A. 数学圆,知识点
1、圆是定点的距离等于定长的点的集合
2、圆的内部可以看作是圆心的距离小于半径的点的集合
3、圆的外部可以看作是圆心的距离大于半径的点的集合
4、同圆或等圆的半径相等
5、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
6、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
7、到已知角的两边距离相等的点的轨迹,是这个角的平分线
8、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
9、定理不在同一直线上的三点确定一个圆。
10、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
11、推论1:
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
12、推论2:圆的两条平行弦所夹的弧相等
13、圆是以圆心为对称中心的中心对称图形
14、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
15、推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
16、定理:一条弧所对的圆周角等于它所对的圆心角的一半
17、推论:1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
18、推论:2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
19、推论:3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
20、定理: 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
21、①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
22、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
23、切线的性质定理圆的切线垂直于经过切点的半径
24、推论1 经过圆心且垂直于切线的直线必经过切点
25、推论2 经过切点且垂直于切线的直线必经过圆心
26、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角
27、圆的外切四边形的两组对边的和相等
28、弦切角定理:弦切角等于它所夹的弧对的圆周角
29、推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
30、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等
31、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
32、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
33、推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
34、如果两个圆相切,那么切点一定在连心线上
35、①两圆外离 d>R+r
②两圆外切 d=R+r
③两圆相交 R-r<d<R+r(R>r)
④两圆内切 d=R-r(R>r)
⑤两圆内含 d<R-r(R>r)
36、定理:相交两圆的连心线垂直平分两圆的公共弦
37、定理:把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
38、定理: 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
39、正n边形的每个内角都等于(n-2)×180°/n
40、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
41、正n边形的面积Sn=pnrn/2 p表示正n边形的周长
42、正三角形面积√3a/4 a表示边长
43、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,
因此k (n-2)180°/n=360°化为(n-2)(k-2)=4
44、弧长计算公式:L=n兀R/180
45、扇形面积公式:S扇形=n兀R^2/360=LR/2
46、内公切线长= d-(R-r) 外公切线长= d-(R+r)
B. 数学圆的知识点
数学圆的知识点总结:
1、圆中心的一点叫圆心,用O表示。一端在圆心,另一端在圆上的线段叫半径,用r表示。
两端都在圆上,并过圆心的线段叫直径,用d表示。
2、圆有无数条半径,有无数条直径。
6、在同一个圆里,直径的长度是半径的2倍,可以表示为d=2r或r=d/2。
7、圆的周长除以直径的商是一个固定的数,叫作圆周率,用字母表示,计算时通常取3.14。
C. 初三数学圆知识点有哪些
一、圆的概念
集合形式的概念:
1、圆可以看作是到定点的距离等于定长的点的集合。
2、圆的外部:可以看作是到定点的距离大于定长的点的集合。
3、圆的内部:可以看作是到定点的距离小于定长的点的集合。
轨迹形式的概念:
1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆。
固定的端点O为圆心。连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点之间的部分叫做圆弧,简称弧。
