当前位置:首页 » 基础知识 » 初三数学上册必背知识点大全
扩展阅读
济南师联教育学校怎么样 2025-01-30 23:10:27
如何零基础学习修图 2025-01-30 23:10:14
同学贷怎么下载现在 2025-01-30 23:02:40

初三数学上册必背知识点大全

发布时间: 2025-01-29 19:31:07

❶ 数学中考必背知识点

一、相似三角形(7个考点)

考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小

考核要求:

(1)理解相似形的概念;

(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。

考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理

考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。

注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。

考点3:相似三角形的概念

考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。

考点4:相似三角形的判定和性质及其应用

考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。

考点5:三角形的重心

考核要求:知道重心的定义并初步应用。

考点6:向量的有关概念

考点7:向量的加法、减法、实数与向量相乘、向量的线性运算

考核要求:掌握实数与向量相乘、向量的线性运算

二、锐角三角比(2个考点)

考点8:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。

考点9:解直角三角形及其应用

考核要求:

(1)理解解直角三角形的意义;

(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。

三、二次函数(4个考点)

考点10:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数

考核要求:

(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;

(2)知道常值函数;

(3)知道函数的表示方法,知道符号的意义。

考点11:用待定系数法求二次函数的解析式

考核要求:

(1)掌握求函数解析式的方法;

(2)在求函数解析式中熟练运用待定系数法。

注意求函数解析式的步骤:一设、二代、三列、四还原。

考点12:画二次函数的图像

考核要求:

(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像

(2)理解二次函数的图像,体会数形结合思想;

(3)会画二次函数的大致图像。

考点13:二次函数的图像及其基本性质

考核要求:

(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;

(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质。

注意:

(1)解题时要数形结合;

(2)二次函数的平移要化成顶点式。

四、圆的相关概念(6个考点)

考点14:圆心角、弦、弦心距的概念

考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断。

考点15:圆心角、弧、弦、弦心距之间的关系

考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明。

考点16:垂径定理及其推论

垂径定理及其推论是圆这一板块中最重要的知识点之一。

考点17:直线与圆、圆与圆的位置关系及其相应的数量关系

直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映。在圆与圆的位置关系中,常需要分类讨论求解。

考点18:正多边形的有关概念和基本性质

考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题。

考点19:画正三、四、六边形。

考核要求:能用基本作图工具,正确作出正三、四、六边形。

五、数据整理和概率统计(9个考点)

考点20:确定事件和随机事件

考核要求:

(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;

(2)能区分简单生活事件中的必然事件、不可能事件、随机事件。

考点21:事件发生的可能性大小,事件的概率

考核要求:

(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;

(2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;

(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。

注意:

(1)在给可能性的大小排序前可先用“一定发生”、“很有可能发生”、“可能发生”、“不太可能发生”、“一定不会发生”等词语来表述事件发生的可能性的大小;

(2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。

考点22:等可能试验中事件的概率问题及概率计算

考核要求

(1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;

(2)会用枚举法或画“树形图”方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;

(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。

注意:

(1)计算前要先确定是否为可能事件;

(2)用枚举法或画“树形图”方法求等可能事件的概率过程中要将所有等可能情况考虑完整。

考点23:数据整理与统计图表

考核要求:

(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;

(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。

考点24:统计的含义

考核要求:

(1)知道统计的意义和一般研究过程;

(2)认识个体、总体和样本的区别,了解样本估计总体的思想方法。

考点25:平均数、加权平均数的概念和计算

考核要求:

(1)理解平均数、加权平均数的概念;

(2)掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。

考点26:中位数、众数、方差、标准差的概念和计算

考核要求:

(1)知道中位数、众数、方差、标准差的概念;

(2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。

注意:

(1)当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;

(2)求中位数之前必须先将数据排序。

考点27:频数、频率的意义,画频数分布直方图和频率分布直方图

考核要求:

(1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;

(2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1.

考点28:中位数、众数、方差、标准差、频数、频率的应用

考核要求:

(1)了解基本统计量(平均数、众数、中位数、方差、标准差、频数、频率)的意计算及其应用,并掌握其概念和计算方法;

(2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;

(3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题,然后作出合理的解决。

❷ 初三数学知识点归纳人教版

初三是初中的最后一年,也是迎接中考的重要一年,想要在中考中取得好的数学成绩,需要对初三数学的知识点进行归纳总结。以下是我分享给大家的初三数学知识点归纳,希望可以帮到你
初三数学知识点归纳
一元二次方程的定义:

定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

一元二次方程的一般形式:

a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c; 其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式.

一元二次方程的特点

(1)该方程为整式方程。

(2)该方程有且只含有一个未知数。

(3)该方程中未知数的最高次数是2。

一元二次方程常见考法

(1)考查一元二次方程的根与系数的关系(韦达定理):这类题目有着解题规律性强的特点,题目设置会很灵活,所以一直很吸引命题者。主要考查①根与系数的推导,有关规律的探究②已知两根或一根构造一元二次方程,这类题目一般比较开放;

(2)在一元二次方程和几何问题、函数问题的交汇处出题。(几何问题:主要是将数字及数字间的关系隐藏在图形中,用图形表示出来,这样的图形主要有三角形、四边形、圆等涉及到三角形三边关系、三角形全等、面积计算、体积计算、勾股定理等);

(3)列一元二次方程解决实际问题,以实际生活为背景,命题广泛。
初三数学学习方法
一、多看数学书,抓住基础

工欲善其事,必先利其器。中考试题有知识面全、注重基础的特点。所以学生要从基本的做起,多看课本。基础差的学生更要多看几遍。在看课本的过程中要强调一点:

第一、例题要重读 ,教材中的例题都是很有代表性的,要珍惜每道例题,可以自己先试着做一做,然后在看解答。

第二、概念要精读,比如射线、二次函数等的概念都是很精准的,要一字一句的仔细阅读。才能加深对概念定理的理解。第三、学会点、划、批、问。把关键的地方点出来,把公式、结论等画出来、把自己的理解、质疑等批出来,把没看懂的地方问出来。

二、学会听课

老师每节课讲课发的讲义都是知识点很全面的。大家都认真听,可是听课后的效率为什么会不同呢?所以要学会听课。听课中要注意:

第一、听每节课的学习要求

第二、听知识引入及知识形成过程

第三、听懂重点、难点

第四、听立体解法的思路和数学思想方法的体现

第五、听好课后总结。

三、建立纠错本

学生要把典型例题、出错的题目写在纠错本上。错题一般分为两种:一种是自己根本就不会做,因为太难了,没有思路;另一种是自己会做,因为粗心做错了,我觉得,最有机制的错题是第二类。因为粗心也有很多种,比如跳步容易引起粗心,我们要分析它,为什么会错?有哪些教训?下一阶段怎么学?

