当前位置:首页 » 基础知识 » 五六年级数学知识点
扩展阅读
同学帮你庆生要怎么回报 2025-01-15 10:10:21
儿童吃止咳药能吃多久 2025-01-15 10:04:38

五六年级数学知识点

发布时间: 2022-03-03 06:42:50

‘壹’ 小学数学三至六年级知识点

找了几个版的

苏教:
(一)、数和数的运算(20课时)
这节重点确定在整除的一系列概念和分数、小数的基本性质、四则运算和简便运算上。
1、系统地整理有关数的内容,建立概念体系,加强概念的理解(4课时),包括“数的意义”、“数的读法与写法”、“数的改写”、“数的大小比较”、“数的整除”等知识点。
2、沟通内容间的联系,促进整体感知(2课时),包括“分数、小数的性质”、“整除的概念比较”。
3、全面概念四则运算和计算方法,提高计算水平(6课时),包括“四则运算的意义和法则”、“四则混合运算”。
4、利用运算定律,掌握简便运算,提高计算效率(5课时),包括“运算定律和简便运算”。
5、精心设计练习,提高综合计算能力(3课时)。
(二)、代数的初步知识(10课时)
本节重点内容应放在掌握简易方程及比和比例的辨析。
1、形成系统知识、加强联系(3课时),包括“字母表示数”、“比和比例”、“正、反比例”等知识点。
2、抓解题训练,提高解方程和解比例的能力(4课时),包括“简易方程”、“解比例”。
3、 辨析概念,加深理解(3课时),包括“比和比例”、“正比例和反比例”。
(三)、应用题(30课时)
这节重点应放在应用题的分析和解题技能的发展上,难点内容是分数应用题。
1、简单应用题的分析与整理(3课时)。
2、复合应用题的分析与整理(6课时)。
3、列方程解应用题的分析与整理(5课时)。
4、分数应用题的分析与整理(10课时)。
5、用比例知识解答应用题的分析与整理(3课时)。
6、应用题的综合训练(3课时)。
(四)、量的计量
本节重点放在名数的改写和实际观念上。
1、整理量的计量知识结构(2课时),包括“长度、面积、体积单位”、“重量与时间单位”。
2、巩固计量单位,强化实际观念(4课时),包括“名数的改写”。
3、综合训练与应用(1课时)。
(五)、几何初步知识(12课时)
本节重点放在对特征的辨析和对公式的应用上。
1、强化概念理解和系统化(2课时),包括“平面图形的特征”、“立体图形的特征”。
2、准确把握图形特征,加强对比分析,揭示知识间的联系与区别(4课时),包括“平面图形的周长与面积”、“立体图形的表面积和体积”。
3、加强对公式的应用,提高掌握计算方法(5课时)。能实现周长、面积、体积的正确计算。
4、整体感知、实际应用(1课时)。
(六)、简单的统计(6课时)
本节重点结合考纲要求应放在对图表的认识和理解上,能回答一些简单的问题。
1、求平均数的方法(1课时)。
2、加深统计图表的特点和作用的认识(3课时),包括“统计表”、“统计图”。
3、进一步对图表分析和回答问题(2课时),包括填图和根据图表回答问题。
五、复习中应注意的问题
1、对于小学数学毕业总复习内容、过程和时间的计划安排,在实际教学中要根据实际情况作出调整。
2、要注意小学数学知识与中学知识结构上的衔接,要为中学的学习做些铺垫,适当拓展知识点。
3、要把握考纲要求,根据实际需要对计划的复习内容、过程和时间上做出调整。既要全面学到知识,又要掌握复习知识的深浅程度。

北师:
小学数学四年级前四个单元知识点总结

1、路程速度时间公式:s=vt v=s÷t t=s÷v

2、正方形周长公式:C=4a

3、正方形面积公式:S=a2

4、长方形周长公式:C=2(a+b)

5、长方形面积公式:S=ab

6、加法交换律:a+b=b+a

7、加法结合律:a+b+c=a+(b+c)

