1. 初三数学重要知识点归纳
很多同学想知道初三数学重要知识点有哪些?下面和我具体了解一下吧,供大家参考。
圆的概念
(1)、确定一个圆的要素是圆心和半径。
(2)①连结圆上任意两点的线段叫做弦。②经过圆心的弦叫做直径。③圆上任意两点间的部分叫做圆弧,简称弧。④小于半圆周的圆弧叫做劣弧。⑤大于半圆周的圆弧叫做优弧。⑥在同圆或等圆中,能够互相重合的弧叫做等弧。⑦顶点在圆上,并且两边和圆相交的角叫圆周角。⑧经过三角形三个顶点可以画一个圆,并且只能画一个,经过三角形三个顶点的圆叫做三角形的外接圆,三角形外接圆的圆心叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形,外心是三角形各边中垂线的交点;直角三角形外接圆半径等于斜边的一半。⑨与三角形各边都相切的圆叫做三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆外切三角形,三角形的内心就是三角形三条内角平分线的交点。
圆的有关性质
(1)定理在同圆或等圆中,如果圆心角相等,那么它所对的弧相等,所对的弦相等,所对的弦的弦心距相等。推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对的其余各组量都分别相等。
(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。②弦的垂直平分线经过圆心,并且平分弦所对的两条弧。③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
(3)圆周角定理:一条弧所对的圆周角等于该弧所对的圆心角的一半。推论1在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等。推论2半圆或直径所对的圆周角都相等,都等于90。90的圆周角所对的弦是圆的直径。推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
(4)切线的判定与性质:判定定理:经过半径的外端且垂直与这条半径的直线是圆的切线。性质定理:圆的切线垂直于经过切点的半径;经过圆心且垂直于切线的直线必经过切点;经过切点切垂直于切线的直线必经过圆心。
(5)定理:不在同一条直线上的三个点确定一个圆。
(6)圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长;切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角。
(7)圆内接四边形对角互补,一个外角等于内对角;圆外切四边形对边和相等;
(8)弦切角定理:弦切角等于它所它所夹弧对的圆周角。
(9)和圆有关的比例线段:相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。从圆外一点引圆的两条割线,这一点到每条割线与圆交点的两条线段长的积相等。
(10)两圆相切,连心线过切点;两圆相交,连心线垂直平分公共弦。
有理数的运算
加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
一元二次方程的解法
大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解。
(1)配方法
利用配方,使方程变为完全平方公式,在用直接开平方法去求出解。
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解。
2. 初三数学知识点归纳 中考必背数学重点知识总结
很多人想知道初戚清三数学的学习上需要掌握哪些重点知识,下面我为大家整理了一些中考必背的数学重点知识,供参考!
中考数学重要知识点归纳
一、基本知识
一、数与代数
A、数与式:
1、有理数
有理数:
①整数→正整数/0/负整数
②分数→正分数/负分数
数轴:
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
绝对值:
①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的运算:
加法:
①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:
①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:
①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数
无理数:无限不循环小数叫无理数
平方根:
①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:
①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
初三数学知识点整理
1、 实数的分类
有理数:整数汪正(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373...,,.
无理数:无限不环循小数叫做无理数如:π,-,0.1010010001...(两个1之间依次多1个0).
实数:有理数和无理数统称为实数.
2、无理数
在理解无理数时,要抓住"无限不循环"这一时之,它包含两层意思:一是无限小数;二是不循环.二者缺一不可.归纳起来有四类:
(1)开方开不尽的数,如等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;
(3)有特定结构的数,如0.1010010001...等;
(4)某些三角函数,如sin60o等
注意:判断一个实数的属性(如有理数、无理数),应遵循:一化简,二辨析,三判断.要注意:"神似"或"形似"都不能作为判断的标准.
3、非负数:正实数与零的统称。(表为:x≥0)
常见的非负数有:
性质:若干个非负数的和为0,则每个非负担数均为0。
4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度困仔悔作为单位长度,规定直线上向右的方向为正方向,就得到数轴("三要素")
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
5、相反数
实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。即:(1)实数的相反数是.(2)和互为相反数.
6、绝对值
一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
(1)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即:﹝另有两种写法﹞
(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值就是数轴上表示这个数的点到原点的距离.
(3)几个非负数的和等于零则每个非负数都等于零,例如:若,则,,.
