当前位置:首页 » 基础知识 » 上海七年级数学知识点总结
扩展阅读
夯基础前面接什么 2025-01-20 21:56:29
儿童衣柜隔断什么门好 2025-01-20 21:54:08
有个动漫叫神机什么的 2025-01-20 21:54:04

上海七年级数学知识点总结

发布时间: 2025-01-20 18:41:30

‘壹’ 初中三角函数的知识点有哪些,怎么学习

初中数学锐角三角函数通常作为选择题,填空题和应用题压轴题出现,考察同学们灵活运用公式和定理能力,是中考一大难点之一。初中数学锐角三角函数知识点一览:锐角三角函数定义,正弦(sin),余弦(cos)和正切(tan)介绍,锐角三角函数公式(特殊三角度数的特殊值,两角和公式半角公式,和差化积公式),锐角三角函数图像和性质,锐角三角函数综合应用题。
一、锐角三角函数定义
锐角三角函数是以锐角为自变量,以此值为函数值的函数。如图:我们把锐角∠A的正弦、余弦、正切和余切都叫做∠A的锐角函数。
锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。初中数学主要考察正弦(sin),余弦(cos)和正切(tan)。
正弦(sin)等于对边比斜边;sinA=a/c
余弦(cos)等于邻边比斜边;cosA=b/c
正切(tan)等于对边比邻边;tanA=a/b
余切(cot)等于邻边比对边;cotA=b/a
二、锐角三角函数公式
关于初中三角函数公式,在考试中用的最多的就是特殊三角度数的特殊值。如:
sin30°=1/2
sin45°=√2/2
sin60°=√3/2
cos30°=√3/2
cos45°=√2/2
cos60°=1/2
tan30°=√3/3
tan45°=1
tan60°=√3[1]
cot30°=√3
cot45°=1
cot60°=√3/3
其次就是两角和公式,这是在初中数学考试中问答题中容易用到的三角函数公式。两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
除了以上常考的初中三角函数公示之外,还有半角公式和和差化积公式也在选择题中用到。所以同学们还是要好好掌握。
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))
ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB - ctgA+ctgBsin(A+B)/sinAsinB 三、锐角三角函数图像和性质
四、锐角三角函数综合应用题
已知:一次函数y=-2x+10的图象与反比例函数y=k/x(k>0)的图象相交于A,B两点(A在B的右侧).
(1)当A(4,2)时,求反比例函数的解析式及B点的坐标;
(2)在(1)的条件下,反比例函数图象的另一支上是否存在一点P,使△PAB是以AB为直角边的直角三角形若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.
(3)当A(a,-2a+10),B(b,-2b+10)时,直线OA与此反比例函数图象的另一支交于另一点C,连接BC交y轴于点D.若BC/BD=5/2,求△ABC的面积.
考点:
反比例函数综合题;待定系数法求一次函数解析式;反比例函数与一次函数的交点问题;相似三角形的判定与性质.
解答:
解:(1)把A(4,2)代入y=k/x,得k=4×2=8.
∴反比例函数的解析式为y=8/x.
解方程组y=2x+10
y=8/x,得x=1 y=8
或x=4 y=2,
∴点B的坐标为(1,8);
(2)①若∠BAP=90°,
过点A作AH⊥OE于H,设AP与x轴的交点为M,如图1,
对于y=-2x+10,
当y=0时,-2x+10=0,解得x=5,
∴点E(5,0),OE=5.
∵A(4,2),∴OH=4,AH=2,
∴HE=5-4=1.
∵AH⊥OE,∴∠AHM=∠AHE=90°.
又∵∠BAP=90°,
∴∠AME+∠AEM=90°,∠AME+∠MAH=90°,
∴∠MAH=∠AEM,
∴△AHM∽△EHA,
∴AH/EH=MH/AH,
∴2/1=MH/2,
∴MH=4,
∴M(0,0),
可设直线AP的解析式为y=mx
则有4m=2,解得m=1/2,
∴直线AP的解析式为y=1/2x,
解方程组y=1/2x,
y=8/x,得x=4 y=2
或x=?4 y=?2,
∴点P的坐标为(-4,-2).
②若∠ABP=90°,
同理可得:点P的坐标为(-16,-1/2).
综上所述:符合条件的点P的坐标为(-4,-2)、(-16,-1/2);
(3)过点B作BS⊥y轴于S,过点C作CT⊥y轴于T,连接OB,如图2,
则有BS∥CT,∴△CTD∽△BSD,
∴CD/BD=CT/BS.
∵BC/BD=5/2,
∴CT/BS=CD/BD=3/2.
∵A(a,-2a+10),B(b,-2b+10),
∴C(-a,2a-10),CT=a,BS=b,
∴a/b=3/2
,即b=2/3a.
∵A(a,-2a+10),B(b,-2b+10)都在反比例函数y=k/x的图象上,
∴a(-2a+10)=b(-2b+10),
∴a(-2a+10)=2/3
a(-2×2/3a+10).
∵a≠0,
∴-2a+10=2/3
(-2×2/3a+10),
解得:a=3.
∴A(3,4),B(2,6),C(-3,-4).
设直线BC的解析式为y=px+q,
则有2p+q=6
?3p+q=?4,
解得:p=2q=2,
∴直线BC的解析式为y=2x+2.
当x=0时,y=2,则点D(0,2),OD=2,
∴S△COB=S△ODC+S△ODB=1/2
ODCT+1/2ODBS=1/2×2×3+1/2×2×2=5.
∵OA=OC,
∴S△AOB=S△COB,
∴S△ABC=2S△COB=10. 以上就是初中数学锐角三角函数知识点总结,小编推荐同学继续浏览《初中数学知识点专题汇总》。对于想要通过参加初中数学补习班来获得优质的数学学习资源和学习技巧,使自身成绩有所提升的同学,昂立新课程推荐以下课程:

