当前位置:首页 » 基础知识 » 九年级下册数学圆知识点
扩展阅读
零基础的音乐该怎么学习 2025-02-07 09:16:00
千沙是哪个动漫 2025-02-07 09:10:59
怎么把剪映的歌词提取 2025-02-07 09:09:33

九年级下册数学圆知识点

发布时间: 2025-02-07 05:58:29

❶ 九年级数学知识点总结归纳

九年级数学的知识点很多,也很杂,学生们一定要扎实掌握,我整理了一些重要的知识点。

1、在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数条对称轴。

2、圆的相关特点

(1)径

连接圆心和圆上的任意一点的线段叫做半径,字母表示为r

通过圆心并且两端都在圆上的线段叫做直径,字母表示为d

直径所在的直线是圆的对称轴。在同一个圆中,圆的直径d=2r

(2)弦

连接圆上任意两点的线段叫做弦.在同一个圆内最长的弦是直径。直径所在的直线是圆的对称轴,因此,圆的对称轴有无数条。

(3)弧

圆上任意两点间的部分叫做圆弧,简称弧,以“⌒”表示。

分式

1、整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

2、分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

分式的运算

1、乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

2、除法:除以一个分式等于乘以这个分式的倒数。

3、加减法:

(1)同分母的分式相加减,分母不变,把分子相加减。

(2)异分母的分式先通分,化为同分母的分式,再加减。

分式方程

1、分母中含有未知数的方程叫分式方程。

2、使方程的分母为0的解称为原方程的增根。

一元二次方程

只有一个未知数,并且未知数的项的最高系数为2的方程。

1、一元二次方程的二次函数的关系

大家已经学过二次函数了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了。

2、一元二次方程的解法

大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解。

(1)配方法

利用配方,使方程变为完全平方公式,在用直接开平方法去求出解。

(2)分解因式法

提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解。

(3)公式法

这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a。

以上是我整理的九年级数学的知识点,希望能帮到你。

❷ 九年级下册数学圆的知识点有哪些

九年级下册数学圆的知识点如下:

1、圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

2、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

3、圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

4、在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。

5、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角。

❸ 九年级数学圆这一章的全部知识点

⑴圆的确定:不在同一直线上的三个点确定一个圆。
圆的对称性质:圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
⑵有关圆周角和圆心角的性质和定理 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。 一条弧所对的圆周角等于它所对的圆心角的一半。 直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
⑶有关外接圆和内切圆的性质和定理
①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;
②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。
③S三角=1/2*△三角形周长*内切圆半径
④两相切圆的连心线过切点(连心线:两个圆心相连的线段)
〖有关切线的性质和定理〗
圆的切线垂直于过切点的半径;经过半径的一端,并且垂直于这条半径的直线,是这个圆的切线。
切线判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线。
切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线。(2)经过切点垂直于切线的直线必经过圆心。(3)圆的切线垂直于经过切点的半径。
切线长定理:从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角。
〖有关圆的计算公式〗
1.圆的周长C=2πr=πd 2.圆的面积S=πr^2; 3.扇形弧长l=nπr/180
4.扇形面积S=nπr^2;/360=rl/2 5.圆锥侧面积S=πrl

网上找的,总结麻烦烦

❹ 九年级数学下册圆的知识点整理

圆的应用在数学领域中非常的广泛且常见,下面是我给大家带来的 九年级数学 下册《圆》知识点整理,希望能够帮助到大家!

九年级数学下册《圆》知识点整理

第十章 圆

★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。

☆ 内容提要☆

一、圆的基本性质

1.圆的定义(两种)

2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。

3.“三点定圆”定理

4.垂径定理及其推论

5.“等对等”定理及其推论

5. 与圆有关的角:⑴圆心角定义(等对等定理)

⑵圆周角定义(圆周角定理,与圆心角的关系)

⑶弦切角定义(弦切角定理)

二、直线和圆的位置关系

1.三种位置及判定与性质:

初中数学复习提纲

2.切线的性质(重点)

3.切线的判定定理(重点)。圆的切线的判定有⑴…⑵…

4.切线长定理

三、圆换圆的位置关系

初中数学复习提纲1.五种位置关系及判定与性质:(重点:相切)

2.相切(交)两圆连心线的性质定理

3.两圆的公切线:⑴定义⑵性质

四、与圆有关的比例线段

初中数学复习提纲1.相交弦定理

2.切割线定理

五、与和正多边形

1.圆的内接、外切多边形(三角形、四边形)

