当前位置:首页 » 基础知识 » 高考数学各种图形的判断知识点
扩展阅读
如何看血脂报告单动漫 2025-01-25 12:01:02
怎么拍动漫个人头像 2025-01-25 11:54:28

高考数学各种图形的判断知识点

发布时间: 2025-01-25 04:57:23

⑴ 高中数学必修二知识点总结2022

相信很多的同学同学都是非常的关心高考数学有哪些必考的知识点的,下面我给大家分享一些高中数学必修二知识点 总结 ,希望对大家有所帮助。

高中数学必修二知识点1

1、柱、锥、台、球的结构特征

(1)棱柱:

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.

(2)棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底 面相 似,其相似比等于顶点到截面距离与高的比的平方.

(3)棱台:

几何特征:上下底面是相似的平行多边形侧面是梯形侧棱交于原棱锥的顶点

(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成

几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面展开图是一个矩形.

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成

几何特征:底面是一个圆;母线交于圆锥的顶点;侧面展开图是一个扇形.

(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成

几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面展开图是一个弓形.

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:球的截面是圆;球面上任意一点到球心的距离等于半径.

2、空间几何体的三视图

定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、

俯视图(从上向下)

注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度.

3、空间几何体的直观图——斜二测画法

斜二测画法特点:原来与x轴平行的线段仍然与x平行且长度不变;

原来与y轴平行的线段仍然与y平行,长度为原来的一半.

4、柱体、锥体、台体的表面积与体积

(1)几何体的表面积为几何体各个面的面积的和.

(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)

(3)柱体、锥体、台体的体积公式

高中数学必修二知识点2

直线与方程

(1)直线的倾斜角

定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°

(2)直线的斜率

定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.

当时,;当时,;当时,不存在.

过两点的直线的斜率公式:

注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.

(3)直线方程

点斜式:直线斜率k,且过点

注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.

斜截式:,直线斜率为k,直线在y轴上的截距为b

两点式:()直线两点,

截矩式:

其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.

一般式:(A,B不全为0)

注意:各式的适用范围特殊的方程如:

(4)平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);

(5)直线系方程:即具有某一共同性质的直线

(一)平行直线系

平行于已知直线(是不全为0的常数)的直线系:(C为常数)

(二)垂直直线系

垂直于已知直线(是不全为0的常数)的直线系:(C为常数)

(三)过定点的直线系

()斜率为k的直线系:,直线过定点;

()过两条直线,的交点的直线系方程为

(为参数),其中直线不在直线系中.

(6)两直线平行与垂直

注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.

(7)两条直线的交点

相交

交点坐标即方程组的一组解.

方程组无解;方程组有无数解与重合

(8)两点间距离公式:设是平面直角坐标系中的两个点

(9)点到直线距离公式:一点到直线的距离

(10)两平行直线距离公式

在任一直线上任取一点,再转化为点到直线的距离进行求解.

高中数学必修二知识点3

圆的方程

1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.

2、圆的方程

(1)标准方程,圆心,半径为r;

(2)一般方程

当时,方程表示圆,此时圆心为,半径为

当时,表示一个点;当时,方程不表示任何图形.

(3)求圆方程的 方法 :

一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.

3、高中数学必修二知识点总结:直线与圆的位置关系:

直线与圆的位置关系有相离,相切,相交三种情况:

(1)设直线,圆,圆心到l的距离为,则有;;

(2)过圆外一点的切线:k不存在,验证是否成立k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】

(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2

4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.

设圆,

两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.

当时两圆外离,此时有公切线四条;

当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

当时两圆相交,连心线垂直平分公共弦,有两条外公切线;

当时,两圆内切,连心线经过切点,只有一条公切线;

当时,两圆内含;当时,为同心圆.

注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线

5、空间点、直线、平面的位置关系

公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.

应用:判断直线是否在平面内

用符号语言表示公理1:

公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

符号:平面α和β相交,交线是a,记作α∩β=a.

符号语言:

公理2的作用:

它是判定两个平面相交的方法.

它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点.

它可以判断点在直线上,即证若干个点共线的重要依据.

公理3:经过不在同一条直线上的三点,有且只有一个平面.

推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面.

公理3及其推论作用:它是空间内确定平面的依据它是证明平面重合的依据

公理4:平行于同一条直线的两条直线互相平行

高中数学必修二知识点4

空间直线与直线之间的位置关系

异面直线定义:不同在任何一个平面内的两条直线

异面直线性质:既不平行,又不相交.

