当前位置:首页 » 基础知识 » 非洲中的数学知识
扩展阅读
建筑日常教育包括哪些 2025-03-06 09:41:29

非洲中的数学知识

发布时间: 2025-03-05 17:20:36

A. 动物中的数学天才

人类看来,动物们头脑似乎都比较简单.其实,有许多动物的头脑并非像人们想象的那样愚钝,有许多动物很聪明,甚至成为数学“天才”,它们懂得计算、计量或数数等等.
珊瑚虫的头脑很不简单,珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条.奇怪的是,古生物学家发现3亿5000万年前的珊瑚虫每年“画”出400幅“水彩画”.天文学家告诉我们,当时地球一天仅为21.9小时,一年不是365天,而是400天,可见,也是一天一幅“画”.
生物学家佩珀伯格,曾在美国印第安纳州耐心训练一只6岁的非洲灰鹦鹉,让它学会了40个英文单词,还会计数,这只鹦鹉能用这些单词说出几十个物件的名称、颜色和形状,还会说出这堆东西各自是多少.
小小蚂蚁的计数本领也不逊色.英国昆虫学家光斯顿做过一项有趣的实验:他将一只死蚱蜢切成小、中、大共3块,中块比小块大约1倍,大块又比中块大约1倍,放在蚂蚁窝边.蚂蚁发现这些蚱蜢块后,立即调兵遣将,欲把蚱蜢运回窝里.约10分钟工夫,有20只蚂蚁聚在小块蚱蜢周围,有51只蚂蚁聚集在中块蚱蜢周围,有89只蚂蚁聚集在大块蚱蜢周围.蚂蚁数额、力量的分配与蚱蜢大小的比例相一致,其数量之精确,令人惊叹.
科学家发现水老鸭会数数.中国有些地方靠水老鸭捕鱼.主人用一根细绳拴住水老鸭的喉颈.当水老鸭捉回6条鱼以后,允许它们吃第7条鱼,这是主人与水老鸭之间长期形成的约定.科学家注意到,渔民偶尔“数错”了,没有.解开水老鸭脖子上的绳子时,水老鸭则却也不动,即使渔民打它们,它们也不出去捕鱼了,它们知道这第7条鱼就应该是自己所得的份.
美国动物心理学家亨赛尔博士在试验时先给动物以错误的信息,然后观察它们做出的反应.
他曾连续一个月给100只加勒比海野猴每天一次分发2只香蕉,此后突然减少到分发1只香蕉.此时,96%的野猴对这只香蕉多看了一两遍,还有少部分猴子甚至尖叫起来表示抗议.美国动物行为研究者戈丹做过类似的实验:他先让他所饲养的8只黑猩猩每次各吃10只香蕉,如此连续多次.某一天,他突然只给每只猩猩8只香蕉,结果所有的黑猩猩都不肯走开,一直到主人补足10只后才满意地离去.由此可见,野猴和黑猩猩是有数学头脑的.
长期以来,包括科学家在内所有的人一直认为,只有人类才具有数字的概念和进行计算的能力,而上述实验和有关的介绍,对于我们了解动物的智力无疑具有非常重要的意义.

B. 数学的起源和演变谁知道哦

非洲东北部的尼罗河流域,孕育了埃及的文化。在公元前3500~3000年间,这里曾建立了一个统一的帝国。

目前我们对古埃及数学的认识,主要源于两份用僧侣文写成的纸草书,其一是成书于公元前1850年左右的莫斯科纸草书,另一份是约成书于公元前1650年的兰德(Rhind)纸草书,又称阿梅斯(Ahmes)纸草书。阿梅斯纸草书的内容相当丰富,讲述了埃及的乘法和除法、单位分数的用法、试位法、求圆面积问题的解和数学在许多实际问题中的应用。

古埃及人使用象形文字,其数字以十进制表示,但并非位值制,而分数还有一套专门的记法。由埃及数系建立起来的算术具有加法特征,其乘、除法的计算也只是利用连续加倍的方法来完成。古埃及人将所有的分数都化成单位分数(分子为 1的分数之和),在阿梅斯纸草书中,有很大一张分数表,把2/(2n+1)状分数表示成单位分数之和,如:2/5=1/3+1/15,2/7=1/4+1/28,…,2/97=1/56+1/679+
1/776,等等。

古埃及人已经能解决一些属于一次方程和最简单的二次方程的问题,还有一些关于等差数列、等比数列的初步知识。

如果说巴比伦人发展了卓越的算术和代数学,那么在另一方面,人们一般认为埃及人在几何学方面要胜过巴比伦人。一种观点认为尼罗河水每年一次的定期泛滥,淹没河流两岸的谷地。大水过后,法老要重新分配土地,长期积累起来的土地测量知识逐渐发展为几何学。

埃及人能够计算简单平面图形的面积,计算出的圆周率为 3.16049;他们还知道如何计算棱椎、圆椎、圆柱体及半球的体积。其中最惊人的成就在于方棱椎平头截体体积的计算,他们给出的计算过程与现代的公式相符。

至于在建造金字塔和神殿过程中,大量运用数学知识的事实表明,埃及人已积累了许多实用知识,而有待于上升为系统的理论。

返回

--------------------------------------------------------------------------------

印度数学(Hin mathematics)
印度是世界上文化发达最早的地区之一,印度数学的起源和其它古老民族的数学起源一样,是在生产实际需要的基础上产生 的。但是,印度数学的发展也有一个特殊的因素,便是它的数学和历法一样,是在婆罗门祭礼的影响下得以充分发展的。再加上 佛教的交流和贸易的往来,印度数学和近东,特别是中国的数学便在互相融合,互相促进中前进。另外,印度数学的发展始终与天文学有密切的关系,数学作品大多刊载于天文学着作中的某些篇章。

《绳法经》属于古代婆罗门教的经典,可能成书于公元前6世纪,是在数学史上有意义的宗教作品,其中讲到拉绳设计祭坛时所体现到的几何法则,并广泛地应用了勾股定理。

此后约1000年之中,由于缺少可靠的史料,数学的发展所知甚少。

公元5-12世纪是印度数学的迅速发展时期,其成就在世界数学史上占有重要地位。在这个时期出现了一些着名的学者,如6世纪的阿利耶波多(第一)( ryabhata),着有《阿利耶波多历数书》;7世纪的婆罗摩笈多(Brahmagupta ),着有《婆罗摩笈多修订体系》(Brahma-sphuta-sidd'h nta ),在这本天文学着作中,包括“算术讲义”和“不定方程讲义 ”等数学章节;9世纪摩诃毗罗(Mah vira );12世纪的婆什迦罗(第二)(Bh skara ),着有《天文系统极致》(Siddh nta iromani ),有关数学的重要部份为《丽罗娃提》(Lil vati) )和《算法本源》(V jaganita)等等。