注意:│a│≥0,符号"││"是"非负数"的标志;数a的绝对值只有一个;处理任何类型的题目,只要其中有"││"出现,其关键一步是去掉"││"符号。
初三数学必背公式大全
1.过两点有且只有一条直线
2.两点之间线段最短
3.同角或等角的补角相等
4.同角或等角的余角相等
5.过一点有且只有一条直线和已知直线垂直
6.直线外一点与直线上各点连接的所有线段中,垂线段最短
7.平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8.如果两条直线都和第三条直线平行,这两条直线也互相平行
9.同位角相等,两直线平行
10.内错角相等,两直线平行
11.同旁内角互补,两直线平行
12.两直线平行,同位角相等
13.两直线平行,内错角相等
14.两直线平行,同旁内角互补
15.定理 三角形两边的和大于第三边
16.推论 三角形两边的差小于第三边
17.三角形内角和定理 三角形三个内角的和等于180°
18.推论1 直角三角形的两个锐角互余
19.推论2 三角形的一个外角等于和它不相邻的两个内角的和
20.推论3 三角形的一个外角大于任何一个和它不相邻的内角
21.全等三角形的对应边、对应角相等
22.边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23.角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24.推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25.边边边公理(SSS) 有三边对应相等的两个三角形全等
26.斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27.定理1 在角的平分线上的点到这个角的两边的距离相等
28.定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29.角的平分线是到角的两边距离相等的所有点的集合
30.等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31.推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33.推论3 等边三角形的各角都相等,并且每一个角都等于60°
34.等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35.推论1 三个角都相等的三角形是等边三角形
36.推论 2 有一个角等于60°的等腰三角形是等边三角形
37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38.直角三角形斜边上的中线等于斜边上的一半
39.定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40.逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42.定理1 关于某条直线对称的两个图形是全等形
43.定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44.定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45.逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46.勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47.勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48.定理 四边形的内角和等于360°
49.四边形的外角和等于360°
50.多边形内角和定理 n边形的内角的和等于(n-2)×180°
3. 初三数学重点知识点归纳大全
数学 最重要的就是 知识点 ,下面我就大家整理一下初三数学重点知识点归纳大全,仅供参考。
函数易错知识点
1:各个待定系数表示的的意义。
2:熟练掌握各种函数解析式的求法,有几个的待定系数就要几个点值。
3:利用图像求不等式的解集和方程(组)的解,利用图像性质确定增减性。
4:两个变量利用函数模型解实际问题,注意区别方程、函数、不等式模型解决不等领域的问题。
5:利用函数图象进行分类(平行四边形、相似、直角三角形、等腰三角形)以及分类的求解方法。
方程(组)与不等式(组)
1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。
2:运用等式性质时,两边同除以一个数必须要注意不能为O的情况,还要关注解方程与方程组的基本思想。消元降次的主要陷阱在于消除了一个带X公因式时回头检验!
3:运用不等式的性质3时,容易忘记改不变号的方向而导致结果出错。
4:关于一元二次方程的取值范围的题目易忽视二次项系数不为0。
5:关于一元一次不等式组有解、无解的条件易忽视相等的情况。
6:解分式方程时首要步骤去分母,分数相相当于括号,易忘记根检验,导致运算结果出错。
7:不等式(组)的解得问题要先确定解集,确定解集的方法运用数轴。
8:利用函数图象求不等式的解集和方程的解。
6:与坐标轴交点坐标一定要会求。面积最大值的求解方法,距离之和的最小值的求解方法,距离之差最大值的求解方法。
7:数形结合思想方法的运用,还应注意结合图像性质解题。函数图象与图形结合学会从复杂图形分解为简单图形的方法,图形为图像提供数据或者图像为图形提供数据。
8:自变量的取值范围有:二次根式的被开方数是非负数,分式的分母不为0,0指数底数不为0,其它都是全体实数。
初三数学学习法则
认真学习,研究教材,研究考试,把握教学的要求,了解教学中的重点和学生学习中的难点,提高自身的业务素养。另外也要根据当前教改的要求、学生的实际,研究教学方法,达到提高教学效率的目的。
要注重知识的发生发展过程,全面、准确的理解基本概念,切忌就事论事,然后通过大量的练习来“理解”、“掌握”概念,这种做法只能起到事倍功半的效果,不但“记不住”大量的数学概念,而且不会灵活地运用概念解决问题。
在平时的学习例题时,要注重分析解决问题的方法,纠正不研究的学习过程,只追求结果的错误学习方法;要注重数学思想方法的渗透,废弃死记硬背的学习方式。数学思想方法是数学的灵魂,数学的精髓,它是培养学生创新意识、实践能力的源泉,因此也是中考的重点。在初中阶段要注意方程思想、函数思想、整体待换思想、化归思想、数形结合思想、分类讨论思想、换元法、配方法、待定系数法等数学思想方法,这样才能提高学生分析问题解决问题的能力。
4. 初三数学知识点 所有重点知识点汇总
初三的学生更应该注意总结重点知识点,下面我为大家总结了初三数学知识点,所有重点知识点汇总,仅供大家参考。
有理数的运算知识点
加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
函数的概念知识点
1.常量与变量:在某一变化过程中,可以取不同数值的量叫做变量;在某一变化过程中保持数值不变的量叫做常量.