2.三角形的外接圆、内切圆及性质

3.圆的外切四边形、内接四边形的性质

4.正多边形及计算

中心角: 初中数学复习提纲

内角的一半: 初中数学复习提纲 (右图)

(解Rt△OAM可求出相关元素, 初中数学复习提纲 、 初中数学复习提纲 等)

六、一组计算公式

1.圆周长公式

2.圆面积公式

3.扇形面积公式

初中数学复习提纲4.弧长公式

5.弓形面积的计算 方法

6.圆柱、圆锥的侧面展开图及相关计算

七、点的轨迹

六条基本轨迹

八、有关作图

1.作三角形的外接圆、内切圆

2.平分已知弧

3.作已知两线段的比例中项

4.等分圆周:4、8;6、3等分

九、基本图形

十、重要辅助线

1.作半径

2.见弦往往作弦心距

3.见直径往往作直径上的圆周角

4.切点圆心莫忘连

5.两圆相切公切线(连心线)

6.两圆相交公共弦

❺ 九年级数学圆的知识点

一、圆的相关概念

1、圆的定义

在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。

2、圆的几何表示

以点O为圆心的圆记作“⊙O”,读作“圆O”

二、弦、弧等与圆有关的定义

(1)弦

连接圆上任意两点的线段叫做弦。(如图中的AB)

(2)直径

经过圆心的弦叫做直径。(如途中的CD)

直径等于半径的2倍。

(3)半圆

圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

(4)弧、优弧、劣弧

圆上任意两点间的部分叫做圆弧,简称弧。

弧用符号“⌒”表示,以A,B为端点的弧记作“ ”,读作“圆弧AB”或“弧AB”。

大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)

三、垂径定理及其推论

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

推论2:圆的两条平行弦所夹的弧相等。

垂径定理及其推论可概括为:

过圆心

垂直于弦

直径平分弦知二推三

平分弦所对的优弧

平分弦所对的劣弧

四、圆的对称性

1、圆的轴对称性

圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

2、圆的中心对称性

圆是以圆心为对称中心的中心对称图形。

五、弧、弦、弦心距、圆心角之间的关系定理

1、圆心角

顶点在圆心的角叫做圆心角。

2、弦心距

从圆心到弦的距离叫做弦心距。

3、弧、弦、弦心距、圆心角之间的关系定理

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。

推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

六、圆周角定理及其推论

1、圆周角

顶点在圆上,并且两边都和圆相交的角叫做圆周角。

2、圆周角定理

一条弧所对的圆周角等于它所对的圆心角的一半。

推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

七、点和圆的位置关系

设⊙O的半径是r,点P到圆心O的距离为d,则有:

d

d=r点P在⊙O上;

d>r点P在⊙O外。

八、过三点的圆

1、过三点的圆

不在同一直线上的三个点确定一个圆。

2、三角形的外接圆

经过三角形的三个顶点的圆叫做三角形的外接圆。

3、三角形的外心

三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。

4、圆内接四边形性质(四点共圆的判定条件)

圆内接四边形对角互补。

九、反证法

先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法。

十、直线与圆的位置关系

直线和圆有三种位置关系,具体如下:

(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;

(2)相切:直线和圆有公共点时,叫做直线和圆相切,这时直线叫做圆的切线,

(3)相离:直线和圆没有公共点时,叫做直线和圆相离。

如果⊙O的半径为r,圆心O到直线l的距离为d,那么:

直线l与⊙O相交d

直线l与⊙O相切d=r;

直线l与⊙O相离d>r;

十一、切线的判定和性质

1、切线的判定定理

经过半径的外端并且垂直于这条半径的直线是圆的切线。

2、切线的性质定理

圆的切线垂直于经过切点的半径。

十二、切线长定理

1、切线长

在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。

2、切线长定理

从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

十三、三角形的内切圆

1、三角形的`内切圆

与三角形的各边都相切的圆叫做三角形的内切圆。

2、三角形的内心

三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。

十四、圆和圆的位置关系

1、圆和圆的位置关系

如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。

如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。

如果两个圆有两个公共点,那么就说这两个圆相交。

2、圆心距

两圆圆心的距离叫做两圆的圆心距。

3、圆和圆位置关系的性质与判定

设两圆的半径分别为R和r,圆心距为d,那么

两圆外离d>R+r

两圆外切d=R+r

两圆相交R—r

两圆内切d=R—r(R>r)