8、乘法交换律:a·b=b·a

9、乘法结合律:〔a·b〕·c=a·〔b·c〕

10、乘法分配律:〔a+b〕·c=a·c+b·c

11、角的大小分类,从小到大是:锐角、直角、钝角、平角、周角

12、锐角是小于90度的角,直角是90度,钝角是大于90度而小于平角的角,平角是180度的角,周角是360度的角。

13、三角形按角分类:锐角三角形,直角三角形,钝角三角形

14、三个角都是锐角是锐角的三角形叫锐角三角形;有一个角是直角的三角形叫直角三角形;有一个角是钝角的三角形叫钝角三角形。

15、三角形按边分类有:不等边三角形,等腰三角形,等边三角形

16、从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。

17、小数的计数单位是十分之一,百分之一,千分之一--------记作0.1,0.01,0.001-----

18、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

20、1平角=2直角 1周角=2平角=4直角

21、三角形具有稳定性

22、三角形任意两边之和大于第三边

23、三角形的内角和是180度

24、学会画角

25、会比较小数的大小

26、单位换算

长度单位:1米=10分米 1分米=10厘米 1厘米=10毫米 1米=10分米=100厘米=1000毫米

质量单位:1千克=1000克 1吨=1000千克=1000000克

钱的换算:1元=10角=100分 1角=10分

时间单位:1时=60分=3600秒 1分=60秒

1年=12月=365天或366天 1天=24小时

一三五七八十腊,三十一天永不差。四六九十一三十,平年二月二十八,闰年二月二十九。

面积单位:1平方米=100平方分米 1平方分米=100平方厘米 1平方米=10000平方厘米

1公顷=10000平方米 1平方千米=100公顷=1000000平方米

‘贰’ 小学五六年级数学该如何学习

篇一:抓住课堂
理科学习重在平日功夫,不适于突击复习。平日学习*重要的是课堂45分钟,听讲要聚精会神,思维紧跟老师。同时要说明一点,许多同学容易忽略老师所讲的数学思想:数学方法,而注重题目的解答,其实诸如“化归”,“数形结合”等思想方法远远重要于某道题目的解答。
篇二:高质量完成作业
所谓高质量是指高正确率和高速度。写作业时,有时同一类型的题重复练习,这时就要有意识的考查速度和准确率,并且在每做完一次时能够对此类题目有更深层的思考,诸如它考查的内容,运用的数学思想方法,解题的规律,技巧等。另外对于老师布置的思考题,也要认真完成。如果不会决不能轻易放弃,要发扬“钉子”精神,一有空就静心思考,灵感总是突然来到你身边的。*重要的是,这是一次挑战自我的机会。成功会带来自信,而自信对于学习理科十分重要;即使失败,这道题也会给你留下深刻的印象。
篇三:勤思考,多提问
首先对于老师给出的规律:定理,不仅要知“其然”还要“知其所以然”,做到刨根问底,这便是理解的*佳途径。其次,学习任何学科都应抱着怀疑的态度,尤其是理科。对于老师的讲解,课本的内容,有疑问应尽管提出,与老师讨论。总之,思考,提问是清除学习隐患的*佳途径。
篇四:总结比较,理清思绪
(1)知识点的总结比较。每学完一章都应将本章内容做一个框架图或在脑中过一遍,整理出它们的关系。对于相似易混淆的知识点应分项归纳比较,有时可用联想法将其区分开 。

(2)题目的总结比较。同学们可以建立自己的题库。我就有两本题集。一本是错题,一本是精题。对于平时作业,考试出现的错题,有选择地记下来,并用红笔在一侧批注注意事项,考试前只需翻看红笔写的内容即可。我还把见到的一些极其巧妙或难度高的题记下来,也用红笔批注此题所用方法和思想。时间长了,自己就可总结出一些类型的解题规律,也用红笔记下这些规律。*终它们会成为你宝贵的财富,对你的数学学习有极大的帮助。
篇五:有选择地做课外练习
课余时间对我们中学生来说是十分珍贵的,所以在做课外练习时要少而精,只要每天做两三道题,天长日久,你的思路就会开阔许多。

‘叁’ 小学六年级数学毕业考必考的知识点是什么

一、整数和小数

1、最小的一位数是1,最小的自然数是0。

2、小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。

3、小数点左边依次是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位……

4、整数和小数都是按照十进制计数法写出的数。

5、小数的性质:小数的末尾添上0或者去掉0,小数的大小不变。

6、小数点向右移动一位、二位、三位……原来的数分别扩大10倍、100倍、1000倍……

小数点向左移动一位、二位、三位……原来的数分别缩小10倍、100倍、1000倍……

二、数的整除

1、倍数、因数:A÷B=C,A、B、C均为整数,我们就说A能被B整除或B能整除A。如果数a能被数b整除,a就叫做b的倍数,b就叫做a的因数。

2、一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。一个数因数的个数是有限的,最小的因数是1,最大的因数是它本身。一个数既是它本身的因数,也是它本身的倍数。