初二数学双师定向尖子班

初二数学名师网络辅导课

初三数学定向尖子班
初三数学名师网络辅导课

中考数学自招名师网课
(以上课程是热门推荐课程,更多相关课程,可登陆官网浏览。)
初中数学学习课程分网络和面授,有小班制,大班制,1对1,1对3形式,授课校区分布在上海各个地域,面授班课时以昂立新课程官网颁布课时为主,具体费用可咨询在线客服或拨打热线4008-770-970。

‘贰’ 问上海初一下学期的数学知识点,寒假准备稍微预习一下

二元一次方程组1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组. 3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有唯一解(即公共解).4.二元一次方程组的解法:(1)代入消元法;(2)加减消元法;(3)注意:判断如何解简单是关键.※5.一次方程组的应用:(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则“难列易解”;(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.一元一次不等式(组)1.不等式:用不等号“>”“<”“≤”“≥”“≠”,把两个代数式连接起来的式子叫不等式. 2.不等式的基本性质:不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集. 4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b>0或ax+b<0 ,(a≠0).5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点.6.一元一次不等式组:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组;注意:ab>0   或 ;ab<0   或 ; ab=0  a=0或b=0;  a=m .7.一元一次不等式组的解集与解法:所有这些一元一次不等式解集的公共部分,叫做这个一元一次不等式组的解集;解一元一次不等式时,应分别求出这个不等式组中各个不等式的解集,再利用数轴确定这个不等式组的解集.8.一元一次不等式组的解集的四种类型:设 a>b9.几个重要的判断: , , 整式的乘除1.同底数幂的乘法:am•an=am+n ,底数不变,指数相加. 2.幂的乘方与积的乘方:(am)n=amn ,底数不变,指数相乘; (ab)n=anbn ,积的乘方等于各因式乘方的积.3.单项式的乘法:系数相乘,相同字母相乘,只在一个因式中含有的字母,连同指数写在积里.4.单项式与多项式的乘法:m(a+b+c)=ma+mb+mc ,用单项式去乘多项式的每一项,再把所得的积相加.5.多项式的乘法:(a+b)•(c+d)=ac+ad+bc+bd ,先用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加.6.乘法公式:(1)平方差公式:(a+b)(a-b)= a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;(2)完全平方公式:① (a+b)2=a2+2ab+b2, 两个数和的平方,等于它们的平方和,加上它们的积的2倍; ② (a-b)2=a2-2ab+b2 , 两个数差的平方,等于它们的平方和,减去它们的积的2倍; ※ ③ (a+b-c)2=a2+b2+c2+2ab-2ac-2bc,略.7.配方:(1)若二次三项式x2+px+q是完全平方式,则有关系式: ;※ (2)二次三项式ax2+bx+c经过配方,总可以变为a(x-h)2+k的形式,利用a(x-h)2+k①可以判断ax2+bx+c值的符号; ②当x=h时,可求出ax2+bx+c的最大(或最小)值k.※(3)注意: .8.同底数幂的除法:am÷an=am-n ,底数不变,指数相减.9.零指数与负指数公式: (1)a0=1 (a≠0); a-n= ,(a≠0). 注意:00,0-2无意义;(2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01×10-5 .10.单项式除以单项式: 系数相除,相同字母相除,只在被除式中含有的字母,连同它的指数作为商的一个因式.11.多项式除以单项式:先用多项式的每一项除以单项式,再把所得的商相加.※12.多项式除以多项式:先因式分解后约分或竖式相除;注意:被除式-余式=除式•商式.13.整式混合运算:先乘方,后乘除,最后加减,有括号先算括号内.