在印度,整数的十进制值制记数法产生于6世纪以前,用9个数字和表示零的小圆圈,再借助于位值制便可写出任何数字。他们由此建立了算术运算,包括整数和分数的四则运算法则;开平方和开立方的法则等。对于“零”,他们不单是把它看成“一无所有”或空位,还把它当作一个数来参加运算,这是印度算术的一大贡献。

印度人创造的这套数字和位值记数法在8世纪传入伊斯兰世界,被阿拉伯人采用并改进。13世纪初经斐波纳契的《算盘书》 流传到欧洲,逐渐演变成今天广为利用的1,2,3,4,…,等等,称为印度-阿拉伯数码。

印度对代数学做过重大的贡献。他们用符号进行代数运算,并用缩写文字表示未知数。他们承认负数和无理数,对负数的四 则运算法则有具体的描述,并意识到具有实解的二次方程有两种形式的根。印度人在不定分析中显示出卓越的能力,他们不满足于对一个不定方程只求任何一个有理解,而致力于求所有可能的整数解。印度人还计算过算术级数和几何级数的和,解决过单利 与复利、折扣以及合股之类的商业问题。

印度人的几何学是凭经验的,他们不追求逻辑上严谨的证明,只注重发展实用的方法,一般与测量相联系,侧重于面积、体积的计算。其贡献远远比不上他们在算术和代数方面的贡献大。在三角学方面,印度人用半弦(即正弦)代替了希腊人的全弦, 制作正弦表,还证明了一些简单的三角恒等式等等。他们在三角学所做的研究是十分重要的。

返回

--------------------------------------------------------------------------------

阿拉伯数学[Arabic mathematics]
从九世纪开始,数学发展的中心转向阿拉伯和中亚细亚。

自从公元七世纪初伊斯兰教创立后,很快形成了强大的势力,迅速扩展到阿拉伯半岛以外的广大地区,跨越欧、亚、非三大洲。在这一广大地区内,阿拉伯文是通用的官方文字,这里所叙述的阿拉伯数学,就是指用阿拉伯语研究的数学。

从八世纪起大约有一个到一个半世纪是阿拉伯数学的翻译时期,巴格达成为学术中心,建有科学宫、观象台、图书馆和一个学院。来自各地的学者把希腊、印度和波斯的古典着作大量地译为阿拉伯文。在翻译过程中,许多文献被重新校订、考证和增补,大量的古代数学遗产获得了新生。阿拉伯文明和文化在接受外来文化的基础上,迅速发展起来,直到15世纪还充满活力。

花拉子米[Al-khowarizmi]是阿拉伯初期最主要的数学家,他编写了第一本用阿拉伯语在伊斯兰世界介绍印度数字和记数法的着作。公元十二世纪后,印度数字、十进制值制记数法开始传入欧洲,又经过几百年的改革,这种数字成为我们今天使用的印度—阿拉伯数码。花拉子米的另一名着《ilm al-jabr wa'lmugabalah》[《代数学》]系统地讨论了一元二次方程的解法,该种方程的求根公式便是在此书中第一次出现。现代”algebra”[代数学]一词亦源于书名中出现的”al jabr”。

三角学在阿拉伯数学中占有重要地位,它的产生与发展和天文学有密切关系。阿拉伯人在印度人和希腊人工作的基础上发展了三角学。他们引进了几种新的三角量,揭示了它们的性质和关系,建立了一些重要的三角恒等式。给出了球面三角形和平面三角形的全部解法,制造了许多较精密的三角函数表。其中着名的数学家有:阿尔.巴塔尼[Al-Battani]、阿卜尔.维法[Abu'l-Wefa]、阿尔.比鲁尼[Al-Beruni]等。系统而完整地论述三角学的着作是由十三世纪的学者纳西尔丁[Nasir ed-din]完成的,该着作使三角学脱离天文学而成为数学的独立分支,对三角学在欧洲的发展有很大的影响。

在近似计算方面,十五世纪的阿尔.卡西[Al-kashi]在他的《圆周论》中,叙述了圆周率π的计算方法,并得到精确到小数点后16位的圆周率,从而打破祖冲之保持了一千年的记录。此外,阿尔.卡西在小数方面做过重要工作,亦是我们所知道的以“帕斯卡三角形”形式处理二项式定理的第一位阿拉伯学者。

阿拉伯几何学的成就低于代数和三角。希腊几何学严密的逻辑论证没有被阿拉伯人接受。

总的来看,阿拉伯数学较缺少创造性,但当时世界上大多数地方正处于科学上的贫瘠时期,其成绩相对显得较大,值得赞美的是他们充当了世界上大量精神财富的保存者,在黑暗时代过去后,这些精神财富才传回欧洲。欧洲人主要就是通过他们的译着才了解古希腊和印度以及中国数学的成就。

返回

--------------------------------------------------------------------------------

日本数学[Mathematics in Japan]
人类从何时才开始定居于日本列岛,至今仍无定论。公元四世纪中叶,日本建立了第一个统一的国家。在十世纪以前,日本主要吸收外来的文化。中国、朝鲜和印度的文化对日本都有很大的影响,十世纪以后,真正的日本文化才发展起来。日本数学的繁荣则更晚,是十七世纪以后的事。

日本人把受西方数学影响以前,按自己的特点发展起来的数学叫和算,也算日本传统数学。十七世纪后期至十九世纪中叶是和算的兴盛时期。 和算在中国古代数学的影响下发展起来。公元六世纪始,中国的历法和数学就直接或间接地[通过朝鲜]传入日本,日本政府亦多次派留学生到中国唐朝学习数学。到八世纪初,日本已仿照隋唐时期的数学教育制度设立算学博士并采用《周髀算经》、《九章算术》、《孙子算经》、《缀术》等中国古算书作为教材,这是中国数学输入日本的第一个时期。

十三至十七世纪,是中国数学传入日本的第二个时期,《杨辉算法》、《算学启蒙》、《算法统宗》等陆续传入日本,对日本数学的发展有重要的影响。吉田光由的《尘劫记》[1627]使珠算术在日本迅速得到普及,其内容与《算法统宗》极为相似,只是其中许多例题是根据日本的实际情况编写的。这时期还有几本着作是专门介绍和解释《算学启蒙》的。 十七世纪初,日本数学家开始写出自己的着作,如毛利重能的《割算书》[1622]、今村知商的《竖亥录》[1639]等。到十七世纪末期,通过关孝和等人的工作,逐渐形成了日本数学体系——和算。