3、按能否被2整除,非0的自然数分成偶数和奇数两类,能被2整除的数叫做偶数,不能被2整除的数叫做奇数。

4、按一个数因数的个数,非0自然数可分为1、质数、合数三类。

质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数。质数都有2个因数。合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。合数至少有3个因数。最小的质数是2,最小的合数是4

5、1~20以内的质数有:2、3、5、7、11、13、17、19

1~20以内的合数有“4、6、8、9、10、12、14、15、16、18

“1”既不是质数,也不是合数。

6、2的倍数的数的特征:个位上的数是0、2、4、6、8。

5的倍数的数的特征:个位上的数是0或者5。

3的倍数的数的特征:各个数位上的数的和是3的倍数。

既是3的倍数又是5的倍数的数的特征:个位上的数是“5”。

7、公因数、公倍数:几个数公有的因数,叫做这几个数的公因数;其中最大的一个,叫做这几个数的最大公因数。几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

8、一般关系的两个数的最大公因数、最小公倍数用短除法来求;互质关系的两个数最大公约数是1,最小公倍数是两数之积;倍数关系的两个数的最大公因数是小数,最小公倍数是大数。

11、互质数:公因数只有1的两个数叫做互质数。

12、两数之积等于最小公倍数和最大公约数的积。

三、四则运算

1、一个加数=和—另一个加数被减数=差+减数减数=被减数-差

一个因数=积÷另一个因数被除数=商×除数除数=被除数÷商

2、在四则运算中,加、减法叫做第一级运算,乘、除法叫做第二级运算。

3、运算定律:

(1)加法交换律:a+b=b+a乘法交换律:a×b=b×a

两个数相加,交换加数的位置,它们的和不变。

两个数相加,交换因数的位置,它们的积不变。

(2)加法结合律:(a+b)+c=a+(b+c)乘法结合律:(a×b)×c=a×(b×c)

三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变。

三个数相乘,先把前两个数相乘,再同第三个数相乘;或者先把后两个数相乘,再同第一个数相乘,它们的积不变。

(3)乘法分配律:(a+b)×c=a×c+b×c

两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

(4)减法的性质:a-b-c=a-(b+c)除法的性质:a÷b÷c=a÷(b×c)

从一个数里连续减去两个数,等于从这个数里减去两个减数的和。

一个数连续除以两个数,等于这个数除以两个除数的积。

四 、两个规律

1、除法的商不变规律:被除数和除数同时乘或除以相同的数(0除外),商不变。

2、乘法的积不变规律:如果一个因数乘几,另一个因数则除以几,那么它们的积不变。

3、一个因数乘以比1大的数,积比这个数大,乘以比1小的数,积比这个数小

一个因数除以比1大的数,商比这个数小,除以比1小的数,商比这个数大

五、关系式

速度×时间=路程

路程÷时间=速度

路程÷速度=时间

工作效率×工作时间=工作总量

工作总量÷工作效率=工作时间

工作总量÷工作时间=工作效率

单价×数量=总价

总价÷数量=单价

总价÷单价=数量

‘肆’ 小学六年级上册数学必考知识点有哪些

第一单元分数乘法

(一)分数乘法意义:

1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。"分数乘整数"指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

"一个数乘分数"指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)

(二)分数乘法计算法则:

1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)

(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以相同的数(0除外),分数的大小不变。

(三)积与因数的关系:

一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b >1时,c>a。

一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b <1时,c<a(b≠0)。

一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b=1时,c=a。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(四)分数乘法混合运算

1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:a×(b±c)=a×b±a×c

(五)倒数的意义:乘积为1的两个数互为倒数。

1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)

2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为"1"。例如:a×b=1则a、b互为倒数。

3、求倒数的方法:①求分数的倒数:交换分子、分母的位置。

②求整数的倒数:整数分之1。③求带分数的倒数:先化成假分数,再求倒数。

④求小数的倒数:先化成分数再求倒数。

4、1的倒数是它本身,因为1×1=1

0没有倒数,因为任何数乘0积都是0,且0不能作分母。

5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。

假分数的倒数小于或等于1。带分数的倒数小于1。

(六)分数乘法应用题--用分数乘法解决问题

1、求一个数的几分之几是多少?(用乘法)

已知单位"1"的量,求单位"1"的量的几分之几是多少,用单位"1"的量与分数相乘。

2、巧找单位"1"的量:在含有分数(分率)的语句中,分率前面的量就是单位"1"对应的量,或者"占""是""比"字后面的量是单位"1"。

3、什么是速度?