异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线

异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角.两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.

求异面直线所成角步骤:

A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.B、证明作出的角即为所求角C、利用三角形来求角

(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补.

(8)空间直线与平面之间的位置关系

直线在平面内——有无数个公共点.

三种位置关系的符号表示:aαa∩α=Aaα

(9)平面与平面之间的位置关系:平行——没有公共点;αβ

相交——有一条公共直线.α∩β=b

2、空间中的平行问题

(1)直线与平面平行的判定及其性质

线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.

线线平行线面平行

线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,

那么这条直线和交线平行.线面平行线线平行

(2)平面与平面平行的判定及其性质

两个平面平行的判定定理

(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行

(线面平行→面面平行),

(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.

(线线平行→面面平行),

(3)垂直于同一条直线的两个平面平行,

两个平面平行的性质定理

(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行→线面平行)

(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行)

3、空间中的垂直问题

(1)线线、面面、线面垂直的定义

两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.

线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直.

平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直.

(2)垂直关系的判定和性质定理

线面垂直判定定理和性质定理

判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.

性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.

面面垂直的判定定理和性质定理

判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.

性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.

4、空间角问题

(1)直线与直线所成的角

两平行直线所成的角:规定为.

两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角.

两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角.

(2)直线和平面所成的角

平面的平行线与平面所成的角:规定为.平面的垂线与平面所成的角:规定为.

平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.

求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”.

在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,

在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线.

(3)二面角和二面角的平面角

二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.

二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.

直二面角:平面角是直角的二面角叫直二面角.

两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角

求二面角的方法

定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角

垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角

高中数学必修二知识点5

解三角形

(1)正弦定理和余弦定理

掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.

(2)应用

能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.

高中数学必修二知识点6

数列

(1)数列的概念和简单表示法

了解数列的概念和几种简单的表示方法(列表、图象、通项公式).

了解数列是自变量为正整数的一类函数.

(2)等差数列、等比数列

理解等差数列、等比数列的概念.

掌握等差数列、等比数列的通项公式与前项和公式.

能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.

了解等差数列与一次函数、等比数列与指数函数的关系.



高中数学必修二知识点总结2022相关 文章 :

★ 高二数学会考知识点大全

★ 高中数学必背知识点

★ 高三数学重点知识点

★ 高中数学函数周期知识点总结最新

★ 2022高二数学知识点人教版

★ 高三数学复习计划范文2022十篇

★ 2022年高二数学教师工作总结

★ 2022高中数学教师工作总结范文10篇

★ 2022新学期高中数学教学计划5篇

★ 高二数学知识点笔记

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

⑵ 高中数学几何知识点总结

几何是高中的一个重要学习知识点。知识点你都掌握了吗?接下来我为你整理了高中数学几何知识点总结,一起来看看吧。

高中数学几何知识点总结:平面

1. 经过不在同一条直线上的三点确定一个面.

注:两两相交且不过同一点的四条直线必在同一平面内.

2. 两个平面可将平面分成3或4部分.(①两个平面平行,②两个平面相交)

3. 过三条互相平行的直线可以确定1或3个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行)

[注]:三条直线可以确定三个平面,三条直线的公共点有0或1个.

4. 三个平面最多可把空间分成 8 部分.(X、Y、Z三个方向)

高中数学几何知识点总结:空间的直线与平面

⒈平面的基本性质 ⑴三个公理及公理三的三个推论和它们的用途.⑵斜二测画法.

⒉空间两条直线的位置关系:相交直线、平行直线、异面直线.

⑴公理四(平行线的传递性).等角定理.

⑵异面直线的判定:判定定理、反证法.

⑶异面直线所成的角:定义(求法)、范围.

⒊直线和平面平行 直线和平面的位置关系、直线和平面平行的判定与性质.

⒋直线和平面垂直

⑴直线和平面垂直:定义、判定定理.

⑵三垂线定理及逆定理.

5.平面和平面平行

两个平面的位置关系、两个平面平行的判定与性质.

6.平面和平面垂直

互相垂直的平面及其判定定理、性质定理.

(二)直线与平面的平行和垂直的证明思路(见附图)

(三)夹角与距离

7.直线和平面所成的角与二面角

⑴平面的斜线和平面所成的角:三面角余弦公式、最小角定理、斜线和平

面所成的角、直线和平面所成的角.