关孝和在日本被尊为“算圣”,十七世纪末到十八世纪初,以他为核心形成一个学派[关流],这一学派的主要成就是“点 术”和“圆理”。“点 术”是把由中国传入的天文术改为笔算,并改进了算式的记法,是和算特有的笔算代数学。“圆理”可看作是和算特有的数学分析。建部贤弘求得弧长的无穷级数表达式,又称圆理公式。久留岛义太推广了圆理公式,发展了圆理的极数术[极值问题],并在西方数学家之前发现了欧拉函数和行列式展开定理。关氏学派的第四代大师安岛直圆深入到微积分领域,提出一种求弧长的方法;又将此法推广,形成二重积分,求出了两相交圆柱公共部份的体积。晚期的关氏学派数学家和田宁进一步改进了圆理,使计算弧长、面积、体积等问题更加简化,他使用的方法和现在积分法的原理相近。

除了关氏学派外,还有一些较小的学派。他们总结了和算中的各种几何问题;深入研究了计算椭圆、球面等面积和体积的公式;探讨了代数方程理论等等。 十九世纪中叶,日本政府采取了开国政策,西方数学大量传入。明治维新时期,日本政府实行“和算废止,洋算专用”政策,和算迅速衰废[只有珠算沿用至今],同时开始了近代数学的研究。时至今日,日本已步入世界上数学研究先进国家的行列。

C. 有关数学的小知识50字

1. 有关数学的小知识
有关数学的小知识 1. 数学小知识
1、早在2000多年前,我们的祖先就用磁石制作了指示方向的仪器,这种仪器就是司南。

2、最早使用小圆点作为小数点的是德国的数学家,叫克拉维斯。

4、“七巧板”是我国古代的一种拼板玩具,由七块可以拼成一个大正方形的薄板组成,拼出来的图案变化万千,后来传到国外叫做唐图。

5、传说早在四千五百年前,我们的祖先就用刻漏来计时。

6、中国是最早使用四舍五入法进行计算的国家。

7、欧几里得最着名的着作《几何原本》是欧洲数学的基础,提出五大公设,发展为欧几里得几何,被广泛的认为是历史上最成功的教科书。

8、中国南北朝时代南朝数学家、天文学家、物理学家祖冲之把圆周率数值推算到了第7位数。

9、荷兰数学家卢道夫把圆周率推算到了第35位。

10、有“力学之父”美称的阿基米德流传于世的数学着作有10余种,阿基米德曾说过:给我一个支点,我可以翘起地球。这句话告诉我们:要有勇气去寻找这个支点,要用于寻找真理。

(3)非洲中的数学知识扩展阅读

数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。

在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。

参考资料数学_搜狗网络
2. 关于数学的小知识
1,零

在很早的时候,以为“1”是“数字字符表”的磨衡悄开始,并且它进一步引出了2,3,4,5等其他数字。这些数字的作用是,对那些真实存在的物体,如苹果、香蕉、梨等进行计数。直到后来,才学会,当盒子里边已经没有苹果时,如何计数里边的苹果数。

2,数字系统

数字系统是一种处理“多少”的方法。不同的文化在不同的时代采用了各种不同的方法,从基本的“1,2,3,很多”延伸到今天所使用的高度复杂的十进制表示方法。

3,π

π是数学中最着名的数。忘记自然界中的所有其他常数也不会忘记它,π总是出现在名单中的第一个位置。如果数字也有奥斯卡奖,那么π肯定每年都会得奖。

π或者pi,是圆周的周长和它的直径的比值。它的值,即这两个长度之间的比值,不取决于圆周的大小。无论圆周是大是小,π的值都是恒定不变的。π产生于圆周,但是在数学中它却无处不在,甚至涉及那些和圆周毫不相关的地方。

4,代数

代数给了一种崭新的解决间题的方式,一种“回旋”的演年方法。这种“回旋”是“反向思维”的。让我们考虑一下这个问题,当给数字25加上17时,结果将是42。这是正向思维。这些数,需要做的只是把它们加起来。

但是,假如已经知道了答案42,并瞎渣提出一个不同的问题,即现在想要知道的是什么数和25相加得42。这里便需要用到反向思维。想要知道未知数x的值,它满足等式25+x=42,然后,只需将42减去25便可知道答案。

5,函数

莱昂哈德·欧拉是瑞士数学家和物理学家。欧拉是第一个使用“函数”一词来描述包含各种参数的表达式的人,例如:y = F(x),他是把微积分应用于物理学的先驱者之一。
3. 关于数学的小知识
杨辉三角是一个由数字排列成的三角形数表,一般形式如下:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

… … … … …

杨辉三角最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和。其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。杨辉,字谦拦型光,北宋时期杭州人。在他1261年所着的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。现在要求我们用编程的方法输出这样的数表。

同时 这也是多项式(a+b)^n 打开括号后的各个项的二次项系数的规律 即为

0 (a+b)^0 (0 nCr 0)

1 (a+b)^1 (1 nCr 0) (1 nCr 1)

2 (a+b)^2 (2 nCr 0) (2 nCr 1) (2 nCr 2)

3 (a+b)^3 (3 nCr 0) (3 nCr 1) (3 nCr 2) (3 nCr 3)

. 。 。 。 。 。

因此 杨辉三角第x层第y项直接就是 (y nCr x)

我们也不难得到 第x层的所有项的总和 为 2^x (即(a+b)^x中a,b都为1的时候)

[ 上述y^x 指 y的 x次方;(a nCr b) 指 组合数]

其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。

杨辉,字谦光,北宋时期杭州人。在他1261年所着的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。

而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。具体的用法我们会在教学内容中讲授。

在国外,这也叫做"帕斯卡三角形".
4. 有关数学的小知识
数学符号的起源

数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系。数学符号的发明和使用比数字晚,但是数量多得多。现在常用的有200多个,初中数学书里就不下20多种。它们都有一段有趣的经历。

例如加号曾经有好几种,现在通用"+"号。

"+"号是由拉丁文"et"("和"的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文"più"(加的意思)的第一个字母表示加,草为"μ"最后都变成了"+"号。

"-"号是从拉丁文"minus"("减"的意思)演变来的,简写m,再省略掉字母,就成了"-"了。

到了十五世纪,德国数学家魏德美正式确定:"+"用作加号,"-"用作减号。

乘号曾经用过十几种,现在通用两种。一个是"*",最早是英国数学家奥屈特1631年提出的;一个是"· ",最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:"*"号象拉丁字母"X",加以反对,而赞成用"· "号。他自己还提出用"п"表示相乘。可是这个符号现在应用到 *** 论中去了。

