量,可以比较,角可以参与运算。

10、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。终边继续旋转,当它又和始边重合时,所形成的角叫做周角。

11、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭平面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。

从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以画(n-3)条对角线,把这个n边形分割成(n-2)个三角形。

12、圆:平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。

圆上任意两点A、B间的部分叫做圆弧,简称弧,读作“圆弧AB”或“弧AB”;由一条弧AB和经过这条弧的端点的两条半径OA、OB所组成的图形叫做扇形。顶点在圆心的角叫做圆心角。

第五章 一元一次方程

1、方程

含有未知数的等式叫做方程。

2、方程的解

能使方程左右两边相等的未知数的值叫做方程的解。

3、等式的性质

(1)等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。

(2)等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式。

4、一元一次方程

只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程。

5、移项:把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项.

6、解一元一次方程的一般步骤:

(1)去分母(2)去括号(3)移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。)(4)合并同类项(5)将未知数的系数化为1

第六章 数据的收集与整理

1、普查与抽样调查

为了特定目的对全部考察对象进行的全面调查,叫做普查。其中被考察对象的全体叫做总体,组成总体的每一个被考察对象称为个体。

从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体抽取的一部分个体叫做总体的一个样本。

2、扇形统计图

扇形统计图:利用圆与扇形来表示总体与部分的关系,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。(各个扇形所占的百分比之和为1)

圆心角度数=360°×该项所占的百分比。(各个部分的圆心角度数之和为360°)

3、频数直方图

频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组画在横轴上,纵轴表示各组数据的频数。

4、各种统计图的特点

条形统计图:能清楚地表示出每个项目的具体数目。

折线统计图:能清楚地反映事物的变化情况。

扇形统计图:能清楚地表示出各部分在总体中所占的百分比。

⑹ 7年级上册数学所有概念做总结

北师大版《数学》(七年级上册)知识点总结
第一章 丰富的图形世界
1、几何图形
从实物中抽象出来的各种图形,包括立体图形和平面图形.
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形.
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形.
2、点、线、面、体
(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形中最基本的图形.
线:面和面相交的地方是线,分为直线和曲线.
面:包围着体的是面,分为平面和曲面.
体:几何体也简称体.
(2)点动成线,线动成面,面动成体.
3、生活中的立体图形
圆柱

生活中的立体图形 球 棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……
(按名称分) 锥 圆锥
棱锥
4、棱柱及其有关概念:
棱:在棱柱中,任何相邻两个面的交线,都叫做棱.
侧棱:相邻两个侧面的交线叫做侧棱.
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点.
5、正方体的平面展开图:11种