两圆内含dr)

4、两圆相切、相交的重要性质

如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦。

十五、正多边形和圆

1、正多边形的定义

各边相等,各角也相等的多边形叫做正多边形。

2、正多边形和圆的关系

只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。

十六、与正多边形有关的概念

1、正多边形的中心

正多边形的外接圆的圆心叫做这个正多边形的中心。

2、正多边形的半径

正多边形的外接圆的半径叫做这个正多边形的半径。

3、正多边形的边心距

正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。

4、中心角

正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。

十七、正多边形的对称性

1、正多边形的轴对称性

正多边形都是轴对称图形。一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。

2、正多边形的中心对称性

边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。

3、正多边形的画法

先用量角器或尺规等分圆,再做正多边形。

十八、弧长和扇形面积

1、弧长公式

n°的圆心角所对的弧长l的计算公式为

2、扇形面积公式

其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长。

3、圆锥的侧面积

其中l是圆锥的母线长,r是圆锥的地面半径。

数学性质

数学性质是数学表观和内在所具有的特征,一种事物区别于其他事物的属性。如:平行四边形的性质:对边平行,对边相等,对角线互相平分,中心对称图形。

初中数学知识点

加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

❻ 初三九年级下数学圆的概念

1.圆的定义

圆的定义有两个:

其一:平面上到定点的距离等于定长的所有点所组成的图形叫圆。

其二:平面上一条线段,绕它固定的一个端点O旋转360°,它的另一端留下的轨迹叫圆。

2.圆的其他相关量

①圆心与半径:(如定义)固定的端点O即为圆心,用字母来表示,记作⊙O;定义中的定长即为半径,用字母r表示;

②弦与直径:连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆中最长的弦为直径;

③圆弧:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧;

④圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;

⑤等圆:能够重合的两个圆叫做等圆。

3.垂径定理及其推论

①定理

如果圆的一条直径垂直于一条弦,那么这条直径平分这条弦,并且平分这条弦所对的两条弧。

②推论(四条)

推论一:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两条弧;

推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的两条弧;

推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧

推论四:在同圆或者等圆中,两条平行弦所夹的弧相等。

4.圆心角与圆周角

(1)定义

①圆心角:顶点在圆心的角叫做圆心角;

②圆周角:顶点在圆上,且两边都与圆相交的角叫做圆周角。

(2)定理及推论

①圆心角

定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

推论一:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等;

推论二:在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等。

②圆周角

定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

推论一:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径;

推论二:在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等;

推论三:圆内接四边形的对角互补。

5.点与圆的位置关系

(1)点和圆的位置关系

点和圆的位置关系相对较为简单,可分为三种情况:圆内、圆上和圆外。

一般情况下,判断点和圆的位置关系,以点到圆心的距离和圆半径之间的大小为依据,假设⊙O的半径为r,点P到圆心O的距离为d,则点P与⊙O的位置关系可表示如下:

点P在⊙O外等价于d>r

点P在⊙O上等价于d=r

点P在⊙O内等价于d<r

(2)不在同一直线上的三个点确定一个圆

不在同一直线上的三个点确定一个圆。根据这一定理,我们可以经过任意三角形的三个顶点做一个圆,这个圆就叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做该三角形的外心。

(3)反证法

不是直接从命题的已知得出结论,而是假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立。这种证明方法就叫做反证法。

6.直线与圆的位置关系

直线与圆的位置关系可分为三种:相交、相切和相离,详述如下:

(1)相交

直线和圆有两个公共点,则直线与圆相交,这条直线叫做圆的割线。

(2)相切

直线和圆只有一个公共点,则直线与圆相切,该直线叫做圆的切线,该公共点叫做切点。

(3)相离

即直线和圆没有公共点。

假设⊙O的半径为r,直线l到圆心O的距离为d,根据上述定义,可以得到:

直线l和⊙O相交等价于d<r

直线l和⊙O相切等价于d=r

直线l和⊙O相离等价于d>r

7.关于切线的定理

(1)切线的定义

如果一条直线和圆只有一个公共点,那么这条直线和圆相切,直线就叫做圆的切线,公共点即为切点。

(2)切线判定定理

经过半径的外端并且垂直于这条半径的直线是圆的切线。

(3)切线性质定理

圆的切线垂直于过切点的半径。

(4)切线长

经过圆外一点做圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长。

(5)切线长定理

从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。

8.三角形内切圆

与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心。另外还需知道一点,即三角形的内心到三角形三边的距离相等,也就是三角形内切圆半径。