四、做题规范

要求学生书写格式要规范、步骤要完整、条理要清楚。平常的无图题目要正确的由条件画出图形。老师平常给学生做示范作用,有意让学生模仿、训练,逐步养成学生良好的书写习惯。

五、学会总结

通过不同类型的题目的练习,列出重点、难点、自己哪些不会。归纳出各种题型的解题方法。
初三数学复习技巧
注重课本知识

全面复习基础知识,加强基本技能训练的第一阶段的复习工作我们已经结束了,在第二阶段的复习中,反思和总结上一轮复习中的遗漏和缺憾,会发现有些知识还没掌握好,解题时还没有思路,因此要做到边复习边将知识进一步归类,加深记忆;还要进一步理解概念的内涵和外延,牢固掌握法则、公式、定理的推导或证明,进一步加强解题的思路和方法;同时还要查找一些类似的题型进行强化训练,要及时有目的有针对性的补缺补漏,直到自己真正理解会做为止,决不要轻易地放弃。

这个阶段尤其要以课本为主进行复习,因为课本的例题和习题是教材的重要组成部分,是数学知识的主要载体。吃透课本上的例题、习题,才能有利于全面、系统地掌握数学基础知识,熟练数学基本方法,以不变应万变。所以在复习时,我们要学会多方位、多角度审视这些例题习题,从中进一步清晰地掌握基础知识,重温思维过程,巩固各类解法,感悟数学思想方法。复习形式是多样的,尤其要提高复习效率。

另外,现在中考命题仍然以基础题为主,有些基础题是课本上的原题或改造了的题,有的大题虽是“高于教材”,但原型一般还是教材中的例题或习题,是课本中题目的引申、变形或组合,课本中的例题、练习和作业题不仅要理解,而且一定还要会做。同时,对课本上的《阅读材料》《课题研究》《做一做》《想一想》等内容,我们也一定要引起重视。

注重课堂学习

在任课老师的指导下,通过课堂教学,要求同学们掌握各知识点之间的内在联系,理清知识结构,形成整体的认识,通过对基础知识的系统归纳,解题方法的归类,在形成知识结构的基础上加深记忆,至少应达到使自己准确掌握每个概念的含义,把平时学习中的模糊概念搞清楚,使知识掌握的更扎实的目的,要达到使自己明确每一个知识点在整个初中数学中的地位、联系和应用的目的。上课要会听课,会记录,必须要把握每一节课所讲的知识重点,抓住关键,解决疑难,提高学习效率,根据个人的具体情况,课堂上及时查漏补缺。

夯实基础知识

在历年的数学中考试题中,基础分值占的最多,再加上部分中档题及较难题中的基础分值,因此所占分值的比例就更大。我们必须扎扎实实地夯实基础,通过系统的复习,我们对初中数学知识达到“理解”和“掌握”的要求,在应用基础知识时能做到熟练、正确和迅速。

有的考题会对需要考查的知识和方法创设一个新的问题情境,特别是一些需要有较高区分度的试题更是如此;每个中档以上难度的数学试题通常要涉及多个知识点、多种数学思想方法,或者在知识交汇点上巧妙设计试题。因此,我们每一个同学要学会思考,老师上课教给我们的是思考问题的角度、方法和策略,我们要用学到的方法和策略,在解决具有新情境问题的过程中,感悟出如何进行正确的思考。

注意知识的迁移

课本中的某些例题、习题,并不是孤立的,而是前后联系、密切相关的,其他学科的知识也和数学有着千丝万缕的联系,我们要学会从思维发展的最近点出发,去发现、研究和展示这些知识的内在联系,这样做不仅有助于自己深刻理解课本知识,有利于强化知识重点,更重要的是能有效地促进自己数学知识网络和方法体系的构建,使知识和能力产生良性迁移,达到触类旁通的效果,通过探究课本典型例题、习题的内在联系,让我们在深刻理解课本知识的同时,更有效地形成知识网络与方法体系。例如一元二次方程的根的判别式,不但可以解决根的判定和已知根的情况求字母系数,还可以解决二次三项式的因式分解、方程组的根的判定及二次函数图象与横轴的交点坐标。

猜你喜欢:

1. 初中数学知识点总结大全

2. 中考数学知识点总结

3. 人教版初中数学总复习资料有哪些

4. 人教版数学中考总复习资料提纲有哪些

5. 初中数学基础知识点总结

❸ 初三数学知识点归纳

想了解初中数学知识,想提高数学成绩的小伙伴,赶紧过来瞧一瞧吧。下面由我为你精心准备了“初三数学知识点归纳”,本文仅供参考,持续关注本站将可以持续获取更多的知识点!

