当前位置:首页 » 基础知识 » 七上数学第一章知识点
扩展阅读
常考文化知识大全 2025-01-08 01:17:04
庆云渤海教育集团怎么样 2025-01-08 01:14:48

七上数学第一章知识点

发布时间: 2022-03-03 10:13:39

⑴ 初中数学七年级上册地第一章的知识总结

初一数学第一章知识点总结
一、正数和负数
1、以前学过的0以外的数前面加上负号“-”的数叫做负数。
2、以前学过的0以外的数叫做正数。
3、零既不是正数也不是负数,零是正数与负数的分界。
4、在同一个问题中,分别用正数和负数表示的量具有相反的意义。
二、有理数
1、正整数、0、负整数统称整数,正分数和负分数统称分数。
2、整数和分数统称有理数。
3、把一个数放在一起,就组成一个数的集合,简称数集。
三、数轴
1、规定了原点、正方向、单位长度的直线叫做数轴。
2、数轴的作用:所有的有理数都可以用数轴上的点来表达。
3、注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。
⑵同一根数轴,单位长度不能改变。
4、性质:(1)在数轴上表示的两个数,右边的数总比左边的数大。
(2)正数都大于零,负数都小于零,正数大于负数。
四、相反数
1、只有符号不同的两个数叫做互为相反数。
2、数轴上表示相反数的两个点关于原点对称。
3、零的相反数是零。
五、绝对值
1、一般地,在数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。
2、一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
六、有理数的大小比较
1、正数大于0,0大于负数,正数大于负数。
2、两个负数,绝对值大的反而小。
七、有理数的加法
1、有理数的加法法则
(1)号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
(3)互为相反数的两个数相加得零。
(4)一个数同零相加,仍得这个数。
2、有理数加法的运算律
(1)加法交换律:两个数相加,交换加数的位置,和不变。即a+b=b+a
(2)加法结合律:三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。即 (a+b)+c=a+(b+c)
八、有理数的减法
1、有理数减法法则
减去一个数,等于加这个数的相反数。即a-b=a+(-b)
九、有理数的乘法
1、有理数的乘法法则
(1)两数相乘,同号得正,异号得负,并把绝对值相乘。
(2)任何数同0相乘,都得0。
(3)乘积是1的两个数互为倒数。
(4)几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。
(5)几个数相乘,有一个因数为零,积就为零。
2、有理数的乘法的运算律
(1)乘法交换律:两个数相乘,交换因数的位置,积相等。即ab=ba
(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。即(ab)c=a(bc)
(3)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。即a(b+c)=ab+ac
十、有理数的除法
1、有理数除法法则
(1)除以一个不等于0的数,等于乘这个数的倒数。
(2)零不能作除数。
(3)两数相除,同号得正,异号得负,并把绝对值相除。
(4)0除以任何一个不等于0的数,都得0。
十一、有理数的乘方
1、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。
2、负数的奇次幂是负数,负数的偶次幂是正数。
3、正数的任何次幂都是正数,0的任何正整数次幂都是0。
十二、有理数混合运算的运算顺序
1、先算乘方,再算乘除,最后算加减;
2、同极运算,从左到右进行;
3、有括号,先做括号内的运算,按小括号、中括号、大括号依次进行
十三、科学记数法
1、把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。
2、用科学记数法表示一个n位整数,其中10的指数是n-1。
十四、近似数和有效数字
1、接近实际数目,但与实际数目还有差别的数叫做近似数。
2、精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。
3、从一个数的左边第一个非0 数字起,到末位数字止,所有数字都是这个数的有效数字。
4、对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字。