速度是单位时间内行驶的路程。速度=路程÷时间时间=路程÷速度路程=速度×时间

单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。

4、求甲比乙多(少)几分之几?

多:(甲-乙)÷乙少:(乙-甲)÷乙

第二单元位置与方向(二)1、什么是数对?

数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即"先列后行"。

数对的作用:确定一个点的位置。经度和纬度就是这个原理。

2、确定物体位置的方法:

(1)、先找观测点;(2)、再定方向(看方向夹角的度数);(3)、最后确定距离(看比例尺)。

描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。

位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。

相对位置:东--西;南--北;南偏东--北偏西。

第三单元分数的除法

一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。

二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。

1、被除数÷除数=被除数×除数的倒数。

2、除法转化成乘法时,被除数一定不能变,"÷"变成"×",除数变成它的倒数。

3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。

4、被除数与商的变化规律:

①除以大于1的数,商小于被除数:a÷b=c 当b>1时,c<a (a≠0)

②除以小于1的数,商大于被除数:a÷b=c 当b<1时,c>a (a≠0 b≠0)

③除以等于1的数,商等于被除数:a÷b=c当b=1时,c=a

三、分数除法混合运算

1、混合运算用梯等式计算,等号写在第一个数字的左下角。

2、运算顺序:

①连除:同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据"除以几个数,等于乘上这几个数的积"的简便方法计算。加、减法为一级运算,乘、除法为二级运算。

②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。

(a±b)÷c=a÷c±b÷c

第四单元比

比:两个数相除也叫两个数的比

1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。

连比如:3:4:5读作:3比4比5

2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。

例:12∶20==12÷20==0.612∶20读作:12比20

区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。

比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。

3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。

4、化简比:化简之后结果还是一个比,不是一个数。

(1)、用比的前项和后项同时除以它们的最大公约数。

(2)、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。

(3)、两个小数的比,向右移动小数点的位置,也是先化成整数比。

5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。

6、比和除法、分数的区别:

除法:被除数除号(÷)除数(不能为0)商不变性质除法是一种运算

分数:分子分数线(-)分母(不能为0)分数的基本性质分数是一个数

比:前项比号(∶)后项(不能为0)比的基本性质比表示两个数的关系

商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

分数除法和比的应用

1、已知单位"1"的量用乘法。

2、未知单位"1"的量用除法。

3、分数应用题基本数量关系(把分数看成比)

(1)甲是乙的几分之几?

甲=乙×几分之几乙=甲÷几分之几几分之几=甲÷乙

(2)甲比乙多(少)几分之几?

4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。

5、画线段图:

(1)找出单位"1"的量,先画出单位"1",标出已知和未知。

(2)分析数量关系。(3)找等量关系。(4)列方程。

两个量的关系画两条线段图,部分和整体的关系画一条线段图。

第五单元圆

一、圆的特征

1、圆是平面内封闭曲线围成的平面图形。

2、圆的特征:外形美观,易滚动。

3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。

圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。

半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。

直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。

同圆或等圆内直径是半径的2倍:d=2r或r=d÷2

4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。

同心圆:圆心重合、半径不等的两个圆叫做同心圆。

5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。

有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。

有二条对称轴的图形:长方形

有三条对称轴的图形:等边三角形

有四条对称轴的图形:正方形

有无条对称轴的图形:圆,圆环

6、画圆

(1)圆规两脚间的距离是圆的半径。(2)画圆步骤:定半径、定圆心、旋转一周。

二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示。

1、圆的周长总是直径的三倍多一些。

2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

即:圆周率π=周长÷直径≈3.14

所以,圆的周长(c)=直径(d)×圆周率(π)-周长公式:c=πd,c=2πr

圆周率π是一个无限不循环小数,3.14是近似值。

3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

4、半圆周长=圆周长一半+直径=πr+d

三、圆的面积s

1、圆面积公式的推导

如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。

圆的半径=长方形的宽

圆的周长的一半=长方形的长

长方形面积=长×宽

所以:圆的面积=圆的周长的一半(πr)×圆的半径(r)