初三数学知识点归纳

一、有理数。

1、大于0的数叫做正数。

2、在正数前面加上负号“-”的数叫做负数。

3、整数和分数统称为有理数。

4、人们通常用一条直线上的点表示数,这条直线叫做数轴。

5、在直线上任取一个点表示数0,这个点叫做原点。

6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。

7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

8、正数大于0,0大于负数,正数大于负数。

9、两个负数,绝对值大的反而小。

10、有理数加法法则。

(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

(3)一个数同0相加,仍得这个数。

二、整式的加减。

1、都是数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式。

2、单项式中的数字因数叫做这个单项式的系数。

3、一个单项式中,所有字母的指数的和叫做这个单项式的次数。

4、几个单项的和叫做多项式,其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。

5、多项式里次数最高项的次数,叫做这个多项式的次数。

6、把多项式中的同类项合并成一项,叫做合并同类项。

合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

7、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。

8、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

9、一般地,几个整式相加减,如果有括号就梁橘罩先去括号,然后再合并同类项。

三、一元一次方程。

1、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程。

2、含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。

3、分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。

4、等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

5、等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。

6、把等式一边的某项变号后移到另一边,叫做移项。

7、应用:行程问题:s=v×t工程问题:工作总量=工作效率×时间。

盈亏问题:利润=售价-成本利率=利润÷成本×100%。

售价=标价×折扣数×10%储蓄利润问题:利息=本金橡闹×利率×时间。

本息和=本金+利息。

四、图形初步认识。

1、我们把实物中抽象的各种图形统称为几何图形。

2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形。

3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形。

4、将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

5、几何体简称为体。

6、包围着体的是面,面有平的面和曲的面两种。

7、面与面相交的地方形成线,线和线相交的地方是点。

8、点动成面,面动成线,线动成体。

9、经过探究可以得到一个基本事实:经过两伍做点有一条直线,并且只有一条直线。

简述为:两点确定一条直线(公理)。

10、当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。

拓展阅读:数学学习方法

1.求教与自学相结合。

在学习过程中,即要争取教师的指导和帮助,但是又不能处处依赖教师,必须自己主动地去学习、去探索、去获取,应该在自己认真学习和研究的基础上去寻求教师和同学的帮助。

2.学习与思考相结合。

在学习过程中,对课本的内容要认真研究,提出疑问,追本究源。对每一个概念、公式、定理都要弄清其来龙去脉、前因后果、内在联系,以及蕴含于推导过程中的数学思想和方法。在解决问题时,要尽量采用不同的途径和方法,要克服那种死守书本、机械呆板、不知变通的学习方法。

3.学用结合,勤于实践。

在学习过程中,要准确地掌握抽象概念的本质含义,了解从实际模型中抽象为理论的演变过程。对所学理论知识,要在更大范围内寻求它的具体实例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。

4.博观约取,由博返约。

课本是学生获得知识的主要来源,但不是唯一的来源。在学习过程中,除了认真研究课本以外,还要阅读有关的课外资料,来扩大知识领域。同时在广泛阅读的基础上,进行认真研究,掌握其知识结构。

5.既有模仿,又有创新。

模仿是数学学习中不可缺少的学习方法,但是决不能机械地模仿,应该在消化理解的基础上,开动脑筋,提出自己的见解和看法,而不拘泥于已有的框框,不囿于现成的模式。

6.及时复习增强记忆。

课堂上学习的内容,必须当天消化,要先复习,后做练习,复习工作必须经常进行,每一单元结束后,应将所学知识进行概括整理,使之系统化、深刻化。

7.阅读理解。

目前初中学生学习数学存在一个严重的问题就是不善于读数学教材,他们往往是死记硬背。重视阅读方法对提高初中学生的学习能力是至关重要的。新学一个章节内容,先粗粗读一遍,即浏览本章节所学内容的枝干,然后一边读一边勾,粗略懂得教材的内容及其重点、难点所在,对不理解的地方打上记号。然后细细地读,即根据每章节后的学习要求,仔细阅读教材内容,理解数学概念、公式、法则、思想方法的实质及其因果关系,把握重点、突破难点。再次带着研究者的态度去读,即带着发展的观点研讨知识的来龙去脉、结构关系、编排意图,并归纳要点,把书读懂,并形成知识网络,完善认识结构,当学生掌握了这三种读法,形成习惯之后,就能从本质上改变其学习方式,提高学习效率了。

8.提高听课质量要培养会听课,听懂课的习惯。

注意听教师每节课强调的学习重点,注意听对定理、公式、法则的引入与推导的方法和过程,注意听对例题关键部分的提示和处理方法,注意听对疑难问题的解释及一节课最后的小结,这样,抓住重、难点,沿着知识的发生发展的过程来听课,不仅能提高听课效率,而且能由“听会”转变为“会听”。