⑵ 七上数学知识

这个你买书去看喽!一般义务教育阶段的教科书书店都有出售

⑶ 七上数学知识点归纳有哪些

(1)点、线、面、体。

点:点是最简单的形,是几何图形最基本的组成部分。点是空间中只有位置,没有大小的图形。

线:线是由无数个点集合成的图形。

面在空间中,到两点距离相同的点的轨迹。

体:多面体是指四个或四个以上多边形所围成的立体。

(2)直线、射线、线段。

直线:直线由无数个点构成。没有端点,向两端无限延长,长度无法度量。直线是轴对称图形。

射线:是指由线段的一端无限延长所形成的直的线,射线有且仅有一个端点,无法测量长度。

线段:是指直线上两点间的有限部分(包括两个端点),有别于直线、射线。

(3)角:在几何学中,角是由两条有公共端点的射线组成的几何对象。这两条射线叫做角的

边,它们的公共端点叫做角的顶点。

(4)余角两角之和为90°则两角互为余角,等角的余角相等。

(5)补角:两角之和为180°则两角互为补角,等角的补角相等。

⑷ 七年级上册数学每课知识点

七年级下册数学知识点归纳第五章 平等线与相交线
1、同角或等角的余角相等,同角或等角的补角相等。
2、对顶角相等
3、判断两直线平行的条件:
1)同位角相等,两直线平行。 (2)内错角相等,两直线平行。 3)同旁内角互补,两直线平行。 (4)如果两条直线都和第三条直线平行,那么这两面三刀条直线也互相平行。
4、平行线的特征:
(1)同位角相等,两直线平行。 (2)内错角相等,两直线平行。 (3)同旁内角互补,两直线平行。
5、命题:
⑴命题的概念:
判断一件事情的语句,叫做命题。
⑵命题的组成
每个命题都是题设、结论两部分组成。题设是已知事项;结论是由已知事项推出的事项。命题常写成“如
果……,那么……”的形式。具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。
6、平移
平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移,平移不改变物体的形状和大小。
(1) 把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
(2) 新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点。连接各组对应点的线段平行且相等。
第六章 平面直角坐标系
1、含有两个数的词来表示一个确定个位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)
2、数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。
3、在平面内画两条互相垂直,并且有公共原点的数轴。这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。平面直角坐标系有两个坐标轴,其中横轴为X轴,取向右方向为正方向;纵轴为Y轴,取向上为正方向。坐标系所在平面叫做坐标平面,两坐标轴的公共原点叫做平面直角坐标系的原点。X轴和Y轴把坐标平面分成四个象限,右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。一般情况下,x轴和y轴取相同的单位长度。
3、特殊位置的点的坐标的特点:
(1).x轴上的点的纵坐标为零;y轴上的点的横坐标为零。
(2).第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。
(3).在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。
4.点到轴及原点的距离
点到x轴的距离为|y|; 点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号;
在平面直角坐标系中对称点的特点:
1.关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。
2.关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。
3关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。
各象限内和坐标轴上的点和坐标的规律:
第一象限:(+,+) 第二象限:(-,+)第三象限:(-,-)第四象限:(+,-)
x轴正方向:(+,0)x轴负方向:(-,0)y轴正方向:(0,+)y轴负方向:(0,-)
x轴上的点纵坐标为0,y轴横坐标为0。
第七章 三角形
1、三角形任意两边之和大于第三边,确形任意两边之差小于第三边。
2、三角形三个内角的和等于180度。
3、直角三角形的两个锐角互余
4、三角形的三条角平分线交于一点,三条中线交于一点;三角形的三条高所在的直线交于一点。
5、直角三角形全等的条件:
斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。
(只要有任意两条边相等,这两个直角三角形就全等)。
6、三角形全等的条件:
(1)三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。
(2)两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。