到了十八世纪,美国数学家欧德莱确定,把"*"作为乘号。他认为"*"是"+"斜起来写,是另一种表示增加的符号。

"÷"最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用":"表示除或比,另外有人用"-"(除线)表示除。后来瑞士数学家拉哈在他所着的《代数学》里,才根据群众创造,正式将"÷"作为除号。

十六世纪法国数学家维叶特用"="表示两个量的差别。可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号"="就从1540年开始使用起来。

1591年,法国数学家韦达在菱中大量使用这个符号,才逐渐为人们接受。十七世纪德国莱布尼茨广泛使用了"="号,他还在几何学中用"∽"表示相似,用"≌"表示全等。

大于号"〉"和小于号"〈",是1631年英国着名代数学家赫锐奥特创用。至于≯""≮"、"≠"这三个符号的出现,是很晚很晚的事了。大括号"{ }"和中括号"[ ]"是代数创始人之一魏治德创造的。

数学的起源和早期发展:

数学与其他科学分支一样,是在一定的社会条件下,通过人类的社会实践和生产活动发展起来的一种智力积累.其主要内容反映了现实世界的数量关系和空间形式,以及它们之间的关系和结构.这可以从数学的起源得到印证.

古代非洲的尼罗河、西亚的底格里斯河和幼发拉底河、中南亚的印度河和恒河以及东亚的黄河和长江,是数学的发源地.这些地区的先民由于从事农业生产的需要,从控制洪水和灌溉,测量田地的面积、计算仓库的容积、推算适合农业生产的历法以及相关的财富计算、产品交换等等长期实践活动中积累了丰富的经验,并逐渐形成了相应的技术知识和有关的数学知识.
5. 【给几个数学小故事、知识.简短
唐僧师徒摘桃子一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子.不长时间,徒弟三人摘完桃子高高兴兴回来.师父唐僧问:你们每人各摘回多少个桃子?八戒憨笑着说:师父,我来考考你.我们每人摘的一样多,我筐里的桃子不到100个,如果3个3个地数,数到最后还剩1个.你算算,我们每人摘了多少个?沙僧神秘地说:师父,我也来考考你.我筐里的桃子,如果4个4个地数,数到最后还剩1个.你算算,我们每人摘了多少个?悟空笑眯眯地说:师父,我也来考考你.我筐里的桃子,如果5个5个地数,数到最后还剩1个.你算算,我们每人摘多少个?2数字趣联宋代大诗人苏东坡年轻时与几个学友进京考试.他们到达试院时为时已晚.考官说:"我出一联,你们若对得上,我就让你们进考场."考官的上联是:一叶孤舟,坐了二三个学子,启用四桨五帆,经过六滩七湾,历尽八颠九簸,可叹十分来迟.苏东坡对出的下联是:十年寒窗,进了九八家书院,抛却七情六欲,苦读五经四书,考了三番两次,今日一定要中.考官与苏东坡都将一至十这十个数字嵌入对联中,将读书人的艰辛与刻苦情况描写得淋漓尽致.3点错的小数点学习数学不仅解题思路要正确,具体解题过程也不能出错,差之毫厘,往往失之千里.美国芝加哥一个靠养老金生活的老太太,在医院施行一次小手术后回家.两星期后,她接到医院寄来的一张帐单,款数是63440美元.她看到偌大的数字,不禁大惊失色,骇得心脏病猝发,倒地身亡.后来,有人向医院一核对,原来是电脑把小数点的位置放错了,实际上只需要付63.44美元.点错一个小数点,竟要了一条人命.正如牛顿所说:"在数学中,最微小的误差也不能忽略.。
6. 数学课外小知识
数学知识《几何原本》几 何原本《几何原本》是古希腊数学家欧几里得的一部不朽之作,是当时整个希腊数学成果、方法、思想和精神的结晶,其内容和形式对几何学本身和数学逻辑的发展有着巨大的影响.自它问世之日起,在长达二千多年的时间里一直盛行不衰.它历经多次翻译和修订,自1482年第一个印刷本出版后,至今已有一千多种不同的版本.除了《圣经》之外,没有任何其他着作,其研究、使用和传播之广泛,能够与《几何原本》相比.但《几何原本》超越民族、种族、宗教信仰、文化意识方面的影响,却是《圣经》所无法比拟的. 公元前7世纪之后,希腊几何学迅猛地发展,积累了丰富的材料.希腊学者们开始对当时的数学知识作有计划的整理,并试图将其组成一个严密的知识系统.首先做出这方面尝试的是公元前5世纪的希波克拉底(Hippocrates),其后经过了众多数学家的修改和补充.到了公元前4世纪时,希腊学者们已经为建构数学的理论大厦打下了坚实的基础.欧几里得在前人工作的基础之上,对希腊丰富的数学成果进行了收集、整理,用命题的形式重新表述,对一些结论作了严格的证明.他最大的贡献就是选择了一系列具有重大意义的、最原始的定义和公理,并将它们严格地按逻辑的顺序进行排列,然后在此基础上进行演绎和证明,形成了具有公理化结构的,具有严密逻辑体系的《几何原本》.《几何原本》的希腊原始抄本已经流失了,它的所有现代版本都是以希腊评注家泰奥恩(Theon,约比欧几里得晚七百年)编写的修订本为依据的.《几何原本》的泰奥恩修订本分13卷,总共有465个命题,其内容是阐述平面几何、立体几何及算术理论的系统化知识.第一卷首先给出了一些必要的基本定义、解释、公设和公理,还包括一些关于全等形、平行线和直线形的熟知的定理.该卷的最后两个命题是毕达哥拉斯定理及其逆定理.这里我们想到了关于英国哲学家T.霍布斯的一个小故事:有一天,霍布斯在偶然翻阅欧几里得的《几何原本》,看到毕达哥拉斯定理,感到十分惊讶,他说:“上帝啊!这是不可能的.”他由后向前仔细阅读第一章的每个命题的证明,直到公理和公设,他终于完全信服了. 第二卷篇幅不大,主要讨论毕达哥拉斯学派的几何代数学.第三卷包括圆、弦、割线、切线以及圆心角和圆周角的一些熟知的定理.这些定理大多都能在现在的中学数学课本中找到.第四卷则讨论了给定圆的某些内接和外切正多边形的尺规作图问题.第五卷对欧多克斯的比例理论作了精彩的解释,被认为是最重要的数学杰作之一.据说,捷克斯洛伐克的一位并不出名的数学家和牧师波尔查诺(Bolzano,1781-1848),在布拉格度假时,恰好生病,为了分散注意力,他拿起《几何原本》阅读了第五卷的内容.他说,这种高明的方法使他兴奋无比,以致于从病痛中完全解脱出来.此后,每当他朋友生病时,他总是把这作为一剂灵丹妙药问病人推荐.第七、八、九卷讨论的是初等数论,给出了求两个或多个整数的最大公因子的“欧几里得算法”,讨论了比例、几何级数,还给出了许多关于数论的重要定理.第十卷讨论无理量,即不可公度的线段,是很难读懂的一卷.最后三卷,即第十一、十二和十三卷,论述立体几何.目前中学几何课本中的内容,绝大多数都可以在《几何原本》中找到.《几何原本》按照公理化结构,运用了亚里士多德的逻辑方法,建立了第一个完整的关于几何学的演绎知识体系.所谓公理化结构就是:选取少量的原始概念和不需证明的命题,作为定义、公设和公理,使它们成为整个体系的出发点和逻辑依据,然后运用逻辑推理证明其他命题.《几何原本》成为了两千多年来运用公理化方法的一个绝好典范.诚然,正如一些现代数学家所指出的那样,《几何原本》存在着一些结构上的缺陷,但这丝毫无损于这部着作的崇高价值.它的影响之深远.使得“欧几里得”与“几何学”几乎成了同义语.它集中体现了希腊数学所奠定的数学思想、数学精神,是人类文化遗产中的一块瑰宝.哥德巴赫猜想 哥 德巴赫猜想 1742年德国人哥德巴赫给当时住在俄国彼得堡的大数学家欧拉写了一封信,在信中提出两个问题:第一,是否每个大于4的偶数都能表示为两个奇质数之和?如6=3+3,14=3+11等.第二,是否每个大于7的奇数都能表示3个奇质数之和?如9=3+3+3,15=3+5+7等.这就是着名的哥德巴赫猜想.它是数论中的一个着名问题,常被称为数学皇冠上的明珠. 实际上第一个问题的正确解法可以推出第二个问题的正确解法,因为每个大于 7的奇数显然可以表示为一个大于4的偶数与3的和.1937年,苏联数学家维诺格拉多夫利用他独创的“三角和”方法证明了每个充分大的奇数可以表示为3个奇质数之和,基本上解决了第二个问题.但是第一个问题至今仍未解决.由于问题实在太困难了,数学家们开始研究较弱的命题:每个充分大的偶数可以表示为质因数个数分别为m、n的两个自然数之和,简记为“m+n”.1920年挪威数学家布龙证明了“9+9”;以后的20几年里,数学家们又陆续证明了“7+7”,“6+6”,“5+5”,“4+4”,“1+c”,其中c是常数.1956年中国数学家王元证明了“3+4”,随后又证明了“3+3”,“2+3”。