初中数学速记口诀

1.最简根式的条件。

最简根式三条件,号内不把分母含。

幂指(数)根指(数)要互质,幂指比根指小一点。

2.特殊点的坐标特征。

坐标平面点(x,y),横在前来纵在后。

(+,+),(-,+),(-,-)和(+,-),四个象限分前后。

x轴上y为0,x为0在y轴。

3.象限角的平分线。

象限角的平分线,坐标特征有特点。

一、三横纵都相等,二、四横纵确相反。

4.平行某轴的直线。

平行某轴的直线,点的坐标有讲究。

直线平行x轴,纵坐标相等横不同。

直线平行于y轴,点的横坐标仍照旧。

5.对称点的坐标。

对称点坐标要记牢,相反数位置莫混淆。

x轴对称y相反,y轴对称,x前面添负号。

原点对称最好记,横纵坐标变符号。

6.自变量的取值范围。

分式分母不为零,偶次根下负不行。

零次幂底数不为零,整式、奇次根全能行。

7.函数图象的移动规律。

左右平移在括号,上下平移在末稍。

左正右负须牢记,上正下负错不了。

8.一次函数的图象与性质的口诀。

一次函数是直线,图象经过三象限。

正比例函数更简单,经过原点一直线。

两个系数k与b,作用之大莫小看。

k是斜率定夹角,b与y轴来相见。

k为正来右上斜,x增减y增减。

k为负来左下展,变化规律正相反。

k的绝对值越大,线离横轴就越远。

9.二次函数的图象与性质的口诀。

二次函数抛物线,图象对称是关键。

开口、顶点和交点,它们确定图象现。

开口、大小由a断,c与y轴来相见。

b的符号较特别,符号与a相关联。

10.反比例函数的图象与性质的口诀。

反比例函数有特点,双曲线相背离得远。

k为正,图在一、三(象)限,k为负。

图在二、四(象)限;图在一、三函数减,两个分支分别减。

图在二、四正相反,两个分支分别增。

11.平行四边形的判定。

要证平行四边形,两个条件才能行。

一证对边都相等,或证对边都平行。

一组对边也可以,必须相等且平行。

对角线,是个宝,互相平分“跑不了”。

对角相等也有用,“两组对角”才能成。

12.二次函数抛物线。

选定需要三个点,a的正负开口判。

c的大小y轴看,△的符号最简便。

x轴上数交点,a、b同号轴左边。

抛物线平移a不变,顶点牵着图象转。

三种形式可变换,配方法作用最关键。

❹ 初三数学重点知识点归纳大全

数学 最重要的就是 知识点 ,下面我就大家整理一下初三数学重点知识点归纳大全,仅供参考。

函数易错知识点
1:各个待定系数表示的的意义。

2:熟练掌握各种函数解析式的求法,有几个的待定系数就要几个点值。

3:利用图像求不等式的解集和方程(组)的解,利用图像性质确定增减性。

4:两个变量利用函数模型解实际问题,注意区别方程、函数、不等式模型解决不等领域的问题。

5:利用函数图象进行分类(平行四边形、相似、直角三角形、等腰三角形)以及分类的求解方法。
方程(组)与不等式(组)
1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。

2:运用等式性质时,两边同除以一个数必须要注意不能为O的情况,还要关注解方程与方程组的基本思想。消元降次的主要陷阱在于消除了一个带X公因式时回头检验!

3:运用不等式的性质3时,容易忘记改不变号的方向而导致结果出错。

4:关于一元二次方程的取值范围的题目易忽视二次项系数不为0。

5:关于一元一次不等式组有解、无解的条件易忽视相等的情况。

6:解分式方程时首要步骤去分母,分数相相当于括号,易忘记根检验,导致运算结果出错。

7:不等式(组)的解得问题要先确定解集,确定解集的方法运用数轴。

8:利用函数图象求不等式的解集和方程的解。

6:与坐标轴交点坐标一定要会求。面积最大值的求解方法,距离之和的最小值的求解方法,距离之差最大值的求解方法。

7:数形结合思想方法的运用,还应注意结合图像性质解题。函数图象与图形结合学会从复杂图形分解为简单图形的方法,图形为图像提供数据或者图像为图形提供数据。

8:自变量的取值范围有:二次根式的被开方数是非负数,分式的分母不为0,0指数底数不为0,其它都是全体实数。
初三数学学习法则
认真学习,研究教材,研究考试,把握教学的要求,了解教学中的重点和学生学习中的难点,提高自身的业务素养。另外也要根据当前教改的要求、学生的实际,研究教学方法,达到提高教学效率的目的。

要注重知识的发生发展过程,全面、准确的理解基本概念,切忌就事论事,然后通过大量的练习来“理解”、“掌握”概念,这种做法只能起到事倍功半的效果,不但“记不住”大量的数学概念,而且不会灵活地运用概念解决问题。

在平时的学习例题时,要注重分析解决问题的方法,纠正不研究的学习过程,只追求结果的错误学习方法;要注重数学思想方法的渗透,废弃死记硬背的学习方式。数学思想方法是数学的灵魂,数学的精髓,它是培养学生创新意识、实践能力的源泉,因此也是中考的重点。在初中阶段要注意方程思想、函数思想、整体待换思想、化归思想、数形结合思想、分类讨论思想、换元法、配方法、待定系数法等数学思想方法,这样才能提高学生分析问题解决问题的能力。

❺ 九年级数学上册必背公式

九年级数学上册必背公式如下:

1、 过两点有且只有一条直线 。

2、 两点之间线段最短 。

3、 同角或等角的补角相等 。

4 、同角或等角的余角相等 。

5、 过一点有且只有一条直线和已知直线垂直 。

15、 定理 三角形两边的和大于第三边。

16、 推论 三角形两边的差小于第三边 。

17 、三角形内角和定理 三角形三个内角的和等于180° 。

18、 推论1 直角三角形的两个锐角互余 。

19、推论2 三角形的一个外角等于和它不相邻的两个内角的和 。

20 、推论3 三角形的一个外角大于任何一个和它不相邻的内角 。

21 、全等三角形的对应边、对应角相等 。

❻ 初三数学知识点归纳 中考必背数学重点知识总结

很多人想知道初戚清三数学的学习上需要掌握哪些重点知识,下面我为大家整理了一些中考必背的数学重点知识,供参考!

中考数学重要知识点归纳

一、基本知识

一、数与代数

A、数与式:

1、有理数

有理数:

①整数→正整数/0/负整数

②分数→正分数/负分数

数轴:

①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

绝对值:

①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

有理数的运算:

加法:

①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:

①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:

①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数

无理数:无限不循环小数叫无理数

平方根:

①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:

①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

初三数学知识点整理

1、 实数的分类

有理数:整数汪正(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373...,,.

无理数:无限不环循小数叫做无理数如:π,-,0.1010010001...(两个1之间依次多1个0).

实数:有理数和无理数统称为实数.

2、无理数

在理解无理数时,要抓住"无限不循环"这一时之,它包含两层意思:一是无限小数;二是不循环.二者缺一不可.归纳起来有四类:

(1)开方开不尽的数,如等;

(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;

(3)有特定结构的数,如0.1010010001...等;

(4)某些三角函数,如sin60o等

注意:判断一个实数的属性(如有理数、无理数),应遵循:一化简,二辨析,三判断.要注意:"神似"或"形似"都不能作为判断的标准.

3、非负数:正实数与零的统称。(表为:x≥0)

常见的非负数有:

性质:若干个非负数的和为0,则每个非负担数均为0。

4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

①画一条水平直线,在直线上取一点表示0(原点),选取某一长度困仔悔作为单位长度,规定直线上向右的方向为正方向,就得到数轴("三要素")

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

5、相反数

实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。即:(1)实数的相反数是.(2)和互为相反数.