(3)两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”。
(4)两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”。
27、等腰三角形的特征:
(1) 有两条边相等的三角形叫做等腰三角形;
(2) 等腰三角形是轴对称图形;
(3) 等腰三角形顶角的平分线、底边上的中线、底边上的重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴。
(4)等腰三角形的两个底角相等。
(5)等腰三角形的底角只能是锐角。
8、三角形具有稳定性,四边形不具有稳定性。
9.三角形内角和为180°,三角形的一个外交等于与他不相邻的两个内角的和,三角形的一个外角大于与它不相邻的任何一个内角。
多边形
1.有一些线段首位顺次相接组成的图形叫做多边形
2、多边形相邻两边组成的角叫做它的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角。
3、连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
4、画出多边形的任何一条边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,否则就是凹多边形。
5.各个角都相等,各条边都相等的多边形叫做正多边形。
6、n边形的内角和等于(n-2)*180°
多边形的外角和等于360°
7、如果说四边形的一对角互补,那么另一组角也互补。
镶嵌
1.镶嵌也叫作密铺,指的是:用一些不重叠摆放的多边形把平面的一部分无缝隙的完全覆盖。 补充回答: 第八章 二元一次方程组
1、二元一次方程组的意义:含有两个未知数的方程并且所含未知项的最高次数是1,这样的整式方程叫做二元一次方程。
把两个一次方程联立在一起,那么这两个方程就组成了一个二元一次方程组。
有几个方程组成的一组方程叫做方程组。如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。
2、二元一次方程组有两种解法,一种是代入消元法,一种是加减消元法.
代入消元法:把二元一次方程中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或向减,就能消去这个未知数,得到一个一元一次方程。
3、三元一次方程组:在3个方程组中,共含有3个未知数,且每个未知数的次数都是1次,像这样的方程组叫做三元一次方程组. 补充回答: 第九章 不等式与不等式组
1、不等式:用不等号将两个解析式连结起来所成的式子。
2、不等式的最基本性质有:①如果x>y,那么y<x;如果y<x,那么x>y;②如果x>y,y>z;那么x>z;③如果x>y,而z为任意实数,那么x+z>y+z;④ 如果x>y,z>0,那么xz>yz;⑤如果x>y,z<0,那么xz<yz。
2、不等式的基本性质:
性质1:如果a>b,b>c,那么a>c(不等式的传递性).
性质2:如果a>b,那么a+c>b+c(不等式的可加性).
性质3:如果a>b,c>0,那么ac>bc;如果a>b,c<0,ac<bc.(不等式的乘法法则)
性质4:如果a>b,c>d,那么a+c>b+d. (不等式的加法法则)
性质5:如果a>b>0,c>d>0,那么ac>bd. (可乘性)
性质6:如果a>b>0,n∈N,n>1,那么an>bn,且.当0<n<1时也成立. (乘方法则)
性质7:如果a>等于b c>b 那么c大于等于a
性质7不一定成立,如a取值28,b取值3,c取值19,则c不大于a
4、不等式组:几个含有相同未知数的不等式联立起来,叫做不等式组.
5、解不等式组,可以先把其中的不等式逐条算出各自的解集,然后分别在数轴上表示出来。
以两条不等式组成的不等式组为例,
①若两个未知数的解集在数轴上表示同向左,就取在左边的未知数的解集为不等式组的解集,此乃“同小取小”
②若两个未知数的解集在数轴上表示同向右,就取在右边的未知数的解集为不等式组的解集,此乃“同大取大”
③若两个未知数的解集在数轴上相交,就取它们之间的值为不等式组的解集。若x表示不等式的解集,此时一般表示为a<x<b,或a≤x≤b。此乃“相交取中”
④若两个未知数的解集在数轴上向背,那么不等式组的解集就是空集,不等式组无解。此乃“向背取空”
第十章 数据的收集、整理与描述
1、全面调查:考察全体对象的调查叫做全面调查,也叫普查。
2、抽样调查:只抽取一部分对象进行调查,然后根据数据推断全体对象的情况。要考察的全体对象称为总体,组成总体的每一个考察对象称为个体,被抽取的那些个体组成一个样本,样本中个体的数目称为样本容量。 补充回答: 3、直方图的绘制方法:①集中和记录数据,求出其最大值和最小值。数据的数量应在100个以上,在数量不多的情况下,至少也应在50个以上。
②将数据分成若干组,并做好记号。分组的数量在5-12之间较为适宜。
③计算组距的宽度。用组数去除最大值和最小值之差,求出组距的宽度。
④计算各组的界限位。各组的界限位可以从第一组开始依次计算,第一组的下界为最小值减去组距的一半,第一组的上界为其下界值加上组距。第二组的下界限位为第一组的上界限值,第二组的下界限值加上组距,就是第二组的上界限位,依此类推。
⑤统计各组数据出现频数,作频数分布表。
⑥作直方图。以组距为底长,以频数为高,作各组的矩形图。
4、从数据谈节水:加强环境保护,节约用水。