9.圆与圆的位置关系

圆与圆的位置关系主要可分为三种:相离、相切和相交,分述如下:

(1)相离

如果两个圆没有公共点,那么就说这两个圆相离;相离又分为外离和内含,两圆内含有一种特殊情况即两圆同心。

(2)相切

如果两个圆只有一个公共点,那么就说这两个圆相切;相切又可分为外切和内切。

(3)相交

两圆相交较为简单,即如果两个圆有两个公共点,那么就说这两个圆相交。

10.正多边形和圆

我们先来温习一下什么是正多边形——各边相等、各角也相等的多边形,我们称之为正多边形。

正多边形和圆的关系非常密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。

一个正多边形的外接圆的圆心叫做这个正多边形的中心,外接圆的半径叫做正多边形的半径,正多边形每一边所对的圆心角叫做正多边形的中心角,中心到正多边形的一边的距离叫做正多边形的边心距。

11.弧长和扇形的面积(一些特殊符号不好输入,只好截图了)

12.圆锥的侧面积

要学习圆锥的相关面积的计算,先要了解一个概念——圆锥的母线:我们把连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线。同一圆锥所有母线都相等。

沿一条母线将圆锥侧面剪开并展平,可以得到,圆锥的侧面展开图是一个扇形,而母线即为该扇形的半径,圆锥底面圆的周长为圆锥侧面展开后的扇形对应的弧长。

在上一期已经学习了扇形的面积与弧长的关系,即,有了这一关系式,关于圆锥的的侧面积及全面积的一些列计算将迎刃而解。

❼ 九年级下册数学圆知识点提纲

数学是一门很重要的学科,我们从小学到高中都会系统的去学习数学中的各个内容。这次我在这里给大家整理了九年级下册数学圆知识点提纲,供大家阅读参考。

目录

九年级下册数学圆知识点提纲

数学学习思维方法

数学学习方法

九年级下册数学圆知识点提纲

1、圆是定点的距离等于定长的点的集合

2、圆的内部可以看作是圆心的距离小于半径的点的集合

3、圆的外部可以看作是圆心的距离大于半径的点的集合

4、同圆或等圆的半径相等

5、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

6、和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线

7、到已知角的两边距离相等的点的轨迹,是这个角的平分线

8、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

9、定理不在同一直线上的三点确定一个圆。

10、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

11、推论1:

①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

12、推论2:圆的两条平行弦所夹的弧相等

13、圆是以圆心为对称中心的中心对称图形

14、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

15、推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

16、定理:一条弧所对的圆周角等于它所对的圆心角的一半

17、推论:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

18、推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

19、推论:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

20、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

21、①直线L和⊙O相交d﹤r

②直线L和⊙O相切d=r

③直线L和⊙O相离d﹥r

22、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

23、切线的性质定理:圆的切线垂直于经过切点的半径

24、推论:经过圆心且垂直于切线的直线必经过切点

25、推论:经过切点且垂直于切线的直线必经过圆心

26、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

27、圆的外切四边形的两组对边的和相等

28、弦切角定理:弦切角等于它所夹的弧对的圆周角

29、推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

30、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等

31、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

32、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

33、推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

34、如果两个圆相切,那么切点一定在连心线上

35、①两圆外离d﹥R+r

②两圆外切d=R+r

③两圆相交R-r﹤d﹤R+r(R﹥r)

④两圆内切d=R-r(R﹥r)

⑤两圆内含d﹤R-r(R﹥r)

36、定理:相交两圆的连心线垂直平分两圆的公共弦

37、定理:把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

38、定理:

任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

39、正n边形的每个内角都等于(n-2)×180°/n

40、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

41、正n边形的面积Sn=pr/2p表示正n边形的周长,r为边心距

42、正三角形面积√3a2/4a表示边长

43、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此

k(n-2)180°/n=360°化为(n-2)(k-2)=4

44、弧长计算公式:L=n兀R/180

45、扇形面积公式:

S扇形=n兀R2/360=LR/2

外公切线长=d-(R+r)

<<<

数学学习思维 方法

1.比较法

通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。

比较法要注意:

(1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。

(2)找联系与区别,这是比较的实质。

(3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的基本条件。

(4)要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。

(5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。

2.公式法

运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是孩子学习数学必须学会和掌握的一种方法。但一定要让孩子对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。