D. 数学知识的起源

数学
数学,其英文是mathematics,这是一个复数名词,“数学曾经是四门学科:算术、几何、天文学和音乐,处于一种比语法、修辞和辩证法这三门学科更高的地位。”

自古以来,多数人把数学看成是一种知识体系,是经过严密的逻辑推理而形成的系统化的理论知识总和,它既反映了人们对“现实世界的空间形式和数量关系(恩格斯)”的认识(恩格斯),又反映了人们对“可能的量的关系和形式”的认识。数学既可以来自现实世界的直接抽象,也可以来自人类思维的劳动创造。

从人类社会的发展史看,人们对数学本质特征的认识在不断变化和深化。“数学的根源在于普通的常识,最显着的例子是非负整数。"欧几里德的算术来源于普通常识中的非负整数,而且直到19世纪中叶,对于数的科学探索还停留在普通的常识,”另一个例子是几何中的相似性,“在个体发展中几何学甚至先于算术”,其“最早的征兆之一是相似性的知识,”相似性知识被发现得如此之早,“就象是大生的。”因此,19世纪以前,人们普遍认为数学是一门自然科学、经验科学,因为那时的数学与现实之间的联系非常密切,随着数学研究的不断深入,从19世纪中叶以后,数学是一门演绎科学的观点逐渐占据主导地位,这种观点在布尔巴基学派的研究中得到发展,他们认为数学是研究结构的科学,一切数学都建立在代数结构、序结构和拓扑结构这三种母结构之上。与这种观点相对应,从古希腊的柏拉图开始,许多人认为数学是研究模式的学问,数学家怀特海(A. N. Whiiehead,186----1947)在《数学与善》中说,“数学的本质特征就是:在从模式化的个体作抽象的过程中对模式进行研究,”数学对于理解模式和分析模式之间的关系,是最强有力的技术。”1931年,歌德尔(K,G0de1,1978)不完全性定理的证明,宣告了公理化逻辑演绎系统中存在的缺憾,这样,人们又想到了数学是经验科学的观点,着名数学家冯·诺伊曼就认为,数学兼有演绎科学和经验科学两种特性。

对于上述关于数学本质特征的看法,我们应当以历史的眼光来分析,实际上,对数本质特征的认识是随数学的发展而发展的。由于数学源于分配物品、计算时间、丈量土地和容积等实践,因而这时的数学对象(作为抽象思维的产物)与客观实在是非常接近的,人们能够很容易地找到数学概念的现实原型,这样,人们自然地认为数学是一种经验科学;随着数学研究的深入,非欧几何、抽象代数和集合论等的产生,特别是现代数学向抽象、多元、高维发展,人们的注意力集中在这些抽象对象上,数学与现实之间的距离越来越远,而且数学证明(作为一种演绎推理)在数学研究中占据了重要地位,因此,出现了认为数学是人类思维的自由创造物,是研究量的关系的科学,是研究抽象结构的理论,是关于模式的学问,等等观点。这些认识,既反映了人们对数学理解的深化,也是人们从不同侧面对数学进行认识的结果。正如有人所说的,“恩格斯的关于数学是研究现实世界的数量关系和空间形式的提法与布尔巴基的结构观点是不矛盾的,前者反映了数学的来源,后者反映了现代数学的水平,现代数学是一座由一系列抽象结构建成的大厦。”而关于数学是研究模式的学问的说法,则是从数学的抽象过程和抽象水平的角度对数学本质特征的阐释,另外,从思想根源上来看,人们之所以把数学看成是演绎科学、研究结构的科学,是基于人类对数学推理的必然性、准确性的那种与生俱来的信念,是对人类自身理性的能力、根源和力量的信心的集中体现,因此人们认为,发展数学理论的这套方法,即从不证自明的公理出发进行演绎推理,是绝对可靠的,也即如果公理是真的,那么由它演绎出来的结论也一定是真的,通过应用这些看起来清晰、正确、完美的逻辑,数学家们得出的结论显然是毋庸置疑的、无可辩驳的。