⑸ 七年级上下册数学知识要点

知识梳理:
⑴正数与负数:负数产生的必要性;具有相反意义的量。
⑵有理数的分类:整数、分数统称有理数;整数又包括正整数、零、负整数,分数又包括正分数与负分数。
⑶相反数、倒数、绝对值:
只有符号不同的两个数是互为相反数,a的相反数为-a;
一个数除以1所得的商是这个数的倒数,零没有倒数;
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。
⑷数轴:原点、正方向、单位长度是数轴的三要素。
⑸有理数的大小比较:
方法一:零大于一切正数,而小于一切负数;
两个负数,绝对值大的反而小。
方法二:在数轴上,右边的点表示的数总比左边的点表示的数大。
实 数
一、 知识梳理:
1、实数的分类.有理数(正有理数、0、负有理数),无理数(无限不循环小数)
2、实数的有关概念:
(1)平方根:一般地,如果一个数的平方等于 ,那么这个数叫做 的平方根.正数有两个平方根,负数没有平方根,0的平方根是0
(2)算术平方根:正数的正平方根和零的平方根,统称算术平方根.
(3)立方根:一个数的立方等于a,这个数叫做a的立方根。
3、实数与数轴上的点一一对应。会在数轴上表示有些无理数
知识要点】
1.只含有一个未知数,并且未知数的次数是一次的整式方程叫做一元一次方程
2.解一元一次方程的一般步骤是:
(1)去分母(2)去括号(3)移项(4)合并同类项(5)将未知数的系数化为“1”
3.一元一次方程ax=b的解的情况:
(1)当a≠0时,ax=b有唯一的解
(2)当a=0,b≠0时,ax=b无解
(3)当a=0,b=0时,ax=b有无穷多个解【
知识要点:
1.因式分解定义:把一个多项式化成几个_______式乘积的形式.因式分解与整式的乘法是互为________.
2.因式分解的基本方法:
(1)提取公因式法(首先考虑的方法)、应用公式法、分组分解法、十字相乘法.
(2)公式:a2-b2=__ _____,a2±2ab+b2=___ ____,
a3+b3=____ ____,a3-b3=___ ____.
3.因式分解的一般步骤
先看有没有公因式,若有立即提出;然后看看是几项式,若是二项式则用平方差、立方或立方差公式;若是三项式用完全平方公式或十字相乘法;若是四项及以上的式子用分组分解法,要注意分解到不能再分解为止.
一,知识梳理:
1、 有理数的加法、减法、乘法、除法、乘方运算法则、混合运算
2、 运算律:交换律、结合律、分配律,去括号法则
(1)有理数的加法法则:
1. 同号两数相加,和取相同的符号,并把绝对值相加;
2. 绝对值不等的异号两数相加,和取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
3. 一个数与零相加仍得这个数;
4. 两个互为相反数相加和为零。
⑵有理数的减法法则:
减去一个数等于加上这个数的相反数。
补充:去括号与添括号:
去括号法则:括号前是“+”号时,将括号连同它前边的“+”号去掉,括号内各项都不变;括号前是“-”号时,将括号连同它前边的“-”去掉,括号内各项都要变号。
添括号法则:在“+”号后边添括号,括到括号内的各项都不变;在“-”号后边添括号,括到括号内的各项都要变号。