⑵二面角:①定义、范围、二面角的平面角、直二面角.

②互相垂直的平面及其判定定理、性质定理.

8.距离

⑴点到平面的距离.

⑵直线到与它平行平面的距离.

⑶两个平行平面的距离:两个平行平面的公垂线、公垂线段.

⑷异面直线的距离:异面直线的公垂线及其性质、公垂线段.

(四)简单多面体与球

9.棱柱与棱锥

⑴多面体.

⑵棱柱与它的性质:棱柱、直棱柱、正棱柱、棱柱的性质.

⑶平行六面体与长方体:平行六面体、直平行六面体、长方体、正四棱柱、

正方体;平行六面体的性质、长方体的性质.

⑷棱锥与它的性质:棱锥、正棱锥、棱锥的性质、正棱锥的性质.

⑸直棱柱和正棱锥的直观图的画法.

10.多面体欧拉定理的发现

⑴简单多面体的欧拉公式.

⑵正多面体.

11.球

⑴球和它的性质:球体、球面、球的大圆、小圆、球面距离.

⑵球的体积公式和表面积公式.

高中数学几何知识点总结:常用结论、方法和公式

1.异面直线所成角的求法:

(1)平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;

(2)补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系;

2.直线与平面所成的角

斜线和平面所成的是一个直角三角形的锐角,它的三条边分别是平面的垂线段、斜线段及斜线段在平面上的射影。通常通过斜线上某个特殊点作出平面的垂线段,垂足和斜足的连线,是产生线面角的关键;

3.二面角的求法

(1)定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;

(2)三垂线法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;

(3)垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直;

(4)射影法:利用面积射影公式S射=S原cos,其中为平面角的大小,此法不必在图形中画出平面角;

特别:对于一类没有给出棱的二面角,应先延伸两个半平面,使之相交出现棱,然后再选用上述方法(尤其要考虑射影法)。

4.空间距离的求法

(1)两异面直线间的距离,高考要求是给出公垂线,所以一般先利用垂直作出公垂线,然后再进行计算;

(2)求点到直线的距离,一般用三垂线定理作出垂线再求解;

⑶ 高中数学立体几何知识点

立体几何这类题需要比较强的空间思维 想象力 ,所以对部分同学来说也是挺头疼的类型题。那么下面我给大家分享一些高中数学立体几何知识点,希望能够帮助大家!

高中数学立体几何知识1

柱、锥、台、球的结构特征

(1)棱柱:

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底 面相 似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如五棱台

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

(4)圆柱:

定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:

定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:

定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:

定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

2、空间几何体的三视图

定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

3、空间几何体的直观图——斜二测画法

斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;

②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

高中数学立体几何知识2

空间几何体结构

1.空间结合体:如果我们只考虑物体占用空间部分的形状和大小,而不考虑 其它 因素,那么由这些物体抽象出来的空间图形,就叫做空间几何体。

2.棱柱的结构特征:有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边互相平行,由这些面围成的图形叫做棱柱。

底面:棱柱中,两个相互平行的面,叫做棱柱的底面,简称底。底面是几边形就叫做几棱柱。

侧面:棱柱中除底面的各个面。

侧棱:相邻侧面的公共边叫做棱柱的侧棱。

顶点:侧面与底面的公共顶点叫做棱柱的顶点。

棱柱的表示:用表示底面的各顶点的字母表示。 如:六棱柱表示为ABCDEF-A’B’C’D’E’F’

3.棱锥的结构特征:有一个面是多边形,其余各面都是三角形,并且这些三角形有一个公共定点,由这些面所围成的多面体叫做棱锥.

4.圆柱的结构特征:以矩形的一边所在直线为旋转轴,其余边旋转形成的面所围成的旋转体叫做圆柱。

圆柱的轴:旋转轴叫做圆柱的轴。

圆柱的底面:垂直于轴的边旋转而成的圆面叫做圆柱的底面。

圆柱的侧面:平行于轴的边旋转而成的曲面叫做圆柱的侧面。

圆柱侧面的母线:无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。

圆柱用表示它的轴的字母表示.如:圆柱O’O

注:棱柱与圆柱统称为柱体

5.圆锥的结构特征:以直角三角形的一条直角边所在直线为旋转轴, 两余边旋转形成的面所围成的旋转体叫做圆锥。

轴:作为旋转轴的直角边叫做圆锥的轴。

底面:另外一条直角边旋转形成的圆面叫做圆锥的底面。

侧面:直角三角形斜边旋转形成的曲面叫做圆锥的侧面。

顶点:作为旋转轴的直角边与斜边的交点

母线:无论旋转到什么位置,直角三角形的斜边叫做圆锥的母线。

圆锥可以用它的轴来表示。如:圆锥SO

注:棱锥与圆锥统称为锥体

6.棱台和圆台的结构特征

(1)棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台.