6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形.
7、三视图
物体的三视图指主视图、俯视图、左视图.
主视图:从正面看到的图,叫做主视图.
左视图:从左面看到的图,叫做左视图.
俯视图:从上面看到的图,叫做俯视图.
8、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形.
从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形.
弧:圆上A、B两点之间的部分叫做弧.
扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形.
第二章 有理数及其运算
1、有理数的分类
正有理数
有理数 零 有限小数和无限循环小数
负有理数
或 整数
有理数
分数
2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零
3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可).任何一个有理数都可以用数轴上的一个点来表示.解题时要真正掌握数形结合的思想,并能灵活运用.
4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立.倒数等于本身的数是1和-1.零没有倒数.
5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值.(|a|≥0).零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0.
6、有理数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小.
7、有理数的运算 :
(1)五种运算:加、减、乘、除、乘方
(2)有理数的运算顺序
先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的.
(3)运算律
加法交换律
加法结合律
乘法交换律
乘法结合律
乘法对加法的分配律
第三章 字母表示数
1、代数式
用运算符号把数或表示数的字母连接而成的式子叫做代数式.单独的一个数或一个字母也是代数式.
2、同类项
所有字母相同,并且相同字母的指数也分别相同的项叫做同类项.几个常数项也是同类项.
3、合并同类项法则:把同类项的系数相加,字母和字母的指数不变.
4、去括号法则
(1)括号前是“+”,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变.
(2)括号前是“-”,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.
5、整式的运算:
整式的加减法:(1)去括号;(2)合并同类项.
第四章 平面图形及其位置关系
1、线段:绷紧的琴弦,人行横道线都可以近似的看做线段.线段有两个端点.
2、射线:将线段向一个方向无限延长就形成了射线.射线有一个端点.
3、直线:将线段向两个方向无限延长就形成了直线.直线没有端点.
4、点、直线、射线和线段的表示
在几何里,我们常用字母表示图形.
一个点可以用一个大写字母表示.
一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示.
一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面).
一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示.
5、点和直线的位置关系有两种:
①点在直线上,或者说直线经过这个点.
②点在直线外,或者说直线不经过这个点.
6、直线的性质
(1)直线公理:经过两个点有且只有一条直线.
(2)过一点的直线有无数条.
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小.
(4)直线上有无穷多个点.
(5)两条不同的直线至多有一个公共点.
7、线段的性质
(1)线段公理:两点之间的所有连线中,线段最短.
(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离.
(3)线段的中点到两端点的距离相等.
(4)线段的大小关系和它们的长度的大小关系是一致的.
8、线段的中点:
点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点.
9、角:
有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边.
或:角也可以看成是一条射线绕着它的端点旋转而成的.
10、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角.终边继续旋转,当它又和始边重合时,所形成的角叫做周角.
11、角的表示
角的表示方法有以下四种:
①用数字表示单独的角,如∠1,∠2,∠3等.
②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等.
③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等.
④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等.
注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧.
12、角的度量
角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”.
把1°的角60等分,每一份叫做1分的角,1分记作“1’”.
把1’ 的角60等分,每一份叫做1秒的角,1秒记作“1””.
1°=60’,1’=60”
13、角的性质
(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关.
(2)角的大小可以度量,可以比较
(3)角可以参与运算.
14、角的平分线
从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.
15、平行线:
在同一个平面内,不相交的两条直线叫做平行线.平行用符号“‖”表示,如“AB‖CD”,读作“AB平行于CD”.
注意:
(1)平行线是无限延伸的,无论怎样延伸也不相交.
(2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行.
16、平行线公理及其推论
平行公理:经过直线外一点,有且只有一条直线与这条直线平行.
推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行.
补充平行线的判定方法:
(1)平行于同一条直线的两直线平行.
(2)在同一平面内,垂直于同一条直线的两直线平行.
(3)平行线的定义.
17、垂直:
两条直线相交成直角,就说这两条直线互相垂直.其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.
直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”).
18、垂线的性质:
性质1:平面内,过一点有且只有一条直线与已知直线垂直.
性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短.简称:垂线段最短.
19、点到直线的距离:过A点作l的垂线,垂足为B点,线段AB的长度叫做点A到直线l的距离.
20、同一平面内,两条直线的位置关系:相交或平行.
第五章 一元一次方程
1、方程
含有未知数的等式叫做方程.
2、方程的解
能使方程左右两边相等的未知数的值叫做方程的解.
3、等式的性质
(1)等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式.
(2)等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式.
4、一元一次方程
只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程.
5、解一元一次方程的一般步骤:
(1)去分母(2)去括号(3)移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项.)(4)合并同类项(5)将未知数的系数化为1
第六章 生活中的数据
1、科学记数法
一般地,一个大于10的数可以表示成 的形式,其中 ,n是正整数,这种记数方法叫做科学记数法.
2、扇形统计图及其画法:
扇形统计图:利用圆与扇形来表示总体与部分的关系,即圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图.
画法:
(1)计算不同部分占总体的百分比(在扇形中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360的比).
(2)计算各个扇形的圆心角(顶点在圆心的角叫做圆心角)的度数.
(3)在圆中画出各个扇形,并标上百分比.
3、各种统计图的优缺点
条形统计图:能清楚地表示出每个项目的具体数目.
折线统计图:能清楚地反映事物的变化情况.
扇形统计图:能清楚地表示出各部分在总体中所占的百分比.
第七章 可能性
1、确定事件和不确定事件
(1 )、确定事件
必然事件:生活中,有些事情我们事先能肯定它一定会发生,这些事情称为必然事件.
不可能事件:有些事情我们事先能肯定它一定不会发生,这些事情称为不可能事件.
(2)、不确定事件:
有些事情我们事先无法肯定它会不会发生,这些事情称为不确定事件
(3)、
必然事件
确定事件
事件 不可能事件
不确定事件
2、不确定事件发生的可能性
一般地,不确定事件发生的可能性是有大小的.
必然事件发生的可能性是1
不可能事件发生的可能性是0
-

⑺ 人教版初一数学上册知识点

第一章 有理数
1.1 正数和负数
阅读与思考 用正负数表示加工允许误差
1.2 有理数
1.3 有理数的加减法
实验与探究 填幻方
阅读与思考 中国人最先使用负数
1.4 有理数的乘除法
观察与思考 翻牌游戏中的数学道理
1.5 有理数的乘方
数学活动
小结
复习题1
第二章 整式的加减
2.1 整式
阅读与思考 数字1与字母X的对话
2.2 整式的加减
信息技术应用 电子表格与数据计算
数学活动
小结
复习题2
第三章 一元一次方程
3.1 从算式到方程
阅读与思考 “方程”史话
3.2 解一元一次方程(一)——合并同类项与移项
实验与探究 无限循环小数化分数
3.3 解一元一次方程(二)——去括号与去分母
3.4 实际问题与一元一次方程
数学活动
小结
复习题3
第四章 图形认识初步
4.1 多姿多彩的图形
阅读与思考 几何学的起源
4.2 直线、射线、线段
阅读与思考 长度的测量
4.3 角
4.4 课题学习 设计制作长方体形状的包装纸盒