⑶有理数的乘法法则:
① 两数相乘,同号得正,异号得负,并把绝对值相乘;
② 任何数与零相乘都得零;
③ 几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正;
④ 几个有理数相乘,若其中有一个为零,积就为零。
⑷有理数的除法法则:
法则一:两个有理数相除,同号得正,异号得负,并把绝对值相除;
法则二:除以一个数等于乘以这个数的倒数。
⑸有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的给果叫做幂。
正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。
⑹有理数的运算顺序:
先算乘方,再算乘除,最后算加减;如果有括号,则先算括号内,再算括号外。
⑺运算律:
①加法的交换律;
②加法的结合律;
③乘法的交换律;
④乘法的结合律;
⑤乘法对加法的分配律;
注:除法没有分配律。
3、 科学记数法:把一个数表示成a(1≤a<10)与10的幂相乘的形式。如:304000=3
4、准确数与近似数:与实际完全符合的数叫准确数,与实际接近的数叫近似数。取近似数有两种方法(1)精确到哪位,如:把84960精确到万位得(2)有效数字:从左边第一个不是零的数字起到到末位数字为止的所有数字都叫做这个数的有效数字。如:把84960保留两个有效数字得:
5、计算器的使用
1、平移变换
①把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
②新图形的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点
③连接各组对应点的线段平行且相等
2、平移的特征:
①经过平移之后的图形与原来的图形的对应线段平行(或在同一直线上)且相等,对应角相等,图形的形状与大小都没有发生变化。
②经过平移后,对应点所连的线段平行(或在同一直线上)且相等。

知识点整理:1、相交线
两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:
图形 顶点 边的关系 大小关系
对顶角 ∠1与∠2 有公共顶点 ∠1的两边与∠2的两边互为反向延长线 对顶角相等即∠1=∠2
邻补角 ∠3与∠4 有公共顶点 ∠3与∠4有一条边公共,另一边互为反向延长线。 ∠3+∠4=180°
注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;
⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角
⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。
⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。
2、垂线
⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
符号语言记作:
如图所示:AB⊥CD,垂足为O
⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)
⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。简称:垂线段最短。
3、垂线的画法:
⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。
注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。
画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。
4、点到直线的距离
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离
记得时候应该结合图形进行记忆。
如图,PO⊥AB,同P到直线AB的距离是PO的长。PO是垂线段。PO是点P到直线AB所有线段中最短的一条。
现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用。
5、如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念
分析它们的联系与区别
⑴垂线与垂线段 区别:垂线是一条直线,不可度量长度;垂线段是一条线段,可以度量长度。 联系:具有垂直于已知直线的共同特征。(垂直的性质)
⑵两点间距离与点到直线的距离 区别:两点间的距离是点与点之间,点到直线的距离是点与直线之间。 联系:都是线段的长度;点到直线的距离是特殊的两点(即已知点与垂足)间距离。
⑶线段与距离 距离是线段的长度,是一个量;线段是一种图形,它们之间不能等同。

2平行线
1、平行线的概念:
在同一平面内,不相交的两条直线叫做平行线,直线 与直线 互相平行,记作 ‖ 。
2、两条直线的位置关系
在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行。
因此当我们得知在同一平面内两直线不相交时,就可以肯定它们平行;反过来也一样(这里,我们把重合的两直线看成一条直线)
判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:
①有且只有一个公共点,两直线相交;
②无公共点,则两直线平行;
③两个或两个以上公共点,则两直线重合(因为两点确定一条直线)
3、平行公理――平行线的存在性与惟一性
经过直线外一点,有且只有一条直线与这条直线平行

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1.数的分类及概念
数系表:
实数
无理数(无限不循环小数)
有理数
正分数
负分数
正整数
0
负整数
(有限或无限循环性数)
整数
分数
正无理数
负无理数
说明:“分类”的原则:
1)相称(不重、不漏)
2)有标准
2.非负数:正实数与零的统称。(表为:x≥0)
│a│
(a≥0)
(a为一切实数)
常见的非负数有:
性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数: ①定义及表示法
②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.0<a<1时1/a>1;a>1时,1/a<1;D.积为1。
4.相反数: ①定义及表示法
②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”)
②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)
定义及表示:
奇数:2n-1
偶数:2n(n为自然数)
a(a≥0)
-a(a<0)
│a│=
7.绝对值:①定义(两种):
代数定义:
几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算
1. 运算法则(加、减、乘、除、乘方、开方)
2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]
分配律)
3. 运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”
到“右”(如5÷ ×5);C.(有括号时)由“小”到“中”到“大”。
三、应用举例(略)
附:典型例题
1. a
x
b
已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│
=b-a.
2.已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。