S圆=πr×r=πr2

2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。

周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。

3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。

4、环形面积=大圆-小圆=πR2-πr2

扇形面积=πr2×n÷360(n表示扇形圆心角的度数)

5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。

一个圆的半径增加a厘米,周长就增加2πa厘米。

一个圆的直径增加b厘米,周长就增加πb厘米。

6、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π。

7、常用数据

π=3.142π=6.283π=9.424π=12.565π=15.7

第六单元百分数(一)

一、百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫百分比或百分率,百分数不能带单位。

注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比。

1、百分数和分数的区别和联系:

(1)联系:都可以用来表示两个量的倍比关系。

(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。百分数的分子可以是小数,分数的分子只可以是整数。

注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成"%"才是百分数,所以"分母是100的分数就是百分数"这句话是错误的。"%"的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70%、80%,出油率在30%、40%。

2、小数、分数、百分数之间的互化

(1)百分数化小数:小数点向左移动两位,去掉"%"。

(2)小数化百分数:小数点向右移动两位,添上"%"。

(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。

(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。

(5)小数化分数:把小数成分母是10、100、1000等的分数再化简。

(6)分数化小数:分子除以分母。

二、百分数应用题

1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。

2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。

求甲比乙多百分之几:(甲-乙)÷乙

求乙比甲少百分之几:(甲-乙)÷甲

3、求一个数的百分之几是多少。一个数(单位"1")×百分率

3、已知一个数的百分之几是多少,求这个数。

部分量÷百分率=一个数(单位"1")

5、百分数应用题型分类

(1)求甲是乙的百分之几--(甲÷乙)×100%=百分之几

(2)求甲比乙多百分之几--(甲-乙)÷乙×100%

(3)求甲比乙少百分之几--(乙-甲)÷乙×100%

第七单元扇形统计图的意义

1、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。

2、常用统计图的优点:

