当前位置:首页 » 基础知识 » 韦达数学知识大全
扩展阅读
同学没请我家孩子怎么办 2025-03-30 03:01:03
没感情基础怎么回复 2025-03-30 02:48:57

韦达数学知识大全

发布时间: 2025-03-27 00:59:07

① 韦达定理准确的用法以及一些相关知识,拜托了!最好全一点

英文名称:Vieta's formulas
韦达定理证明了一元n次方程中根和系数之间的关系。
这里讲一元二次方程两根之间的关系。
一元二次方程aX^2+bX+C=0﹙a≠0﹚中,两根X1,X2有如下关系:X1+X2=-b/a,X1*X2=c/a
一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac>0)中,设两个根为x1,x2 则
X1+X2= -b/a
X1*X2=c/a
用韦达定理判断方程的根
一元二次方程ax^2+bx+c=0 (a≠0)中,
若b^2-4ac<0 则方程没有实数根
若b^2-4ac=0 则方程有两个相等的实数根
若b^2-4ac>0 则方程有两个不相等的实数根
韦达定理在更高次方程中也是可以使用的。一般的,对一个一元n次方程∑AiX^i=0

韦达定理推广
它的根记作X1,X2…,Xn
我们有右图等式组
其中∑是求和,Π是求积。
如果二元一次方程
在复数集中的根是,那么
由代数基本定理可推得:任何一元 n 次方程
在复数集中必有根。因此,该方程的左端可以在复数范围内分解成一次因式的乘积:
其中是该方程的个根。两端比较系数即得韦达定理。
(x1-x2)的绝对值为√(b^2-4ac)/|a|
法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。
韦达定理在方程论中有着广泛的应用。