第二章 代数式
一、 单项式
多项式
整式
分式样
有理式
无理式
代数式
重要概念
分类:
1.代数式与有理式
用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独
的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式
含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3.单项式与多项式
没有加减运算的整式叫做单项式。(数字与字母的积—包括单独的一个数或字母)
几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如,
=x, =│x│等。
4.系数与指数
区别与联系:①从位置上看;②从表示的意义上看
5.同类项及其合并
条件:①字母相同;②相同字母的指数相同
合并依据:乘法分配律
6.根式
表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别: 、 是根式,但不是无理式(是无理数)。
7.算术平方根
⑴正数a的正的平方根( [a≥0—与“平方根”的区别]);
⑵算术平方根与绝对值
① 联系:都是非负数, =│a│
②区别:│a│中,a为一切实数; 中,a为非负数。
8.同类二次根式、最简二次根式、分母有理化
化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。
把分母中的根号划去叫做分母有理化。
a·a…a=
n个
9.指数
⑴ ( —幂,乘方运算)
① a>0时, >0;②a<0时, >0(n是偶数), <0(n是奇数)
⑵零指数: =1(a≠0)
负整指数: =1/ (a≠0,p是正整数)
二、运算定律、性质、法则
1.分式的加、减、乘、除、乘方、开方法则
2.分式的性质
⑴基本性质: = (m≠0)
⑵符号法则:
⑶繁分式:①定义;②化简方法(两种)
3.整式运算法则(去括号、添括号法则)
4.幂的运算性质:① · = ;② ÷ = ;③ = ;④ = ;⑤
技巧:
5.乘法法则:⑴单×单;⑵单×多;⑶多×多。
6.乘法公式:(正、逆用)
(a+b)(a-b)=
(a±b) =
7.除法法则:⑴单÷单;⑵多÷单。
8.因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。
9.算术根的性质: = ; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用)
10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. .
11.科学记数法: (1≤a<10,n是整数)

⑹ 人教版七年级数学上知识点归纳

七年级数学(下)期末复习知识点整理
5.1相交线

1、邻补角与对顶角

两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:

图形

顶点

边的关系

大小关系



对顶角



∠1与∠2

有公共顶点

∠1的两边与∠2的两边互为反向延长线

对顶角相等

即∠1=∠2



邻补角



∠3与∠4

有公共顶点

∠3与∠4有一条边公共,另一边互为反向延长线。

∠3+∠4=180°



注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;

⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角

⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。

⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。

2、垂线

⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

符号语言记作:

如图所示:AB⊥CD,垂足为O

⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)

⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。简称:垂线段最短。

3、垂线的画法:

⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。

注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。

画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。

4、点到直线的距离

直线外一点到这条直线的垂线段的长度,叫做点到直线的距离

记得时候应该结合图形进行记忆。

如图,PO⊥AB,同P到直线AB的距离是PO的长。PO是垂线段。PO是点P到直线AB所有线段中最短的一条。

现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用。

5、如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念

分析它们的联系与区别

⑴垂线与垂线段 区别:垂线是一条直线,不可度量长度;垂线段是一条线段,可以度量长度。 联系:具有垂直于已知直线的共同特征。(垂直的性质)

⑵两点间距离与点到直线的距离 区别:两点间的距离是点与点之间,点到直线的距离是点与直线之间。 联系:都是线段的长度;点到直线的距离是特殊的两点(即已知点与垂足)间距离。

⑶线段与距离 距离是线段的长度,是一个量;线段是一种图形,它们之间不能等同。

5.2平行线

1、平行线的概念:

在同一平面内,不相交的两条直线叫做平行线,直线与直线互相平行,记作‖。

2、两条直线的位置关系

在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行。

因此当我们得知在同一平面内两直线不相交时,就可以肯定它们平行;反过来也一样(这里,我们把重合的两直线看成一条直线)

判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:

①有且只有一个公共点,两直线相交;

②无公共点,则两直线平行;

③两个或两个以上公共点,则两直线重合(因为两点确定一条直线)

3、平行公理――平行线的存在性与惟一性

经过直线外一点,有且只有一条直线与这条直线平行

4、平行公理的推论:

如果两条直线都与第三条直线平行,那么这两条直线也互相平行

如左图所示,∵‖,‖

∴‖

注意符号语言书写,前提条件是两直线都平行于第三条直线,才会结论,这两条直线都平行。

5、三线八角

两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角。

如图,直线被直线所截

①∠1与∠5在截线的同侧,同在被截直线的上方,

叫做同位角(位置相同)

②∠5与∠3在截线的两旁(交错),在被截直线之间(内),叫做内错角(位置在内且交错)

③∠5与∠4在截线的同侧,在被截直线之间(内),叫做同旁内角。

④三线八角也可以成模型中看出。同位角是“A”型;内错角是“Z”型;同旁内角是“U”型。

6、如何判别三线八角

判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全。

例如:

如图,判断下列各对角的位置关系:⑴∠1与∠2;⑵∠1与∠7;⑶∠1与∠BAD;⑷∠2与∠6;⑸∠5与∠8。

我们将各对角从图形中抽出来(或者说略去与有关角无关的线),得到下列各图。

如图所示,不难看出∠1与∠2是同旁内角;∠1与∠7是同位角;∠1与∠BAD是同旁内角;∠2与∠6是内错角;∠5与∠8对顶角。

注意:图中∠2与∠9,它们是同位角吗?

不是,因为∠2与∠9的各边分别在四条不同直线上,不是两直线被第三条直线所截而成。

7、两直线平行的判定方法

方法一 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行

简称:同位角相等,两直线平行

方法二 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行

简称:内错角相等,两直线平行

方法三 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行

简称:同旁内角互补,两直线平行

几何符号语言:

∵ ∠3=∠2

∴ AB‖CD(同位角相等,两直线平行)

∵ ∠1=∠2

∴ AB‖CD(内错角相等,两直线平行)

⑺ 七年级上数学知识点

1.3 有理数的加减法 ——负数概念、四则运算,有理数的绝对值
实验与探究 填幻方
1.4 有理数的乘除法
观察与思考 翻牌游戏中的数学道理
1.5 有理数的乘方
数学活动
小结
复习题1
第二章 整式的加减
2.1 整式
阅读与思考 数字1与字母X的对话
2.2 整式的加减
信息技术应用 电子表格与数据计算
数学活动
小结
复习题2
第三章 一元一次方程
3.1 从算式到方程
阅读与思考 “方程”史话
3.2 解一元一次方程(一)——合并同类项与移项
实验与探究 无限循环小数化分数
3.3 解一元一次方程(二)——去括号与去分母
3.4 实际问题与一元一次方程
数学活动
小结
复习题3
第四章 图形认识初步
4.1 多姿多彩的图形
阅读与思考 几何学的起源
4.2 直线、射线、线段
阅读与思考 长度的测量
4.3 角
4.4 课题学习 设计制作长方体形状的包装纸盒
数学活动
自己去买本参考书,知识体系更完善

⑻ 七年级数学上册知识点

1.1 正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。

1.2 有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rational number)。
通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

1.3 有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。

第二章 一元一次方程
2.1 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
等式的性质:
1.等式两边加(或减)同一个数(或式子),结果仍相等。
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2.2 从古老的代数书说起——一元一次方程的讨论(1)
把等式一边的某项变号后移到另一边,叫做移项。

第三章 图形认识初步
3.1 多姿多彩的图形
几何体也简称体(solid)。包围着体的是面(surface)。

3.2 直线、射线、线段
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。

3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度

3.4 角的比较与运算
如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。
如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。
等角(同角)的补角相等。
等角(同角)的余角相等
第一章
1.1 正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。

1.2 有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rational number)。
通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

1.3 有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。

第二章 一元一次方程
2.1 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
等式的性质:
1.等式两边加(或减)同一个数(或式子),结果仍相等。
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2.2 从古老的代数书说起——一元一次方程的讨论(1)
把等式一边的某项变号后移到另一边,叫做移项。