6、绝对值

一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

(1)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即:﹝另有两种写法﹞

(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值就是数轴上表示这个数的点到原点的距离.

(3)几个非负数的和等于零则每个非负数都等于零,例如:若,则,,.

注意:│a│≥0,符号"││"是"非负数"的标志;数a的绝对值只有一个;处理任何类型的题目,只要其中有"││"出现,其关键一步是去掉"││"符号。

初三数学必背公式大全

1.过两点有且只有一条直线

2.两点之间线段最短

3.同角或等角的补角相等

4.同角或等角的余角相等

5.过一点有且只有一条直线和已知直线垂直

6.直线外一点与直线上各点连接的所有线段中,垂线段最短

7.平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8.如果两条直线都和第三条直线平行,这两条直线也互相平行

9.同位角相等,两直线平行

10.内错角相等,两直线平行

11.同旁内角互补,两直线平行

12.两直线平行,同位角相等

13.两直线平行,内错角相等

14.两直线平行,同旁内角互补

15.定理 三角形两边的和大于第三边

16.推论 三角形两边的差小于第三边

17.三角形内角和定理 三角形三个内角的和等于180°

18.推论1 直角三角形的两个锐角互余

19.推论2 三角形的一个外角等于和它不相邻的两个内角的和

20.推论3 三角形的一个外角大于任何一个和它不相邻的内角

21.全等三角形的对应边、对应角相等

22.边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

23.角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24.推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

25.边边边公理(SSS) 有三边对应相等的两个三角形全等

26.斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

27.定理1 在角的平分线上的点到这个角的两边的距离相等

28.定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29.角的平分线是到角的两边距离相等的所有点的集合

30.等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

31.推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33.推论3 等边三角形的各角都相等,并且每一个角都等于60°

34.等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35.推论1 三个角都相等的三角形是等边三角形

36.推论 2 有一个角等于60°的等腰三角形是等边三角形

37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38.直角三角形斜边上的中线等于斜边上的一半

39.定理 线段垂直平分线上的点和这条线段两个端点的距离相等

40.逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42.定理1 关于某条直线对称的两个图形是全等形

43.定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44.定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45.逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46.勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

47.勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

48.定理 四边形的内角和等于360°

49.四边形的外角和等于360°

50.多边形内角和定理 n边形的内角的和等于(n-2)×180°

❼ 初三数学知识点归纳 九年级数学重点知识总结

很多人想知道初三数学上有哪些重要知识点,初三必背重点知识有哪些呢?下面我为大家介绍一下!

初三数学重要知识点归纳大全

一、 圆的对称性

1、圆的轴对称性

圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

2、圆的中心对称性

圆是以圆心为对称中心的中心对称图形。

二、 弧、弦、弦心距、圆心角之间的关系定理

1、圆心角

顶点在圆心的角叫做圆心角。

2、弦心距

从圆心到弦的距离叫做弦心距。

3、弧、弦、弦心距、圆心角之间的关系定理

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。

推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦型颤心距中有一组量相等,拿租和那么它们所对应的其余各组量都分别相等。

三、圆周角定理及其推论

1、圆周角

顶点在圆上,并且两边都和圆相交的角叫做圆周角。

2、圆周角定理

一条弧所对的圆周角等于它所对的圆心角的一半。

推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

四、点和圆的位置关系

设⊙O的半径是r,点P到圆心O的距离为d,则有:

d=r 点P在⊙O上;

d>r 点P在⊙O外。

过三点的圆

1、过三点的圆

不在同一直线上消盯的三个点确定一个圆。

2、三角形的外接圆

经过三角形的三个顶点的圆叫做三角形的外接圆。

3、三角形的外心

三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。

4、圆内接四边形性质(四点共圆的判定条件)

圆内接四边形对角互补。

五、一些基本公式

三倍角公式

三倍角的正弦、余弦和正切公式

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]

三倍角公式推导

附推导:

tan3α=sin3α/cos3α

=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)

=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)

上下同除以cos^3(α),得:

tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

sin3α=sin(2α+α)=sin2αcosα+cos2αsinα

=2sinαcos^2(α)+(1-2sin^2(α))sinα

=2sinα-2sin^3(α)+sinα-2sin^3(α)

=3sinα-4sin^3(α)

cos3α=cos(2α+α)=cos2αcosα-sin2αsinα

=(2cos^2(α)-1)cosα-2cosαsin^2(α)

=2cos^3(α)-cosα+(2cosα-2cos^3(α))

=4cos^3(α)-3cosα

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

六、一些重点知识

巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是三角形边的比值,可以把两个字用/隔开,再用下面的一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:正对鱼磷(余邻)直刀切。正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边。

三角函数的增减性:正增余减特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀"123,321,三九二十七"既可。

平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行。对角线,是个宝,互相平分"跑不了",对角相等也有用,"两组对角"才能成。

梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在"△"现;延长两腰交一点,"△"中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线。

添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形边两中点,连接则成中位线;三角形中有中线,延长中线翻一番。

圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系。

正多边形诀窍歌:份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前。

中考数学必考重要知识点大全

知识点1:一元二次方程的基本概念

1.一元二次方程3x2+5x-2=0的常数项是-2.

2.一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.

3.一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.

4.把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0.

知识点2:直角坐标系与点的位置

1.直角坐标系中,点A(3,0)在y轴上。

2.直角坐标系中,x轴上的任意点的横坐标为0.

3.直角坐标系中,点A(1,1)在第一象限。

4.直角坐标系中,点A(-2,3)在第四象限。

5.直角坐标系中,点A(-2,1)在第二象限。

知识点3:已知自变量的值求函数值

1.当x=2时,函数y=的值为1.

2.当x=3时,函数y=的值为1.

3.当x=-1时,函数y=的值为1.

知识点4:基本函数的概念及性质

1.函数y=-8x是一次函数。

2.函数y=4x+1是正比例函数。

3.函数是反比例函数。

4.抛物线y=-3(x-2)2-5的开口向下。

5.抛物线y=4(x-3)2-10的对称轴是x=3.