事实上,上述对数学本质特征的认识是从数学的来源、存在方式、抽象水平等方面进行的,并且主要是从数学研究的结果来看数学的本质特征的。显然,结果(作为一种理论的演绎体系)并不能反映数学的全貌,组成数学整体的另一个非常重要的方面是数学研究的过程,而且从总体上来说,数学是一个动态的过程,是一个“思维的实验过程”,是数学真理的抽象概括过程。逻辑演绎体系则是这个过程的一种自然结果。在数学研究的过程中,数学对象的丰富、生动且富于变化的一面才得以充分展示。波利亚(G. Poliva,1888一1985)认为,“数学有两个侧面,它是欧几里德式的严谨科学,但也是别的什么东西。由欧几里德方法提出来的数学看来象是一门系统的演绎科学,但在创造过程中的数学看来却像是一门实验性的归纳科学。”弗赖登塔尔说,“数学是一种相当特殊的活动,这种观点“是区别于数学作为印在书上和铭,记在脑子里的东西。”他认为,数学家或者数学教科书喜欢把数学表示成“一种组织得很好的状态,”也即“数学的形式”是数学家将数学(活动)内容经过自己的组织(活动)而形成的;但对大多数人来说,他们是把数学当成一种工具,他们不能没有数学是因为他们需要应用数学,这就是,对于大众来说,是要通过数学的形式来学习数学的内容,从而学会相应的(应用数学的)活动。这大概就是弗赖登塔尔所说的“数学是在内容和形式的互相影响之中的一种发现和组织的活动”的含义。菲茨拜因(Efraim Fischbein)说,“数学家的理想是要获得严谨的、条理清楚的、具有逻辑结构的知识实体,这一事实并不排除必须将数学看成是个创造性过程:数学本质上是人类活动,数学是由人类发明的,”数学活动由形式的、算法的与直觉的等三个基本成分之间的相互作用构成。库朗和罗宾逊(Courani Robbins)也说,“数学是人类意志的表达,反映积极的意愿、深思熟虑的推理,以及精美而完善的愿望,它的基本要素是逻辑与直觉、分析与构造、一般性与个别性。虽然不同的传统可能强调不同的侧面,但只有这些对立势力的相互作用,以及为它们的综合所作的奋斗,才构成数学科学的生命、效用与高度的价值。”

另外,对数学还有一些更加广义的理解。如,有人认为,“数学是一种文化体系”,“数学是一种语言”,数学活动是社会性的,它是在人类文明发展的历史进程中,人类认识自然、适应和改造自然、完善自我与社会的一种高度智慧的结晶。数学对人类的思维方式产生了关键性的影响.也有人认为,数学是一门艺术,“和把数学看作一门学科相比,我几乎更喜欢把它看作一门艺术,因为数学家在理性世界指导下(虽然不是控制下)所表现出的经久的创造性活动,具有和艺术家的,例如画家的活动相似之处,这是真实的而并非臆造的。数学家的严格的演绎推理在这里可以比作专门注技巧。就像一个人若不具备一定量的技能就不能成为画家一样,不具备一定水平的精确推理能力就不能成为数学家,这些品质是最基本的,它与其它一些要微妙得多的品质共同构成一个优秀的艺术家或优秀的数学家的素质,其中最主要的一条在两种情况下都是想象力。”“数学是推理的音乐,”而“音乐是形象的数学”.这是从数学研究的过程和数学家应具备的品质来论述数学的本质,还有人把数学看成是一种对待事物的基本态度和方法,一种精神和观念,即数学精神、数学观念和态度。尼斯(Mogens Niss)等在《社会中的数学》一文中认为,数学是一门学科,“在认识论的意义上它是一门科学,目标是要建立、描述和理解某些领域中的对象、现象、关系和机制等。如果这个领域是由我们通常认为的数学实体所构成的,数学就扮演着纯粹科学的角色。在这种情况下,数学以内在的自我发展和自我理解为目标,独立于外部世界,另一方面,如果所考虑的领域存在于数学之外,数学就起着用科学的作用,数学的这两个侧面之间的差异并非数学内容本身的问题,而是人们所关注的焦点不同。无论是纯粹的还是应用的,作为科学的数学有助于产生知识和洞察力。数学也是一个工具、产品以及过程构成的系统,它有助于我们作出与掌握数学以外的实践领域有关的决定和行动,数学是美学的一个领域,能为许多醉心其中的人们提供对美感、愉悦和激动的体验,作为一门学科,数学的传播和发展都要求它能被新一代的人们所掌握。数学的学习不会同时而自动地进行,需要靠人来传授,所以,数学也是我们社会的教育体系中的一个教学科目.”

从上所述可以看出,人们是从数学内部(又从数学的内容、表现形式及研究过程等几个角度)。数学与社会的关系、数学与其它学科的关系、数学与人的发展的关系等几个方面来讨论数学的性质的。它们都从一个侧面反映了数学的本质特征,为我们全面认识数学的性质提供了一个视角。

基于对数学本质特征的上述认识,人们也从不同侧面讨论了数学的具体特点。比较普遍的观点是,数学有抽象性、精确性和应用的广泛性等特点,其中最本质的特点是抽象性。A,。亚历山大洛夫说,“甚至对数学只有很肤浅的知识就能容易地觉察到数学的这些特点:第一是它的抽象性,第二是精确性,或者更好他说是逻辑的严格性以及它的结论的确定性,最后是它的应用的极端广泛性”王梓坤说,“数学的特点是:内容的抽象性、应用的广泛性、推理的严谨性和结论的明确必”这种看法主要从数学的内容、表现形式和数学的作用等方面来理解数学的特点,是数学特点的一个方面。另外,从数学研究的过程方面、数学与其它学科之间的关系方面来看,数学还有形象性、似真性、拟经验性。“可证伪性”的特点。对数学特点的认识也是有时代特征的,例如,关于数学的严谨性,在各个数学历史发展时期有不同的标准,从欧氏几何到罗巴切夫斯基几何再到希尔伯特公理体系,关于严谨性的评价标准有很大差异,尤其是哥德尔提出并证明了“不完备性定理…以后,人们发现即使是公理化这一曾经被极度推崇的严谨的科学方法也是有缺陷的。因此,数学的严谨性是在数学发展历史中表现出来的,具有相对性。关于数学的似真性,波利亚在他的《数学与猜想》中指出,“数学被人看作是一门论证科学。然而这仅仅是它的一个方面,以最后确定的形式出现的定型的数学,好像是仅含证明的纯论证性的材料,然而,数学的创造过程是与任何其它知识的创造过程一样的,在证明一个数学定理之前,你先得猜测这个定理的内容,在你完全作出详细证明之前,你先得推测证明的思路,你先得把观察到的结果加以综合然后加以类比.你得一次又一次地进行尝试。数学家的创造性工作成果是论证推理,即证明;但是这个证明是通过合情推理,通过猜想而发现的。只要数学的学习过程稍能反映出数学的发明过程的话,那么就应当让猜测、合情推理占有适当的位置。”正是从这个角度,我们说数学的确定性是相对的,有条件的,对数学的形象性、似真性、拟经验性。“可证伪性”特点的强调,实际上是突出了数学研究中观察、实验、分析。比较、类比、归纳、联想等思维过程的重要性。