2.函数:在某一变化过程中的两个变量x和y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值和它对应,那么y就叫做x的函数,其中x做自变量,y是因变量.
(1)自变量取值范围的确定
①整式函数自变量的取值范围是全体实数.
②分式函数自变量的取值范围是使分母不为0的实数.
③二次根式函数自变量的取值范嗣是使被开方数是非负数的实数,若涉及实际问题的函数,除满足上述要求外还要使实际问题有意义.
初三数学知识点
直线的性质
(1)直线公理:经过两个点有一条直线,并且只有一条直线。它可以简单地说成:过两点有且只有一条直线。
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
线段的性质
(1)线段公理:所有连接两点的线中,线段最短。也可简单说成:两点之间线段最短。
(2)连接两点的线段的长度,叫做这两点的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
以上就是我为大家总结的初三数学知识点,所有重点知识点归纳,仅供参考,希望能帮助到大家。
5. 初三数学知识点归纳 九年级数学重点知识总结
很多人想知道初三数学上有哪些重要知识点,初三必背重点知识有哪些呢?下面我为大家介绍一下!
初三数学重要知识点归纳大全
一、 圆的对称性
1、圆的轴对称性
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2、圆的中心对称性
圆是以圆心为对称中心的中心对称图形。
二、 弧、弦、弦心距、圆心角之间的关系定理
1、圆心角
顶点在圆心的角叫做圆心角。
2、弦心距
从圆心到弦的距离叫做弦心距。
3、弧、弦、弦心距、圆心角之间的关系定理
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦型颤心距中有一组量相等,拿租和那么它们所对应的其余各组量都分别相等。
三、圆周角定理及其推论
1、圆周角
顶点在圆上,并且两边都和圆相交的角叫做圆周角。
2、圆周角定理
一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
四、点和圆的位置关系
设⊙O的半径是r,点P到圆心O的距离为d,则有:
d=r 点P在⊙O上;
d>r 点P在⊙O外。
过三点的圆
1、过三点的圆
不在同一直线上消盯的三个点确定一个圆。
2、三角形的外接圆
经过三角形的三个顶点的圆叫做三角形的外接圆。
3、三角形的外心
三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。
4、圆内接四边形性质(四点共圆的判定条件)
圆内接四边形对角互补。
五、一些基本公式
三倍角公式
三倍角的正弦、余弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]
三倍角公式推导
附推导:
tan3α=sin3α/cos3α
=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)
上下同除以cos^3(α),得:
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
=2sinαcos^2(α)+(1-2sin^2(α))sinα
=2sinα-2sin^3(α)+sinα-2sin^3(α)
=3sinα-4sin^3(α)
cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=(2cos^2(α)-1)cosα-2cosαsin^2(α)
=2cos^3(α)-cosα+(2cosα-2cos^3(α))
=4cos^3(α)-3cosα
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
六、一些重点知识
巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是三角形边的比值,可以把两个字用/隔开,再用下面的一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:正对鱼磷(余邻)直刀切。正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边。
三角函数的增减性:正增余减特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀"123,321,三九二十七"既可。
平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行。对角线,是个宝,互相平分"跑不了",对角相等也有用,"两组对角"才能成。
梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在"△"现;延长两腰交一点,"△"中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线。
添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形边两中点,连接则成中位线;三角形中有中线,延长中线翻一番。
圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系。
正多边形诀窍歌:份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前。
中考数学必考重要知识点大全
知识点1:一元二次方程的基本概念
1.一元二次方程3x2+5x-2=0的常数项是-2.
2.一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.
3.一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.
4.把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0.
知识点2:直角坐标系与点的位置
1.直角坐标系中,点A(3,0)在y轴上。
2.直角坐标系中,x轴上的任意点的横坐标为0.
3.直角坐标系中,点A(1,1)在第一象限。
4.直角坐标系中,点A(-2,3)在第四象限。
5.直角坐标系中,点A(-2,1)在第二象限。
知识点3:已知自变量的值求函数值
1.当x=2时,函数y=的值为1.
2.当x=3时,函数y=的值为1.
3.当x=-1时,函数y=的值为1.
知识点4:基本函数的概念及性质
1.函数y=-8x是一次函数。
2.函数y=4x+1是正比例函数。
3.函数是反比例函数。
4.抛物线y=-3(x-2)2-5的开口向下。
5.抛物线y=4(x-3)2-10的对称轴是x=3.