6.抛物线的顶点坐标是(1,2)。

7.反比例函数的图象在第一、三象限。

知识点5:数据的平均数中位数与众数

1.数据13,10,12,8,7的平均数是10.

2.数据3,4,2,4,4的众数是4.

3.数据1,2,3,4,5的中位数是3.

知识点6:特殊三角函数值

1.cos30°=根号3/2。

2.sin260°+cos260°=1.

3.2sin30°+tan45°=2.

4.tan45°=1.

5.cos60°+sin30°=1.

初三数学学习方法与技巧总结

1课前认真预习.预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十.带着预习中不明白的问题去听老师讲课,来解答这类的问题.预习还可以使听课的整体效率提高.具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟.在时间允许的情况下,还可以将练习册做完.

2让数学课学与练结合.在数学课上,光听是没用的.当老师让同学去黑板上演算时,自己也要在草稿纸上练.如果遇到不懂的难题,一定要提出来,不能不求甚解.否则考试遇到类似的题目就可能不会做.听老师讲课时一定要全神贯注,要注意细节问题,否则“千里之堤,毁于蚁穴”.

3课后及时复习.写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的课外题.可以根据自己的需要选择适合自己的课外书.其课外题内容大概就是今天上的课.

4单元测验是为了检测近期的学习情况.其实分数代表的是你的过去,关键的是对于每次考试的总结和吸取教训,是为了让你在期中、期末考得更好.老师经常会在没通知的情况下进行考试,所以要及时做到“课后复习”.

❽ 鍒濅笁鏁板︿笂鍐岀煡璇嗙偣褰掔撼

銆銆鏁板︽槸璁稿氩悓瀛︾殑鐭𨱒匡纴闾d箞鍒濅笁鏁板︿笂鍐岀殑鐭ヨ瘑镣规湁鍝浜涘憿?蹇𨱒ヤ竴璧蜂简瑙d竴涓嫔惂銆备笅闱㈡槸鐢辨垜涓哄ぇ瀹舵暣鐞嗙殑钬滃埯涓夋暟瀛︿笂鍐岀煡璇嗙偣褰掔撼钬濓纴浠呬緵鍙傝冿纴娆㈣繋澶у堕槄璇汇

銆銆鍒濅笁鏁板︿笂鍐岀煡璇嗙偣褰掔撼

銆銆浜屾℃牴寮

銆銆1銆佷簩娆℃牴寮

銆銆寮忓瓙鍙锅氢簩娆℃牴寮忥纴浜屾℃牴寮忓繀椤绘弧瓒筹细钖链変簩娆℃牴鍙封溾;琚寮鏂规暟a蹇呴’鏄闱炶礋鏁般

銆銆2銆佹渶绠浜屾℃牴寮

銆銆鑻ヤ簩娆℃牴寮忔弧瓒筹细琚寮鏂规暟镄勫洜鏁版槸鏁存暟锛屽洜寮忔槸鏁村纺;琚寮鏂规暟涓涓嶅惈鑳藉紑寰楀敖鏂圭殑锲犳暟鎴栧洜寮忥纴杩欐牱镄勪簩娆℃牴寮忓彨锅氭渶绠浜屾℃牴寮忋

銆銆鍖栦簩娆℃牴寮忎负链绠浜屾℃牴寮忕殑鏂规硶鍜屾ラわ细

銆銆(1)濡傛灉琚寮鏂规暟鏄鍒嗘暟(鍖呮嫭灏忔暟)鎴栧垎寮忥纴鍏埚埄鐢ㄥ晢镄勭畻鏁板钩鏂规牴镄勬ц川鎶婂畠鍐欐垚鍒嗗纺镄勫舰寮忥纴铹跺悗鍒╃敤鍒嗘瘝链夌悊鍖栬繘琛屽寲绠銆

銆銆(2)濡傛灉琚寮鏂规暟鏄鏁存暟鎴栨暣寮忥纴鍏埚皢浠栦滑鍒呜В锲犳暟鎴栧洜寮忥纴铹跺悗鎶婅兘寮寰楀敖鏂圭殑锲犳暟鎴栧洜寮忓紑鍑烘潵銆

銆銆3銆佸悓绫讳簩娆℃牴寮

銆銆鍑犱釜浜屾℃牴寮忓寲鎴愭渶绠浜屾℃牴寮忎互钖庯纴濡傛灉琚寮鏂规暟鐩稿悓锛岃繖鍑犱釜浜屾℃牴寮忓彨锅氩悓绫讳簩娆℃牴寮忋

銆銆4銆佷簩娆℃牴寮忕殑镐ц川

銆銆5銆佷簩娆℃牴寮忔贩钖堣繍绠

銆銆浜屾℃牴寮忕殑娣峰悎杩愮畻涓庡疄鏁颁腑镄勮繍绠楅‘搴忎竴镙凤纴鍏堜箻鏂癸纴鍐崭箻闄わ纴链钖庡姞鍑忥纴链夋嫭鍙风殑鍏堢畻𨰾鍙烽噷镄(鎴栧厛铡绘嫭鍙)銆

銆銆涓鍏冧簩娆℃柟绋

銆銆涓銆佷竴鍏冧簩娆℃柟绋

銆銆1銆佷竴鍏冧簩娆℃柟绋

銆銆钖链変竴涓链鐭ユ暟锛屽苟涓旀湭鐭ユ暟镄勬渶楂樻℃暟鏄2镄勬暣寮忔柟绋嫔彨锅氢竴鍏冧簩娆℃柟绋嬨

銆銆2銆佷竴鍏冧簩娆℃柟绋嬬殑涓鑸褰㈠纺

銆銆锛屽畠镄勭壒寰佹槸锛氱瓑寮忓乏杈瑰崄涓涓鍏充簬链鐭ユ暟x镄勪簩娆″氶”寮忥纴绛夊纺鍙宠竟鏄闆讹纴鍏朵腑鍙锅氢簩娆¢”锛宎鍙锅氢簩娆¢”绯绘暟;bx鍙锅氢竴娆¢”锛宐鍙锅氢竴娆¢”绯绘暟;c鍙锅氩父鏁伴”銆