下底面和上底面:原棱锥的底面和截面 分别叫做棱台的下底面和上底面。

侧面:原棱锥的侧面也叫做棱台的侧面(截后剩余部分)。

侧棱:原棱锥的侧棱也叫棱台的侧棱(截后剩余部分)。

顶点:上底面和侧面,下底面和侧面的公共点叫做棱台的顶点。

棱台的表示:用表示底面的各顶点的字母表示。 如:棱台ABCD-A’B’C’D’

底面是三角形,四边形,五边形----的棱台分别叫三棱台,四棱台,五棱台---

(2)圆台的结构特征:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分是圆台.

圆台的轴,底面,侧面,母线与圆锥相似

注:棱台与圆台统称为台体。

7.球的结构特征:以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫做球体。

球心:半圆的圆心叫做球的球心。

半径:半圆的半径叫做球的半径。

直径:半圆的直径叫做球的直径。

球的表示:用球心字母表示。如:球O

注意:1.多面体: 若干个平面多边形围成的几何体

2.旋转体: 由一个平面绕它所在平面内的一条定直线旋转所形成的封闭几何体

高中数学立体几何知识3

几何体的三视图和直观图

1.空间几何体的三视图:

定义:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右);俯视图(从上向下)。

注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽带;侧视图反映了物体的高度和宽带。

球的三视图都是圆;长方体的三视图都是矩形。

2.空间几何体的直观图——斜二测画法

(1)在已知图形中取互相垂直的x轴和y轴,两轴相较于点O。画直观图时,把它们画成对应的x’轴和y’轴,两轴交于点O’,且使<x’o’y’=45度(或135度),它们确定的平面表示水平面。< p="">

(2)已知图形中平行于x轴或y轴的线段,在直观图中分别画呈平行于x’轴或y’轴的线段。

(3)已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度为原来的一半。

(4)z轴方向的长度不变

高中数学立体几何知识4

1、柱、锥、台、球的结构特征

(1)棱柱:

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到

截面距离与高的比的平方。

(3)棱台:

几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点

(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图

是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

数学知识点2、空间几何体的三视图

定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、 俯视图(从上向下)

注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。

数学知识点3、空间几何体的直观图——斜二测画法

斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;

②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

平面

通常用一个平行四边形来表示.

平面常用希腊字母α、β、γ…或拉丁字母M、N、P来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面AC.

在立体几何中,大写字母A,B,C,…表示点,小写字母,a,b,c,…l,m,n,…表示直线,且把直线和平面看成点的集合,因而能借用集合论中的符号表示它们之间的关系,例如:

a) A∈l—点A在直线l上;Aα—点A不在平面α内;

b) lα—直线l在平面α内;

c) aα—直线a不在平面α内;

d) l∩m=A—直线l与直线m相交于A点;

e) α∩l=A—平面α与直线l交于A点;

f) α∩β=l—平面α与平面β相交于直线l.

平面的基本性质

公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.

公理2如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.

公理3经过不在同一直线上的三个点,有且只有一个平面.

根据上面的公理,可得以下推论.

推论1经过一条直线和这条直线外一点,有且只有一个平面.

推论2经过两条相交直线,有且只有一个平面.

推论3经过两条平行直线,有且只有一个平面.

公理4平行于同一条直线的两条直线互相平行

高中数学立体几何知识点相关 文章 :

★ 高三年级数学立体几何知识点

★ 高二数学立体几何考点解析

★ 高考文科数学立体几何解题技巧

★ 高中数学必修2空间几何体知识点归纳总结

★ 高二数学立体几何知识与学习方法

★ 高一数学知识点总结

★ 高中数学立体几何解题方法

★ 值得借鉴的高三数学复习方法

★ 理高二数学学哪些几何?复习建议

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();