线段、角、相交线与平行线几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)1. 角平分线的定义:一条射线把一个角分成两个相等的部分,这条射线叫角的平分线.(如图) 几何表达式举例:(1) ∵OC平分∠AOB∴∠AOC=∠BOC (2) ∵∠AOC=∠BOC∴OC是∠AOB的平分线2.线段中点的定义:点C把线段AB分成两条相等的线段,点C叫线段中点.(如图)几何表达式举例:(1) ∵C是AB中点∴ AC = BC (2) ∵AC = BC ∴C是AB中点3.等量公理:(如图)(1)等量加等量和相等;(2)等量减等量差相等;(3)等量的等倍量相等;(4)等量的等分量相等. (1) (2) (3) (4) 几何表达式举例:(1) ∵AC=DB∴AC+CD=DB+CD即AD=BC(2) ∵∠AOC=∠DOB∴∠AOC-∠BOC=∠DOB-∠BOC即∠AOB=∠DOC(3) ∵∠BOC=∠GFM又∵∠AOB=2∠BOC∠EFG=2∠GFM∴∠AOB=∠EFG(4) ∵AC= AB ,EG= EF又∵AB=EF∴AC=EG4.等量代换: 几何表达式举例:∵a=cb=c∴a=b 几何表达式举例:∵a=c b=d又∵c=d∴a=b 几何表达式举例:∵a=c+d b=c+d∴a=b5.补角重要性质:同角或等角的补角相等.(如图) 几何表达式举例:∵∠1+∠3=180°∠2+∠4=180°又∵∠3=∠4∴∠1=∠26.余角重要性质:同角或等角的余角相等.(如图) 几何表达式举例:∵∠1+∠3=90°∠2+∠4=90°又∵∠3=∠4∴∠1=∠27.对顶角性质定理:对顶角相等.(如图) 几何表达式举例:∵∠AOC=∠DOB∴ ……………8.两条直线垂直的定义:两条直线相交成四个角,有一个角是直角,这两条直线互相垂直.(如图)几何表达式举例:(1) ∵AB、CD互相垂直∴∠COB=90°(2) ∵∠COB=90°∴AB、CD互相垂直9.三直线平行定理:两条直线都和第三条直线平行,那么,这两条直线也平行.(如图) 几何表达式举例:∵AB‖EF又∵CD‖EF∴AB‖CD 10.平行线判定定理:两条直线被第三条直线所截:(1)若同位角相等,两条直线平行;(如图)(2)若内错角相等,两条直线平行;(如图)(3)若同旁内角互补,两条直线平行.(如图)几何表达式举例:(1) ∵∠GEB=∠EFD∴ AB‖CD (2) ∵∠AEF=∠DFE∴ AB‖CD (3) ∵∠BEF+∠DFE=180°∴ AB‖CD 11.平行线性质定理:(1)两条平行线被第三条直线所截,同位角相等;(如图)(2)两条平行线被第三条直线所截,内错角相等;(如图)(3)两条平行线被第三条直线所截,同旁内角互补.(如图)几何表达式举例:(1) ∵AB‖CD ∴∠GEB=∠EFD(2) ∵AB‖CD ∴∠AEF=∠DFE(3) ∵AB‖CD ∴∠BEF+∠DFE=180°几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)一 基本概念: 直线、射线、线段、角、直角、平角、周角、锐角、钝角、互为补角、互为余角、邻补角、两点间的距离、相交线、平行线、垂线段、垂足、对顶角、延长线与反向延长线、同位角、内错角、同旁内角、点到直线的距离、平行线间的距离、命题、真命题、假命题、定义、公理、定理、推论、证明.二 定理: 1.直线公理:过两点有且只有一条直线。2.线段公理:两点之间线段最短.3.有关垂线的定理:(1)过一点有且只有一条直线与已知直线垂直;(2)直线外一点与直线上各点连结的所有线段中,垂线段最短. 4.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.三 公式:直角=90°,平角=180°,周角=360°,1°=60′,1′=60〃.四 常识: 1.定义有双向性,定理没有. 2.直线不能延长;射线不能正向延长,但能反向延长;线段能双向延长. 3.命题可以写为“如果………那么………”的形式,“如果………”是命题的条件,“那么………” 是命题的结论. 4.几何画图要画一般图形,以免给题目附加没有的条件,造成误解. 5.数射线、线段、角的个数时,应该按顺序数,或分类数. 6.几何论证题可以运用“分析综合法”、“方程分析法”、“代入分析法”、“图形观察法”四种方法分析.7.方向角: (1) (2)8.比例尺:比例尺1:m中,1表示图上距离,m表示实际距离,若图上1厘米,表示实际距离m厘米.9.几何题的证明要用“论证法”,论证要求规范、严密、有依据;证明的依据是学过的定义、公理、定理和推论.