銆銆浜屻佷竴鍏冧簩娆℃柟绋嬬殑瑙f硶

銆銆1銆佺洿鎺ュ紑骞虫柟娉

銆銆2銆侀厤鏂规硶

銆銆閰嶆柟娉曟槸涓绉嶉吨瑕佺殑鏁板︽柟娉曪纴瀹冧笉浠呭湪瑙d竴鍏冧簩娆℃柟绋嬩笂链夋墍搴旂敤锛岃屼笖鍦ㄦ暟瀛︾殑鍏

銆銆3銆佸叕寮忔硶

銆銆4銆佸洜寮忓垎瑙f硶

銆銆锲犲纺鍒呜В娉曞氨鏄鍒╃敤锲犲纺鍒呜В镄勬坠娈碉纴姹傚嚭鏂圭▼镄勮В镄勬柟娉曪纴杩欑嶆柟娉旷亩鍗曟槗琛岋纴鏄瑙d竴鍏冧簩娆℃柟绋嬫渶甯哥敤镄勬柟娉曘

銆銆涓夈佷竴鍏冧簩娆℃柟绋嬫牴镄勫垽鍒寮

銆銆镙圭殑鍒ゅ埆寮

銆銆锲涖佷竴鍏冧簩娆℃柟绋嬫牴涓庣郴鏁扮殑鍏崇郴

銆銆镞嬭浆

銆銆涓銆佹棆杞

銆銆1銆佸畾涔

銆銆鎶娄竴涓锲惧舰缁曟煇涓镣筄杞锷ㄤ竴涓瑙掑害镄勫浘褰㈠彉鎹㈠彨锅氭棆杞锛屽叾涓璒鍙锅氭棆杞涓蹇冿纴杞锷ㄧ殑瑙掑彨锅氭棆杞瑙掋

銆銆2銆佹ц川

銆銆(1)瀵瑰簲镣瑰埌镞嬭浆涓蹇幂殑璺濈荤浉绛夈

銆銆(2)瀵瑰簲镣逛笌镞嬭浆涓蹇冩墍杩炵嚎娈电殑澶硅掔瓑浜庢棆杞瑙掋

銆銆浜屻佷腑蹇冨圭О

銆銆1銆佸畾涔

銆銆鎶娄竴涓锲惧舰缁旷潃镆愪竴涓镣规棆杞180掳锛屽傛灉镞嬭浆钖庣殑锲惧舰鑳藉熷拰铡熸潵镄勫浘褰浜掔浉閲嶅悎锛岄偅涔堣繖涓锲惧舰鍙锅氢腑蹇冨圭О锲惧舰锛岃繖涓镣瑰氨鏄瀹幂殑瀵圭О涓蹇冦

銆銆2銆佹ц川

銆銆(1)鍏充簬涓蹇冨圭О镄勪袱涓锲惧舰鏄鍏ㄧ瓑褰銆

銆銆(2)鍏充簬涓蹇冨圭О镄勪袱涓锲惧舰锛屽圭О镣硅繛绾块兘缁忚繃瀵圭О涓蹇冿纴骞朵笖琚瀵圭О涓蹇冨钩鍒嗐

銆銆(3)鍏充簬涓蹇冨圭О镄勪袱涓锲惧舰锛屽瑰簲绾挎靛钩琛(鎴栧湪钖屼竴鐩寸嚎涓)涓旂浉绛夈

銆銆3銆佸垽瀹

銆銆濡傛灉涓や釜锲惧舰镄勫瑰簲镣硅繛绾块兘缁忚繃镆愪竴镣癸纴骞朵笖琚杩欎竴镣瑰钩鍒嗭纴闾d箞杩欎袱涓锲惧舰鍏充簬杩欎竴镣瑰圭О銆

銆銆4銆佷腑蹇冨圭О锲惧舰

銆銆鎶娄竴涓锲惧舰缁曟煇涓涓镣规棆杞180掳锛屽傛灉镞嬭浆钖庣殑锲惧舰鑳藉熷拰铡熸潵镄勫浘褰浜掔浉閲嶅悎锛岄偅涔堣繖涓锲惧舰鍙锅氢腑蹇冨圭О锲惧舰锛岃繖涓搴楀氨鏄瀹幂殑瀵圭О涓蹇冦