3.逻辑法

逻辑是一切思考的基础。 逻辑思维 ,是人们在认识过程中借助于概念、判断、推理等思维形式对事物进行观察、比较、分析、综合、抽象、概括、判断、推理的思维过程。逻辑思维,在解决逻辑推理问题时使用广泛。

4. 逆向思维 法

逆向思维也叫求异思维,它是对司空见惯的似乎已成定论的事物或观点反过来思考的一种 思维方式 。敢于“反其道而思之”,让思维向对立面的方向发展,从问题的相反面深入地进行探索,树立新思想,创立新形象。

5.分类法

根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。

分类即要注意大类与小类之间的不同层次,又要做到大类之中的各小类不重复、不遗漏、不交叉。

<<<

数学 学习方法

1.注重预习培养自学能力

在预习的时候,应当把定理、定律、公式、常数、特定符号这些内容单独汇集在一起,每抄录一遍,则加深一次印象。上课的时候,老师讲到这些地方时,应把自己预习时的理解和老师讲的相对照,看自己有没有理解错的地方。预习可以用“一划、二批、三试、四分”的预习方法。

一划:就是圈划知识要点,基本概念。

二批:就是把预习时的体会、见解以及自己暂时不能理解的内容,批注在书的空白地方。

三试:就是尝试性地做一些简单的练习,检验自己预习的效果。

四分:就是把自己预习的这节知识要点列出来,分出哪些是通过预习已掌握了的,哪些知识是自己预习不能理解掌握了的,需要在课堂学习中进一步学习。

2、把握课堂,提高学习效果

课堂学习是学习过程中最基本,最重要的环节,要坚持做到“五到”即耳到、眼到、口到、心到、手到。

手到:就是以简单扼要的方法记下听课的要点,思维方法,以备复习、消化、再思考,但要以听课为主,记录为辅;

耳到:专心听讲,听老师如何讲课,如何分析、如何归纳 总结 。另外,还要听同学们的解答,看是否对自己有所启发,特别要注意听自己预习未看懂的问题;

口到:主动与老师、同学们进行合作、探究,敢于提出问题,并发表自己的看法,不要人云亦云;

眼到:就是一看老师讲课的表情,手势所表达的意思,看老师的演示实验、板书内容,二看老师要求看的课本内容,把书上知识与老师课堂讲的知识联系起来;

心到:就是课堂上要认真思考,注意理解课堂的新知识,课堂上的思考要主动积极。关键是理解并能融汇贯通,灵活使用。对于老师讲的新概念,应抓住关键字眼,变换角度去理解。

3、掌握练习方法,提高解答数学题的能力

数学的解答能力,主要通过实际的练习来提高。数学练习应注意以下几点:

(1)、端正态度,充分认识到数学练习的重要性。实际练习不仅可以提高解答速度,掌握解答技能技巧,而且,许多的新问题常在练习中出现。

(2)、要有自信心与意志力。数学练习常有繁杂的计算,深奥的证明,自己应有充足的信心,顽强的意志,耐心细致的习惯。

(3)、要养成先思考,后解答,再检查的良好习惯,遇到一个题,不能盲目地进行练习,无效计算,应先深入领会题意,认真思考,抓住关键,再作解答。解答后,还应进行检查。

4、掌握 复习方法 ,提高数学综合能力.

复习是记忆之母,对所学的知识要不断地复习,复习巩固应注意掌握以下方法。

(1).合理安排复习时间,“趁热打铁”,当天学习的功课当天必须复习,无论当天作业有多少,多难,都要巩固复习。

(2).采用综合复习方法,即通过找出知识的左右关系和纵横之间的内在联系,从整体上提高,综合复习具体可分“三步走”:首先是统观全局,浏览全部内容,通过唤起回忆,初步形成知识体系印象,其次是加深理解,对所学内容进行综合分析,最后是整理巩固,形成完整的知识体系。

(3).突破薄弱环节的复习方法.要多在薄弱环节上下功夫,加强巩固好课本知识,只有突破薄弱环节,才利于从整体上提高数学综合能力。

<<<


九年级下册数学圆知识点提纲相关 文章 :

★ 九年级数学知识点总结

★ 初三数学主要知识点

★ 初三数学的知识点梳理

★ 九年级下册数学知识点归纳

★ 九年级数学知识点北师大版

★ 初三数学知识点总结归纳

★ 苏教版九年级数学知识点

★ 人教版九年级下数学复习提纲

★ 人教版九年级数学知识点总结

★ 初三数学基础知识点总结

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();