第三章 图形认识初步
3.1 多姿多彩的图形
几何体也简称体(solid)。包围着体的是面(surface)。

3.2 直线、射线、线段
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。

3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度

3.4 角的比较与运算
如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。
如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。
等角(同角)的补角相等。
等角(同角)的余角相等。
由几个含有同一个未知数的一元一次不等式组成的不等式组,叫做一元一次不等式组
不等式组中所有不等式的解集的公共部分叫做这个不等式组的解集。求不等式组的解集的过程叫做解不等式组。
解不解不等式的诀窍
大于大于取大的(大大大);
例如:X>-1
X>2
不等式组的解集是X>2
小于小于取小的(小小小);
例如:X<-4
X<-6
不等式组的解集是X<-6
大于小于交叉取中间;
无公共部分分开无解了;
解方程型:
1.某商店到苹果产地去收购苹果,收购价为每千克1.2元,从产地到商店的距离是400km,运费为每吨货物每运1km收1.5元,如果在运输及销售过程中的损耗为10%,商店要想获得其成本的25%的利润,零售价应是每千克多少元?

解:
运输成本:400*1。5=600元
收购成本:1。2*1000=1200元
设销价是X
1000*90%*X-[600+1200]=[600+1200]*25%
X=2.5
即销价是2.5元/千克

①某球迷协会组织36名球拟租乘汽车赴比赛场地,为主队加油助威。可租用的汽车有两种:一种每辆可乘8人,另一种每辆可乘4人,要求租用的车子不留空位,也不超载。若8个座位的车子的租金是300元/天,4个座位的车子的租金是200元/天,请你设计出费用最少的租车方案,并说明理由。
问题补充:
甲步行,乙骑自行车,两人同时从相距45km的A、B两地出发相向而行,2.5h后两人相遇,已知乙骑自行车的速度是甲步行速度的2倍,求甲步行的速度。(列方程解)
1.某商店到苹果产地去收购苹果,收购价为每千克1.2元,从产地到商店的距离是400km,运费为每吨货物每运1km收1.5元,如果在运输及销售过程中的损耗为10%,商店要想获得其成本的25%的利润,零售价应是每千克多少元?

解:
运输成本:400*1。5=600元
收购成本:1。2*1000=1200元
设销价是X
1000*90%*X-[600+1200]=[600+1200]*25%
X=2.5
即销价是2.5元/千克

2.甲、乙两人各坐一游艇在湖中划行,甲每摇桨10次时,乙只能摇桨8次;而乙摇桨70次所走的路程等于甲摇桨90次所走的路程。开始时,甲先摇桨4次,乙接着摇桨。问乙摇几次桨才能追上甲?

解:
设甲每次前进的路程是1,乙要x次才能追上.乙x次的时候,甲划了(10/8)x=(5/4)x次,甲90次就是90,这需要乙70次,则乙每次前进90/70=9/7,甲先4次,就是4.
4+1*(5/4)x=(9/7)*x
[(9/7)-(5/4)]x=4
(1/28)x=4
x=112(次)

⑼ 人教版七年级数学上下册知识点

只有上册,不好意思啊~
第一章 有理数
1.1 正数和负数
正数和负数的概念
用正,负数表示具有相反意义的量
1.2 有理数
有理数的有关概念
有理数的分类
数集的概念
数轴的概念
数轴上的点与有理数之间的关系
相反数
绝对值
有理数的大小比较
1.3有理数的加减法
有理数的加法法则
有理数的加法运算律
有理数的减法法则
有理数的加减混合运算
用计算器对有理数加减混合运算进行计算
1.4有理数的乘除法
有理数的乘法法则
倒数的概念
有理数的乘法运算律
项,项的系数,合并含有相同字母的项
有理数的除法法则
1.5有理数的乘方
乘方的意义
乘方的法则
有理数的混合运算顺序
科学记数法
科学记数法中的负指数
近似数和有效数字
(没有不等式那一章哦~以上是我自己打的,后面的你进http://www..com/s?wd=%C8%CB%BD%CC%B0%E6%C6%DF%C4%EA%BC%B6%CA%FD%D1%A7%C9%CF&lm=0&si=&rn=10&ie=gb2312&ct=0&cl=3&f=1&rsp=2看看,烧腿哦~我实在打到手酸了~)