銆銆鍧愭爣绯讳腑瀵圭О镣圭殑鐗瑰緛锛

銆銆1銆佸叧浜庡师镣瑰圭О镄勭偣镄勭壒寰

銆銆涓や釜镣瑰叧浜庡师镣瑰圭О镞讹纴瀹冧滑镄勫潗镙囩殑绗﹀彿鐩稿弽锛屽嵆镣笔(x锛寉)鍏充簬铡熺偣镄勫圭О镣逛负P钬(-x锛-y)銆

銆銆2銆佸叧浜巟杞村圭О镄勭偣镄勭壒寰

銆銆涓や釜镣瑰叧浜巟杞村圭О镞讹纴瀹冧滑镄勫潗镙囦腑锛寈鐩哥瓑锛寉镄勭﹀彿鐩稿弽锛屽嵆镣笔(x锛寉)鍏充簬x杞寸殑瀵圭О镣逛负P钬(x锛-y)銆

銆銆3銆佸叧浜巠杞村圭О镄勭偣镄勭壒寰

銆銆涓や釜镣瑰叧浜巠杞村圭О镞讹纴瀹冧滑镄勫潗镙囦腑锛寉鐩哥瓑锛寈镄勭﹀彿鐩稿弽锛屽嵆镣笔(x锛寉)鍏充簬y杞寸殑瀵圭О镣逛负P钬(-x锛寉)銆

銆銆𨰾揿𪾢阒呰伙细鍒濅笁鏁板︽庝箞蹇阃熸彁楂

銆銆镞堕棿鍒嗛厤绮剧粏鍖

銆銆鏁板︿腑钥冨崭範搴旀棭浣沧墦绠楀拰瀹夋帓锛屾巿璇炬暀甯埚簲阍埚瑰︽牎鏁椤﹀疄闄呭拰瀛︾敓鐗圭偣锛屽埗璁㈣﹀疄鍒囧疄鍙琛岀殑璁″垝銆备竴鑸鍦3链埚簳瀹屾垚鏂版巿璇句换锷★纴4链堜笂镞钖锷ㄤ腑钥冨崭範銆4链埚簳瀹屾垚绗涓杞钬滃く瀹炲熀纭钬濆崭範锛屽叏闱㈢郴缁熷崭範锛屼互璇炬湰涓烘湰锛屽垎鍗曞厓銆佺珷鑺傦纴渚濇嵁璇剧▼镙囧嗳銆佷腑钥冭存槑瑕佹眰澶崭範锛屽己鍖栫煡璇嗙偣銆佸崟鍏幂珷鑺伞佽幂偣杩囧叧璁缁冿纴澶瀹炲熀纭锛屽煿鍏诲熀链鎶鑳;5链埚簳瀹屾垚绗浜岃疆钬滀笓棰樿缁冣濆崭範锛屽珐锲哄熀纭锛屾瀯寤虹煡璇嗙绣缁滐纴浣夸箣𨱒$悊鍖栥佺郴缁熷寲锛屽己鍖栧垎鍧楃患钖埚拰涓挞”鐭ヨ瘑璁缁冿纴绐佺牬閲岖偣銆侀毦镣癸纴绐佸嚭璁缁幂伒娲昏繍鐢ㄧ煡璇嗭纴锘瑰吇瑙e喅瀹为檯闂棰樼殑鑳藉姏锛屽悓镞讹纴镆ヨˉ鐭ヨ瘑鐩茬偣锛屽姞寮鸿缁;6链堜笂镞镊充腑钥冨墠瀹屾垚绗涓夎疆钬灭患钖堟娴嬧濆崭範锛屽洖镓e弻锘猴纴鎺掓煡钥幂偣锛屾煡婕忚ˉ缂猴纴娉ㄩ吨缁煎悎妯℃嫙,锷犲己瀛︾敓搴旇瘯鎶宸у拰瑙i樻柟娉曟寚瀵硷纴鍑忓皯闱炴櫤锷涘洜绱犲け鍒嗐

銆銆涓钥冭存槑鐗㈣板寲

銆銆浣滀负钥佸笀瑕佹繁鍏ョ爷绌朵腑钥冭存槑锛屾帉鎻$煡璇嗙偣鍜岃幂翰涓镄勯毦鏄揿害銆傚湪澶崭範镞惰佸笀瑕佷互銆婅冭瘯璇存槑銆嬩腑镄勮佹眰涓哄熀纭锛岄吨瑙嗗熀纭鐭ヨ瘑镄勫崭範锛屽苟涓崭竴锻冲己璋冮毦棰樻垨锅忛樼殑璁缁冿纴钥岃佹牴鎹锻介橀毦鏄撶▼搴︾瓑鐗圭偣锛屾湁阍埚规х殑杩涜屽崭範銆

銆銆澶崭範璧勬枡绮鹃夊寲

銆銆鍦ㄥ崭範镞剁簿阃夎祫鏂欍佺敤濂借祫鏂欍傚湪澶崭範涔嫔埯钥佸笀灏辫佷负瀛︾敓绮惧绩鎸戦変简鍑犱唤璧勬枡锛岃繘琛屾瘆杈冨悗纭瀹氢竴鍒颁袱浠界煡璇嗙偣鍏锛岄毦搴﹂备腑镄勮祫鏂欎綔涓鸿惧唴澶崭範鐢ㄤ功銆傚︾敓镓嫔ご澶崭範璧勬枡涓嶅疁杩囧氾纴澶氢简鍙嶈屼贡锛屽规槗浜х敓杩欐牱娌″畬鎴愶纴闾f牱镓嶅仛涓镣圭偣镄勬劅瑙夛纴杩欐牱瀹规槗阃犳垚鐭ヨ瘑镣圭殑阆楁纺锛屽悓镞朵篃浼氢娇瀛︾敓浜х敓鐑︾嚗镄勫绩鐞嗐傛墍浠ワ纴鏁椤笀瑕佹浛瀛︾敓缁嗗绩鎸戦夊崭範璧勬枡锛屽苟璁╁︾敓鏄庣槠鏁板﹀崭範璧勬枡搴旂簿钥屼笉搴斿氱殑阆撶悊銆

銆銆锘烘湰姒傚康涔犻桦寲

銆銆鏁板︽傚康镄勫崭範涓嶆槸绠鍗旷殑閲嶅嶏纴钥屾槸瑕佸缓绔嬫傚康涔嬮棿镄勬湁链鸿仈绯伙纴涓嶈兘姝昏扮‖鑳岋纴瑕佷细瑙e喅瀹为檯闂棰樸备緥濡傦纴鍒濅腑鏁板︿腑娑夊强鍒版湁鍏斥滃纺钬濈殑姒傚康姣旇缉澶氾纴链夆滀唬鏁板纺钬濄佲沧暣寮忊濄佲滃崟椤瑰纺钬濄佲滃氶”寮忊濄佲滃悓绫婚”钬濄佲滃垎寮忊濄佲沧湁鐞嗗纺钬濄佲沧渶绠鍒嗗纺钬濄佲滀簩娆℃牴寮忊濄佲沧渶绠浜屾℃牴寮忊濄佲滃悓绫讳簩娆℃牴寮忊濈瓑姒傚康锛屾暀甯堣侀拡瀵硅繖浜涙傚康缂栦竴鍒颁袱涓涔犻桦紩瀵煎︾敓寮勬竻杩欎簺姒傚康涔嬮棿镄勮仈绯讳笌鍖哄埆銆备絾链変竴镣瑰煎缑镶瀹氱殑鏄锛岃佹兂鐢ㄨ繖浜涙傚康铡昏В棰桡纴棣栧厛蹇呴’灏嗗畠浠镡熻颁簬蹇冦