2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线。
3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线。
4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线。
5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点、直线、圆和圆的位置关系
1、点和圆的位置关系
①点在圆内<=>点到圆心的距离小于半径。
②点在圆上<=>点到圆心的距离等于半径。
③点在圆外<=>点到圆心的距离大于半径。
2、过三点的圆不在同一直线上的三个点确定一个圆。
3、外接圆和外心经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆。外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心。
4、直线和圆的位置关系
相交:直线和圆有两个公共点叫这条直线和圆相交,这条直线叫做圆的割线。
相切:直线和圆有一个公共点叫这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点。
相离:直线和圆没有公共点叫这条直线和圆相离。
5、直线和圆位置关系的性质和判定
如果⊙O的半径为r,圆心O到直线l的距离为d,那么:
①直线l和⊙O相交<=>d<>;
②直线l和⊙O相切<=>d=r;
③直线l和⊙O相离<=>d>r。
三、正多边形和圆
1、正多边形的概念:各边相等,各角也相等的多边形叫做正多边形。
2、正多边形与圆的关系:
(1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形。
(2)这个圆是这个正多边形的外接圆。
3、正多边形的有关概念:
(1)正多边形的中心——正多边形的外接圆的圆心。
(2)正多边形的半径——正多边形的外接圆的半径。
(3)正多边形的边心距——正多边形中心到正多边形各边的距离。
(4)正多边形的中心角——正多边形每一边所对的外接圆的圆心角。
4、正多边形性质:
(1)任何正多边形都有一个外接圆。
(2)正多边形都是轴对称图形,当边数是偶数时,它又是中心对称图形,正n边形的对称轴有n条。(3)边数相同的正多边形相似。
四、有关圆的公式
(1)给直径求圆的周长:c=πd。
(2)给半径求圆的周长:c=2πr。
(3)给直径求圆的半径:r=d÷2。
(4)给周长求圆的半径:r=c÷π÷2。
(5)给半径求圆的直径:d=2r。
(6)给周长求圆的直径:d=c÷π。
(7)给直径求半圆周长:c=πr+d。
(8)给半径求半圆周长:c=πr+2r。
(9)给半径求圆的面积:s=πr²。
(10)给直径求圆的面积:s=π(d÷2)²。
(11)给周长求圆的面积:s=π(c÷π÷2)²。
(12)给半径求半圆面积:s=πr²÷2。
(13)给直径求半圆面积:s=π(d÷2)²÷2。
(14)给大圆和小圆半径求圆环面积:s=π(R²-r²)。
(15)给大圆和小圆半径求圆环面积:s=πR²-πr²。
D. 数学中有哪些关于圆的定理
圆是数学中一个非常重要的几何图形,有许多关于圆的定理。以下是一些常见的关于圆的定理:
1.圆的定义:圆是由平面上到一个固定点的距离相等的所有点的集合。这个固定点被称为圆心,距离称为半径。
2.切线定理:如果一条直线与一个圆相切,那么这条直线垂直于经过切点的半径。
3.弦长定理:在一个圆中,两条相交弦的乘积等于它们所夹弧的乘积。即AB×CD=AD×BC,其中A、B、C、D是弦的端点。
4.垂径定理:在一个圆中,垂直于直径的弦平分该直径所对的弧。
5.三角形内角和定理:在一个圆中,以圆心为顶点的三角形的内角和等于180度。
6.四边形内角和定理:在一个圆中,以圆心为顶点的四边形的内角和等于360度。
7.同弧所对的圆周角相等:在同圆或等圆中,同弧所对的圆周角相等。
8.同弧所对的圆心角等于圆周角的两倍:在同圆或等圆中,同弧所对的圆心角等于它所对的圆周角的两倍。
9.同心圆的性质:如果两个圆有相同的圆心,那么它们的半径之差等于它们中心之间的距离。
10.扇形面积公式:一个扇形的面积可以通过以下公式计算:A=(θ/360)×r_,其中A是扇形面积,θ是扇形所对的圆心角(以弧度为单位),r是半径。
这些只是关于圆的一些基本定理,还有许多其他更复杂的定理和性质可以进一步探索和应用。
E. 圆的所有知识点
圆的所有知识点如下:
1、圆的概念:圆可以看作是到定点的距离等于定长的点的集合。圆的外部:可以看作是到定点的距离大于定长的点的集合;圆的内部:可以看作是到定点的距离小于定长的点的集合。
2、点圆的位置关系:点在圆内<=>点到圆心的距离小于半径;点在圆上<=>点到圆心的距离等于半径;点在圆外<=>点到圆心的距离大于半径。
3、直线和圆的位置关系:相交:直线和圆有两个公共点叫这条直线和圆相交,这条直线叫做圆的割线。相切:直线和圆有一个公共点叫这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点。相离:直线和圆没有公共点叫这条直线和圆相离。
学习数学的好处:
1、帮助我们更好的认识世界:数学是一种描述和解释世界的语言,通过学习数学,我们可以更好地理解自然现象、科学原理和社会现象。
2、培养逻辑思维能力:数学是一种逻辑思维的训练,通过学习数学,我们可以培养逻辑思维能力,提高分析和解决问题的能力。
3、增强计算能力:数学是一种计算的训练,通过学习数学,我们可以提高计算能力,更好地应对日常生活和工作中的计算需求。
4、培养创造力:数学是一种创造性的学科,通过学习数学,我们可以培养创造力,发现新的数学规律和解决问题的方法。