6.抛物线的顶点坐标是(1,2)。
7.反比例函数的图象在第一、三象限。
知识点5:数据的平均数中位数与众数
1.数据13,10,12,8,7的平均数是10.
2.数据3,4,2,4,4的众数是4.
3.数据1,2,3,4,5的中位数是3.
知识点6:特殊三角函数值
1.cos30°=根号3/2。
2.sin260°+cos260°=1.
3.2sin30°+tan45°=2.
4.tan45°=1.
5.cos60°+sin30°=1.
初三数学学习方法与技巧总结
1课前认真预习.预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十.带着预习中不明白的问题去听老师讲课,来解答这类的问题.预习还可以使听课的整体效率提高.具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟.在时间允许的情况下,还可以将练习册做完.
2让数学课学与练结合.在数学课上,光听是没用的.当老师让同学去黑板上演算时,自己也要在草稿纸上练.如果遇到不懂的难题,一定要提出来,不能不求甚解.否则考试遇到类似的题目就可能不会做.听老师讲课时一定要全神贯注,要注意细节问题,否则“千里之堤,毁于蚁穴”.
3课后及时复习.写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的课外题.可以根据自己的需要选择适合自己的课外书.其课外题内容大概就是今天上的课.
4单元测验是为了检测近期的学习情况.其实分数代表的是你的过去,关键的是对于每次考试的总结和吸取教训,是为了让你在期中、期末考得更好.老师经常会在没通知的情况下进行考试,所以要及时做到“课后复习”.
6. 初三数学
初三数学知识点有:一、锐角三角形函数1、正弦:把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA=a/c;2、余弦:把锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA=b/c;3、正切:把锐角A的对边与邻边的比叫做∠A的正切,记作tanA=a/b;4、余切:把锐角A的邻边与对边的比叫做∠A的余切,记作cotA=b/a。二、相似三角形两个对应角相等,对应边成比例的三角形叫做相似三角形。两个三角形相似时和证两个三角形全等一样,通常把表示对应顶点的字母写在对应的位置上,这样便于找出相似三角形的对应角和对应边。三、圆和圆的位置关系若连心线长为d,两圆的半径分别为R,r,则:1、两圆外离<=>d>R+r;2、两圆外切<=>d=R+r;3、两圆相交<=>R-r<d<R+r(R>r)。四、二次函数的概念一般地,如果y=ax+bx+c(a,bc是常数,a≠0),那么y叫做x的二次函数。y=ax+bx+c(a,bc是常数,a≠0)叫做二次函数的一般式。五、中心对称的性质1、关于中心对称的两个图形是全等形。2、关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。3、关于中心对称的两个图形,对应线段平行且相等。
7. 初三数学书目录及重要知识点
初三数学的重要知识点有一元二次方程、二次函数、圆、概率、反比例函数等等,接下来分享初三数学书目录及部分重要知识点。
初三上学期数学书目录
初三下册数学书目录
初三数学重要知识点
(一)一元二次方程
1.只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。
2.一元二次方程的解法
(1)开平方法 (2)配方法
(3)因式分解法 (4)求根公式法
3.判别式
利用一元二次方程根的判别式(△=b²-4ac),可以判断方程的根的情况。
(1)当△>0时,方程有两个不相等的实数根;
(2)当△=0时,方程有两个相等的实数根;
(3)当△<0时,方程无实数根,但有2个共轭复根。
(二)圆
1.在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数条对称轴。
2.径
连接圆心和圆上的任意一点的线段叫做半径,字母表示为r。
通过圆心并且两端都在圆上的线段叫做直径,字母表示为d。
直径所在的直线是圆的对称轴。在同一个圆中,圆的直径 d=2r。
3.弦:连接圆上任意两点的线段叫做弦。
在同一个圆内最长的弦是直径。直径所在的直线是圆的对称轴,因此,圆的对称轴有无数条。
4.弧:圆上任意两点间的部分叫做圆弧。
5.圆的垂径定理
(1)垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦作对的两条弧。
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
6.圆的切线定理
(1)垂直于过切点的半径;经过半径的外端点,并且垂直于这条半径的直线,是这个圆的切线。
(2)切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。
7.圆的周角定理
(1)圆周角的度数等于它所对的弧的度数的一半。
(2)一条弧所对的圆周角等于它所对的圆心角的一半。
(3)“等弧对等角”、“等角对等弧”。
(4)“直径对直角”、“直角对直径”。
8.周长相等,圆面积比正方形、长方形、三角形的面积大。