1. 文科数学高考必考的知识点有哪些
选择:集合、面积体积、三角系列、概率、函数、向量、不等式、圆锥曲线、复数
大题:概率、三角函数、数列、几何、圆锥曲线、极限、导数、直线与圆、不等式。
范围都在必修12345和选修1-1、1-2、4-4.内
考点也就那几个
集合、
复数、
概率、
椭圆、
双曲线、
抛物线、
命题、
等差、
等比、
框图、
三角函数、
解三角、
三视图、
求体积、求面积、
解不等式、
向量、
线性、
树状图、
方差、
解析几何、
求导、
坐标系、
对数、指数、
圆。
2. 高考文科数学知识点总结归纳
对于文科生来说,数学是一门比较特别的学科,高考要想数学分数高,必须掌握必考知识点。下面是我为大家整理的高考文科数学知识点,希望对大家有所帮助。
高考文科数学知识点
第一,函数与导数
主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用
这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用
这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式
主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。
第五,概率和统计
这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析
主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。
第七,解析几何
高考的难点,运算量大,一般含参数。
文科数学高频必考考点
第一部分:选择与填空
1.集合的基本运算(含新定集合中的运算,强调集合中元素的互异性);
2.常用逻辑用语(充要条件,全称量词与存在量词的判定);
3.函数的概念与性质(奇偶性、对称性、单调性、周期性、值域最大值最小值);
4.幂、指、对函数式运算及图像和性质
5.函数的零点、函数与方程的迁移变化(通常用反客为主法及数形结合思想);
6.空间体的三视图及其还原图的表面积和体积;
7.空间中点、线、面之间的位置关系、空间角的计算、球与多面体外接或内切相关问题;
8.直线的斜率、倾斜角的确定;直线与圆的位置关系,点线距离公式的应用;
9.算法初步(认知框图及其功能,根据所给信息,几何数列相关知识处理问题);
10.古典概型,几何概型理科:排列与组合、二项式定理、正态分布、统计案例、回归直线方程、独立性检验;文科:总体估计、茎叶图、频率分布直方图;
11.三角恒等变形(切化弦、升降幂、辅助角公式);三角求值、三角函数图像与性质;
12.向量数量积、坐标运算、向量的几何意义的应用;
13.正余弦定理应用及解三角形;
14.等差、等比数列的性质应用、能应用简单的地推公式求其通项、求项数、求和;
15.线性规划的应用;会求目标函数;
16.圆锥曲线的性质应用(特别是会求离心率);
17.导数的几何意义及运算、定积分简单求法
18.复数的概念、四则运算及几何意义;
19.抽象函数的识别与应用;
第二部分:解答题
第17题:向量与三角交汇问题,解三角形,正余弦定理的实际应用;
第18题:(文)概率与统计(概率与统计相结合型)
(理)离散型随机变量的概率分布列及其数字特征;
第19题:立体几何
①证线面平行垂直;面与面平行垂直
②求空间中角(理科特别是二面角的求法)
③求距离(理科:动态性)空间体体积;
第20题:解析几何(注重思维能力与技巧,减少计算量)
①求曲线轨迹方程(用定义或待定系数法)
②直线与圆锥曲线的关系(灵活运用点差法和弦长公式)
③求定点、定值、最值,求参数取值的问题;
第21题:函数与导数的综合应用
这是一道典型应用知识网络的交汇点设计的试题,是考查考生解题能力和文科数学素质为目标的压轴题。
主要考查:分类讨论思想;化归、转化、迁移思想;整体代换、分与合思想
一般设计三问:
①求待定系数,利用求导讨论确定函数的单调性;
②求参变数取值或函数的最值;
③探究性问题或证不等式恒成立问题。
第22题:三选一:
(1)几何证明主要考查三角形相似,圆的切割线定理,证明成比例,求角度,求长度;利用射影定理解决圆中计算和证明问题是历年高考题的 热点 ;
(2)坐标系与参数方程,主要抓两点:参数方程、极坐标方程互化为普通方程;有参数、极坐标方程求解曲线的基本量。这类题,思路清晰,难度不大,抓基础,不做难题。
(3)不等式选讲:绝对值不等式与函数结合型。设计上为:①解含有参变数关于x的不等式;②求解不等式恒成立时参变数的取值;③证明不等式(利用均值定理、放缩法等)。
2018高考文科数学知识点:高中数学知识点 总结
必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)
必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分
2、直线方程:高考时不单独命题,易和圆锥曲线结合命题
3、圆方程:
必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分
必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分
必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
高考文科数学知识点总结
乘法与因式分解
a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b)(a2+ab+b2)
三角不等式
|a+b|≤|a|+|b|
|a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解
-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a
根与系数的关系
X1+X2=-b/aX1__X2=c/a注:韦达定理
判别式
b2-4a=0注:方程有相等的两实根
b2-4ac>0注:方程有一个实根
b2-4ac<0注:方程有共轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A)
ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2)
sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)
cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))
ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积公式
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB
-ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和公式
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4
1__2+2__3+3__4+4__5+5__6+6__7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理:a/sinA=b/sinB=c/sinC=2R
注:其中R表示三角形的外接圆半径
余弦定理:b2=a2+c2-2accosB
注:角B是边a和边c的夹角
高考文科数学知识点总结相关 文章 :
★ 2022北京卷高考文科数学试题及答案解析
★ 2022全国新高考Ⅰ卷文科数学试题及答案解析
★ 2022年全国新高考1卷数学试题及答案解析
★ 2022全国新高考Ⅱ卷文科数学试题及答案解析
★ 高中导数知识点总结大全
★ 山东2022高考文科数学试题及答案解析
★ 湖北2022高考文科数学试题及答案解析
★ 2022河北高考文科数学试题及答案解析
★ 高中文科数学复习指导与注意事项
★ 2017高考数学三角函数知识点总结
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();3. 天津高考文科数学都考哪些知识点阿
第一章 平面向量中,学生需要掌握向量的加法与减法,平面向量的表示方法,以及平面向量的坐标运算。同时,理解实数与向量的积,平面向量的数量积等概念,这些都是高考的重点。
第二章 集合与简易逻辑部分,集合的子集和真子集,补集,交集,以及并集等概念都是基础。此外,韦恩图和摩根律的应用也十分重要。
第三章 函数的学习需要掌握映射和一一映射,函数的单调性和奇偶性,以及函数的对称性。通过函数的定义域与值域,可以了解函数的基本性质。
第四章 不等式部分,学生需要熟悉不等式的证明,重要公式以及解法。含绝对值的不等式和二元一次不等式也是考试的重点。
第五章 三角函数的基础包括角的度数和弧度制,三角形的正弦定理和余弦定理,以及两角和与差的正弦、余弦、正切等。掌握这些知识有助于解决三角函数的综合问题。
第六章 数列的学习包括等差数列和等比数列的基本性质,以及倒数数列的求解。通过数列与方程的结合,可以更好地理解数列的性质。
第七章 直线和圆的方程部分,学生需要掌握直线与曲线的关系,以及点与面的关系。同时,简单的线性规划问题也是考试的重点。
第八章 圆锥曲线方程的学习需要掌握椭圆、双曲线和抛物线的标准方程及其性质。这些知识在解决圆锥曲线的综合问题时十分有用。
第九章 直线与平面的知识包括平面的基本性质,平行直线,异面直线等。掌握这些知识有助于解决空间向量的问题。
第十章 简单几何体的学习需要掌握多面体、凸多面体和正多面体的性质,以及棱柱、棱锥和球体的基本性质。
第十一章 排列、组合、二项式定理部分,学生需要熟悉排列与组合数公式,以及二项式定理的应用。
第十二章 概率与统计部分,学生需要掌握随机事件与概率,独立事件与互斥事件等概念。
第十三章 导数的学习需要掌握导数的概念,两个函数的和、差、积、商和导数的基本公式。
第十四章 复数的学习需要理解复数的概念,以及复数的加法、减法、乘法和除法。
第十五章 高考中的智力趣味问题部分,通过比较题,进制分析等方法,可以提高解题技巧。
4. 文科生学数学应该重点掌握什么
文科数学理应注重函数,函数思想贯穿高中,很多题考多个知识点的都会牵扯到函数,其次要注重培养空间思维能力,不知道你哪个省的,反正湖北新课改之后的孩子们空间思维能力远不如以前,如果你的立体几何掌握得不错可以完全不用管。再次三角函数的公式一定要记清楚用会,刚开始是觉得痛苦,但是硬着头皮多做做三角函数的题用熟了就完全不是问题了,到那时你会很喜欢三角函数和数学的。统计和概率一章课改后的大多简单,穷举列举就可以搞定。至于程序框图,也是,搞清楚概念,多做做。数学说白了就是要多做题,咬着牙做题,做着做着你就会在不断的练习中克服对数学的恐惧。
对于文科生而言,普遍地害怕数学的心理很要不得,要知道除开文综,数学超拉分的噢,要相信自己,不是因为害怕数学逃避数学才读文科,为了理想,好好地先把心理关给过了吧!
加油噢!
5. 文科数学学什么内容 文科怎么学数学
对于文科来说,数学就是拦路虎,绝大多数的文科生对于数学都有不同程度的恐惧,但数学又是决定高考成败的关键。我整理了《文科数学学什么内容 文科怎么学数学》,供大家参考!
文科数学学什么内容
文科数学一共会学7本书,分别是:必修1、必修2、必修3、必修4、必修5、选修2-1、选修2-2。
文科数学主要学习的内容有:集合;函数;空间几何体;点、直线、平面之间的位置关系;直线和方程;圆和方程;算法初步;概率;统计;三角函数;平面向量;数列;不等式;常用逻辑用语与推理、证明;圆锥曲线与方程;导数及其应用;复数。
文科怎么学数学
文科数学相对理科数学来说,难度较低。因此我们要在两个地方多下功夫:做题的正确率和做题的速度。所以不难看出文科学数学的思路就是题海战术。很多都知道题海战术,也都是这么做的,所以效果自然不需要多说。
高中的数学是非常有规律、有体系的,学数学最忌基础没有打好,老师讲的内容没有把握好重点。基础没有打好,无论做多少题都白做,因为不知道为什么而做,更不知道做完一道题该掌握什么,做题的目的就是为了掌握书上的知识点;还有就是自己买的习题书太多了,做不完,而且还做乱了,有一本习题书就够了,最多不要超过两本。记住,做数学千万不能怕动手动脑子,只要你一咬牙投入进去,你做数学真的会上瘾的。
建议你提前两天预习,第一天学课本上的基础知识,第二天把习题做了,老师上课,你听的轻松,一天课完了,复习一下老师讲的重点,着重想想思路,一个定理怎么来的,一道题目怎么解的,都用了哪些定理。一定要理解,学习如果死记硬背那就完了。做完题了,要总结,不要怕麻烦,越怕麻烦越学不好。
高三总复习的时候好好听老师讲,把你高一时的那些习题集再拿出来做一遍,到后期你们练习卷子的时候更要注意总结,你会发现高考考的不外乎就是那几个题型。