人类从学会计数开始就一直和自然数打交道了,后来由于实践的需要,数的概念进一步扩充,自然数被叫做正整数,而把它们的相反数叫做负整数,介于正整数和负整数中间的中性数叫做0。它们和起来叫做整数。

对于整数可以施行加、减、乘、除四种运算,叫做四则运算。其中加法、减法和乘法这三种运算,在整数范围内可以毫无阻碍地进行。也就是说,任意两个或两个以上的整数相加、相减、相乘的时候,它们的和、差、积仍然是一个整数。但整数之间的除法在整数范围内并不一定能够无阻碍地进行。

人们在对整数进行运算的应用和研究中,逐步熟悉了整数的特性。比如,整数可分为两大类—奇数和偶数(通常被称为单数、双数)等。利用整数的一些基本性质,可以进一步探索许多有趣和复杂的数学规律,正是这些特性的魅力,吸引了古往今来许多的数学家不断地研究和探索。

数论这门学科最初是从研究整数开始的,所以叫做整数论。后来整数论又进一步发展,就叫做数论了。确切的说,数论就是一门研究整数性质的学科。

数论的发展简况

自古以来,数学家对于整数性质的研究一直十分重视,但是直到十九世纪,这些研究成果还只是孤立地记载在各个时期的算术着作中,也就是说还没有形成完整统一的学科。

自我国古代,许多着名的数学着作中都关于数论内容的论述,比如求最大公约数、勾股数组、某些不定方程整数解的问题等等。在国外,古希腊时代的数学家对于数论中一个最基本的问题——整除性问题就有系统的研究,关于质数、和数、约数、倍数等一系列概念也已经被提出来应用了。后来的各个时代的数学家也都对整数性质的研究做出过重大的贡献,使数论的基本理论逐步得到完善。

在整数性质的研究中,人们发现质数是构成正整数的基本“材料”,要深入研究整数的性质就必须研究质数的性质。因此关于质数性质的有关问题,一直受到数学家的关注。

到了十八世纪末,历代数学家积累的关于整数性质零散的知识已经十分丰富了,把它们整理加工成为一门系统的学科的条件已经完全成熟了。德国数学家高斯集中前人的大成,写了一本书叫做《算术探讨》,1800年寄给了法国科学院,但是法国科学院拒绝了高斯的这部杰作,高斯只好在1801年自己发表了这部着作。这部书开始了现代数论的新纪元。

在《算术探讨》中,高斯把过去研究整数性质所用的符号标准化了,把当时现存的定理系统化并进行了推广,把要研究的问题和意志的方法进行了分类,还引进了新的方法。

数论的基本内容

数论形成了一门独立的学科后,随着数学其他分支的发展,研究数论的方法也在不断发展。如果按照研究方法来说,可以分成初等数论、解析数论、代数数论和几何数论四个部分。

初等数论是数论中不求助于其他数学学科的帮助,只依靠初等的方法来研究整数性质的分支。比如中国古代有名的“中国剩余定理”,就是初等数论中很重要的内容。

解析数论是使用数学分析作为工具来解决数论问题的分支。数学分析是以函数作为研究对象的、在极限概念的基础上建立起来的数学学科。用数学分析来解决数论问题是由欧拉奠基的,俄国数学家车比雪夫等也对它的发展做出过贡献。解析数论是解决数论中艰深问题的强有力的工具。比如,对于“质数有无限多个”这个命题,欧拉给出了解析方法的证明,其中利用了数学分析中有关无穷级数的若干知识。二十世纪三十年代,苏联数学家维诺格拉多夫创造性的提出了“三角和方法”,这个方法对于解决某些数论难题有着重要的作用。我国数学家陈景润在解决“哥德巴赫猜想”问题中使用的是解析数论中的筛法。

代数数论是把整数的概念推广到代数整数的一个分支。数学家把整数概念推广到一般代数数域上去,相应地也建立了素整数、可除性等概念。

几何数论是由德国数学家、物理学家闵可夫斯基等人开创和奠基的。几何数论研究的基本对象是“空间格网”。什么是空间格网呢?在给定的直角坐标系上,坐标全是整数的点,叫做整点;全部整点构成的组就叫做空间格网。空间格网对几何学和结晶学有着重大的意义。由于几何数论涉及的问题比较复杂,必须具有相当的数学基础才能深入研究。

数论是一门高度抽象的数学学科,长期以来,它的发展处于纯理论的研究状态,它对数学理论的发展起到了积极的作用。但对于大多数人来讲并不清楚它的实际意义。

由于近代计算机科学和应用数学的发展,数论得到了广泛的应用。比如在计算方法、代数编码、组合论等方面都广泛使用了初等数论范围内的许多研究成果;又文献报道,现在有些国家应用“孙子定理”来进行测距,用原根和指数来计算离散傅立叶变换等。此外,数论的许多比较深刻的研究成果也在近似分析、差集合、快速变换等方面得到了应用。特别是现在由于计算机的发展,用离散量的计算去逼近连续量而达到所要求的精度已成为可能。

数论在数学中的地位是独特的,高斯曾经说过“数学是科学的皇后,数论是数学中的皇冠”。因此,数学家都喜欢把数论中一些悬而未决的疑难问题,叫做“皇冠上的明珠”,以鼓励人们去“摘取”。下面简要列出几颗“明珠”:费尔马大定理、孪生素数问题、歌德巴赫猜想、圆内整点问题、完全数问题……

在我国近代,数论也是发展最早的数学分支之一。从二十世纪三十年代开始,在解析数论、刁藩都方程、一致分布等方面都有过重要的贡献,出现了华罗庚、闵嗣鹤、柯召等第一流的数论专家。其中华罗庚教授在三角和估值、堆砌素数论方面的研究是享有盛名的。1949年以后,数论的研究的得到了更大的发展。特别是在“筛法”和“歌德巴赫猜想”方面的研究,已取得世界领先的优秀成绩。

特别是陈景润在1966年证明“歌德巴赫猜想”的“一个大偶数可以表示为一个素数和一个不超过两个素数的乘积之和”以后,在国际数学引起了强烈的反响,盛赞陈景润的论文是解析数学的名作,是筛法的光辉顶点。至今,这仍是“歌德巴赫猜想”的最好结果。

