当前位置:首页 » 基础知识 » 数学知识方程概念
扩展阅读
数学修炼手册知识点 2025-01-23 07:59:14
行动教育多少员工 2025-01-23 07:57:47

数学知识方程概念

发布时间: 2025-01-23 04:56:30

❶ 小学数学简易方程知识点

一、简易方程
1.方程:含有未知数的等式叫做方程。
注意:(1)方程是等式,又含有未知数,两者缺一不可。
(2)方 程 和 算 术 式 不 同 。 算 术 式 是 一 个 式 子 ,它 由 运 算 符 号 和 已 知 数 组 成 ,它 表 示 未 知 数。方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时, 方程才成立。
2.方程的解:使方程左右两边相等的未知数的值,叫做方程的解。

二、解方程
1.解方程:求方程的解的过程叫做解方程。
2.解方程的步骤:
(1)去分母;
(2)去括号;
(3)移项;
(4)合并同类项;
(5)系数化为“1”;
(6)检验根。
三、列方程解应用题
1.列方程解应用题的意义
用方程式去解答应用题,求得应用题的未知量的方法,可以更清楚题意,从而解决问题。
2.列方程解答应用题的步骤
(1)弄清题意,确定未知数并用 x表示;
(2)找出题中的数量之间的相等关系;
(3)列方程,解方程;
(4)检查或验算,写出答案。
3.列方程解应用题的方法
(1)综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它
们之间的等量关系,进而列出方程。这是从部分到整体的一种思维过程,其思考方向是从已 知到未知。
(2)分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量) 和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

❷ 方程的概念和意义

方程亦称方程式,是数学的一个重要概念和研究对象。它一般指含未知数或变数的等式,不仅指代数方程。
小学数学:2005年北京版教材第9册的第122页指出:像2x= 100,2x+50=100+50,x-7=9,4x+3=15这样的含有未知数的等式都叫作方程。
2006年人教版教材五年级上册的第54页指出:像100+x= 250这样的含有未知数的等式,称为方程。
在初等代数中,只论代数方程,含有未知数的代数式的等式称为方程。按方程的解的状况,常把方程分为三类:
①条件等式方程,例如,2x+5= 3x就是满足x=5这个条件的等式。普通所说方程,常指的就是这类;
②矛盾方程,如(x-2)2=x2-4x+1,无论x取什么数值,都不能使这个等式成立;
③恒等方程,例如,(x-2)2=x2+4x+4中的未知数x,可取一切数值,等式恒成立。
在解析几何中,在平面或空间建立某种坐标系后,几何图形(例如曲线和曲面)常可用点的坐标所应满足的一个或几个方程来表示。例如,在空间直角坐标系中,平面由一个三元一次方程表示,直线由两个三元一次方程表示。
在现代数学中,把含变元的等式称为方程。例如,变元为未知集合的集合方程(A∩X)UB=B;变元X为未知命题的逻辑方程(p?x) νq=1等。
二.教学建议
(1)认识方程,学习用字母表示数是首要环节
学习用字目表示数,是代数学习的首要环节;理解用字母表示数的意义,是学习代数的关键,也是在后续学习中运用代数式、方程、不等式、函数进行交流的前提条件。字母表示数的思想,深刻地提示和指明了存在于一类问题中的共性和普遍性,把认识和推理提到一个更高的水平。学生对用字母表示数的理解,要在经历大量运用字母表示具体情境下数量关系的活动中实现。