人类从学会计数开始就一直和自然数打交道了,后来由于实践的需要,数的概念进一步扩充,自然数被叫做正整数,而把它们的相反数叫做负整数,介于正整数和负整数中间的中性数叫做0。它们和起来叫做整数。

对于整数可以施行加、减、乘、除四种运算,叫做四则运算。其中加法、减法和乘法这三种运算,在整数范围内可以毫无阻碍地进行。也就是说,任意两个或两个以上的整数相加、相减、相乘的时候,它们的和、差、积仍然是一个整数。但整数之间的除法在整数范围内并不一定能够无阻碍地进行。

人们在对整数进行运算的应用和研究中,逐步熟悉了整数的特性。比如,整数可分为两大类—奇数和偶数(通常被称为单数、双数)等。利用整数的一些基本性质,可以进一步探索许多有趣和复杂的数学规律,正是这些特性的魅力,吸引了古往今来许多的数学家不断地研究和探索。

数论这门学科最初是从研究整数开始的,所以叫做整数论。后来整数论又进一步发展,就叫做数论了。确切的说,数论就是一门研究整数性质的学科。

数论的发展简况

自古以来,数学家对于整数性质的研究一直十分重视,但是直到十九世纪,这些研究成果还只是孤立地记载在各个时期的算术着作中,也就是说还没有形成完整统一的学科。

自我国古代,许多着名的数学着作中都关于数论内容的论述,比如求最大公约数、勾股数组、某些不定方程整数解的问题等等。在国外,古希腊时代的数学家对于数论中一个最基本的问题——整除性问题就有系统的研究,关于质数、和数、约数、倍数等一系列概念也已经被提出来应用了。后来的各个时代的数学家也都对整数性质的研究做出过重大的贡献,使数论的基本理论逐步得到完善。

在整数性质的研究中,人们发现质数是构成正整数的基本“材料”,要深入研究整数的性质就必须研究质数的性质。因此关于质数性质的有关问题,一直受到数学家的关注。

到了十八世纪末,历代数学家积累的关于整数性质零散的知识已经十分丰富了,把它们整理加工成为一门系统的学科的条件已经完全成熟了。德国数学家高斯集中前人的大成,写了一本书叫做《算术探讨》,1800年寄给了法国科学院,但是法国科学院拒绝了高斯的这部杰作,高斯只好在1801年自己发表了这部着作。这部书开始了现代数论的新纪元。

在《算术探讨》中,高斯把过去研究整数性质所用的符号标准化了,把当时现存的定理系统化并进行了推广,把要研究的问题和意志的方法进行了分类,还引进了新的方法。

数论的基本内容

数论形成了一门独立的学科后,随着数学其他分支的发展,研究数论的方法也在不断发展。如果按照研究方法来说,可以分成初等数论、解析数论、代数数论和几何数论四个部分。

初等数论是数论中不求助于其他数学学科的帮助,只依靠初等的方法来研究整数性质的分支。比如中国古代有名的“中国剩余定理”,就是初等数论中很重要的内容。

解析数论是使用数学分析作为工具来解决数论问题的分支。数学分析是以函数作为研究对象的、在极限概念的基础上建立起来的数学学科。用数学分析来解决数论问题是由欧拉奠基的,俄国数学家车比雪夫等也对它的发展做出过贡献。解析数论是解决数论中艰深问题的强有力的工具。比如,对于“质数有无限多个”这个命题,欧拉给出了解析方法的证明,其中利用了数学分析中有关无穷级数的若干知识。二十世纪三十年代,苏联数学家维诺格拉多夫创造性的提出了“三角和方法”,这个方法对于解决某些数论难题有着重要的作用。我国数学家陈景润在解决“哥德巴赫猜想”问题中也使用的是解析数论的方法。

代数数论是把整数的概念推广到代数整数的一个分支。数学家把整数概念推广到一般代数数域上去,相应地也建立了素整数、可除性等概念。

几何数论是由德国数学家、物理学家闵可夫斯基等人开创和奠基的。几何数论研究的基本对象是“空间格网”。什么是空间格网呢?在给定的直角坐标系上,坐标全是整数的点,叫做整点;全部整点构成的组就叫做空间格网。空间格网对几何学和结晶学有着重大的意义。由于几何数论涉及的问题比较复杂,必须具有相当的数学基础才能深入研究。

数论是一门高度抽象的数学学科,长期以来,它的发展处于纯理论的研究状态,它对数学理论的发展起到了积极的作用。但对于大多数人来讲并不清楚它的实际意义。

由于近代计算机科学和应用数学的发展,数论得到了广泛的应用。比如在计算方法、代数编码、组合论等方面都广泛使用了初等数论范围内的许多研究成果;又文献报道,现在有些国家应用“孙子定理”来进行测距,用原根和指数来计算离散傅立叶变换等。此外,数论的许多比较深刻的研究成果也在近似分析、差集合、快速变换等方面得到了应用。特别是现在由于计算机的发展,用离散量的计算去逼近连续量而达到所要求的精度已成为可能。

数论在数学中的地位是独特的,高斯曾经说过“数学是科学的皇后,数论是数学中的皇冠”。因此,数学家都喜欢把数论中一些悬而未决的疑难问题,叫做“皇冠上的明珠”,以鼓励人们去“摘取”。下面简要列出几颗“明珠”:费尔马大定理、孪生素数问题、歌德巴赫猜想、圆内整点问题、完全数问题……

在我国近代,数论也是发展最早的数学分支之一。从二十世纪三十年代开始,在解析数论、刁藩都方程、一致分布等方面都有过重要的贡献,出现了华罗庚、闵嗣鹤、柯召等第一流的数论专家。其中华罗庚教授在三角和估值、堆砌素数论方面的研究是享有盛名的。1949年以后,数论的研究的得到了更大的发展。特别是在“筛法”和“歌德巴赫猜想”方面的研究,已取得世界领先的优秀成绩。

特别是陈景润在1966年证明“歌德巴赫猜想”的“一个大偶数可以表示为一个素数和一个不超过两个素数的乘积之和”以后,在国际数学引起了强烈的反响,盛赞陈景润的论文是解析数学的名作,是筛法的光辉顶点。至今,这仍是“歌德巴赫猜想”的最好结果。

其它数学分支学科

算术、初等代数、高等代数、数论、欧式几何、非欧几何、解析几何、微分几何、代数几何学、射影几何学、拓扑学、分形几何、微积分学、实变函数论、概率和数理统计、复变函数论、泛函分析、偏微分方程、常微分方程、数理逻辑、模糊数学、运筹学、计算数学、突变理论、数学物理