(1)条形统计图直观显示每个数量的多少。

(2)折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少。

(3)扇形统计图直观显示部分和总量的关系。

‘伍’ 六年级数学知识

、、、要找资料可以去网络文库啊、、

(1)自然数:我们在数物体的时候,用来表示物体个数的0,1,2,3,……,都叫做自然数。1是自然数的记数单位。自然数既可以表示事物的多少(基数),也可以表示事物的次序(序数)。如“每星期7天”中的“7”表示的是基数,“5月3日”中的“5”和“3”表示的是序数。一个物体也没有就用0表示。0是最小的自然数。
(2)整数和自然数:自然数都是整数,但只是整数的一部分(整数还包括负整数)。最小的一位数是1而不是0。
0的作用:①在数字中起占位作用,表示该位上没有单位;②表示起点;③表示界线。如温度计、数轴上的0,表示正、负数的分界线。
(3)分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数就是分数单位。
分数与除法的关系:分数是一种数,除法是一种运算,它们是两个不同的概念,但它们也有密切的内在联系。如:
(4)小数:把整数“1”平均分成10份,100份,1000份……这样的一份或几份是十分之几,百分之几,千分之几……可以用小数表示。
小数的分类:
(5)数位、位数和计数单位:各个计数单位所占的位置叫做数位。一个自然数含有数位的多少叫做位数。整数和小数都是按照十进制计数法写出的数,其中个、十、百……以及十分之一、百分之一……都是计数单位。
(6)整数和小数数位顺序表:
(7)百分数、成数和折扣:
①百分数:表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫百分率或百分比。
②成数:农业上常用的名词。几成就是十分之几。
③折扣:商业上常用的名词。几折就是十分之几。
注意:百分数、成数和折扣只表示两个数的倍比关系,而分数除了表示倍比关系外,还可以是一个具体数量。
2、数的读法和写法
(1)整数的读法:从高位到低位,一级一级地读,每一级末尾的0都不读出来,其他数位连续有几个0都只读一个零。
(2)整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
(3)小数的读法和写法:整数部分按整数来读(写),小数点读作点,小数部分依次读(写)出每一位上的数。
3、数的改写
(1)多位数的改写和省略:为了读写方便,我们常把一个较大的多位数,写成用“万”或“亿”作单位的数,先找到万位或亿位,再在万位或亿位上数的右下角点上小数点,并在后面写上“万”或“亿”,要用“=”;有时也可以根据需要省略这个数某一位后面的尾数,写成近似数。省略一般用“四舍五入法”,结果用“≈”。
(2)分数、小数与百分数的互化:
(3)一个最简分数,如果分母中含有2和5以外的质因数,则这个分数不能化成有限小数。
4、数的大小比较
(1)整数的大小比较:先看位数,位数多的数大;位数相同,从最高位看起,相同数位上的数大的那个数就大。
(2)小数的大小比较:先比较两个数的整数部分,整数部分大的那个数大;整数部分相同,再看它们的小数部分,从高位看起,依数位比较,相同数位上的数大的那个数就大。
(3)分数大小比较:分母相同的分数,分子大的分数大;分子相同的分数,分母小的分数大。分母不同的分数,先通分再比较。
第二节 数的整除和分数、小数的基本性质
知识要点
1、数的整除
(1)整除的意义:在小学阶段讲“数的整除”时所说的数一般指非0自然数。
数a除以数b,除得的商正好是整数而没有余数,我们就说,a能被b整除,或者说b能整除a。
(2)约数和倍数:如果a能被b整除,a叫做b的倍数,b叫做a的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
一个数的倍数的个数是无限的,其中最小的是它本身,它没有最大的倍数。
(3)奇数和偶数:能被2整除的数叫做偶数,因为0也能被2整除,所以最小的偶数是0;不能被2整除的数叫做奇数,最小的奇数是1。
(4)能被2,3,5整除的数的特征:
①能被2整除的数:个位是0,2,4,6,8。
②能被3整除的数:各位上的数的和能被3整除。
③能被5整除的数:个位上是0或5。
(5)质数和合数:一个数如果只有1和它本身两个约数,叫做质数;一个数,如果除了1和它本身,还有别的约数,就叫做合数。1既不是质数,也不是合数。最小的质数是2,最小的合数是4。
(6)分解质因数:每个合数都可以写成几个质数相乘的形式,这几个质数叫做这个合数的质因数。把一个合数用几个质因数相乘的形式表示出来,称为分解质因数。通常我们用短除法来分解质因数。
(7)公约数和最大公约数:几个数公有的约数叫做这几个数的公约数。其中最大的一个叫做这几个数的最大公约数。
(8)互质数:公约数只有1的两个数,叫做互质数。
(9)公倍数和最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。其中最小的一个叫做这几个数的最小公倍数。
(10)求最大公约数和最小公倍数的方法:一般采用短除法。如果两个数中大数是小数的倍数,小数是大数的约数,则大数是它们的最小公倍数,小数是它们的最大公约数。如果两个数是互质数,则它们的最大公约数是1,最小公倍数是两数相乘所得的积
2、分数、小数的基本性质
(1)分数的基本性质:分数的分子和分母同时乘上或者除以相同的数(零除外),分数的大小不变。
(2)小数的基本性质:小数的末尾添上0或者去掉0,小数的大小不变。
(3)小数点位置移动引起小数大小变化:小数点向右移动一位,两位,三位……原来的数就扩大10倍,100倍,1000倍……反之,小数点向左移动一位,两位,三位……原来的数就缩小10倍,100倍,1000倍……

第三节 数的运算
知识要点
1、四则运算的意义和法则
(1)四则运算的意义:
数的
分类
运算名称 整 数 小 数 分 数
加 法 把两个数合并成一个数的运算。 与整数加法的意义相同。 与整数加法的意义相同。
减 法 已知两个数的和与其中的一个加数,求另一个加数的运算。 与整数减法的意义相同。 与整数减法的意义相同。
乘 法 求几个相同加数的和的简便运算。 小数乘整数与整数乘法的意义相同。
一个数乘小数,就是求这个数的十分之几、百分之几、千分之几……是多少。 分数乘整数与整数乘法的意义相同。
一个数乘分数,就是求这个数的几分之几是多少。
除 法 已知两个因数的积与其中一个因数,求另一个因数的运算。 与整数除法的意义相同。 与整数除法的意义相同。
(2)四则运算的法则:
①加减法的法则:
同单位相加减,单位不变,单位的个数相加减
整 数 小 数 分 数
1.相同数位对齐;
2.从低位算起;
3.加法中满几十就向前一位进几;减法中不够减时,就从前一位退,退几当几十。 1. 相同数位对齐(小数点对齐);
2. 从低位算起;
3.按整数加减法进行计算;
4.结果中的小数点和相加减的数里的小数点对齐。 1.同分母分数相加减,分母不变,分子相加减。
2.异分母分数相加减,先通分,然后计算。
3.结果能约分的要约分,是假分数的化成带分数。
②乘法、除法的法则:

法 整 数 小 数 分 数
1.从个位乘起,依次用第二个因数每位上的数去乘第一个因数。
2.用第二个因数哪一位上的数去乘,得数的末位就和第二个因数的哪一位对齐。
3.再把几次乘得的数加起来。 1.按整数乘法法则先求出积。
2.看因数中一共有几位小数,就从积的右边起数出几位点上小数点。 1.分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
2.有整数的把整数看做分母是1的假分数。
3.有带分数的,通常先把带分数化成假分数。

法 除法是整数的除法:从被除数的高位起,除数是几位数,就先看被除数的前几位,如果不够除,就要多看一位。除到哪一位就要把商写在哪一位的上面。商的小数点和被除数的小数点对齐。 除数是小数的除法:先移动除数的小数点,使它变成整数。除数的小数点向右移动几位,被除数的小数点也向右移动相同的位数(位数不够的补“0”),然后按照除数是整数的除法进行计算。 甲数除以乙数(0除外),等于甲数乘上乙数的倒数。
(3)四则运算各部分的关系:
2、运算定律和简便运算
(1)运算定律:
①加法交换律 a+b=b+a
②加法结合律 (a+b)+c=a+(b+c)
③乘法交换律 a×b=b×a
④乘法结合率 a×b×c=a×(b×c)
⑤乘法分配律 a×(b+c)=a×b+a×c
(2)运算性质:
①减法的运算性质 a-(b+c)=a-b-c a-(b-c)=a-b+c
②除法的运算性质 a÷(b×c)=a÷b÷c a÷(b÷c)=a÷b×c
(a+b)÷c=a÷c+b÷c (a-b)÷c=a÷b-b÷c
3、四则运算的顺序
四则运算分为二级。加减法叫做第一级运算,乘除法叫做第二级运算。运算顺序:在一个没有括号的算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先做第二级运算,后做第一级运算。
在一个有括号的算式里,要先算小括号里面的,再算小括号外面的。
第二章 代数的初步知识
第一节 简易方程
知识要点
1、用字母表示数
(1)用字母可以表示我们学过的自然数、整数、小数、百分……
(2)用含有字母的式子,可以简明地表达数学概念、运算定律和数学计算公式。还可以简明地表达数量关系。
注意:(1)在含有字母的乘法里,乘号可以省略不写或用“?”表示。如:a×x写成ax或a?x。数和数相乘时,乘号不能省略。
(2)数字和字母相乘时,可以化简成数字放在最前面。如:a×4×b写成4ab。
(3)1与字母相乘时,1省略不写。如:a×1写成a。
2、简易方程
(1)等式:表示相等关系的式子叫等式。
(2)方程:含有未知数的等式叫方程。
(3)方程的解:使方程左右两边相等的未知数的值叫做方程的解。
(4)解方程:求方程的解的过程叫做解方程。
(5)简易方程的解法步骤:①对于只有一步运算的方程,可用加法与减法、乘法与除法的互逆关系求解。对于含有二、三步运算的方程,先根据方程确定运算顺序,再根据四则运算的互逆关系求出方程的解。
②把求出的未知数的值,分别代入原方程两边计算(即求含有字母的式子的值),如果原方程的等号两边相等,则所求得的未知数的值,是原方程的解。
第二节 比和比例
知识要点
1、 和比例
比 比例
意义 两个数相除又叫做两个数的比。 表示两个比相等的式子叫做比例。
基本性质 比的前项和后项同时乘上或者同时除以相同的数(零除外),比值不变。 在比例里,两个内项的积等于两个外项的积。
2、 比、分数与除法的关系
比 “:”(比号) 前项 后项 比值
分数 “—”(分数线) 分子 分母 分数值
除法 “÷”(除号) 被除数 除数 商
3、 求比值和化简比的区别与联系
一般方法 结果
求比值 根据比值的意义,用前项除以后项。 是一个商,可以是整数、小数或分数。
化简比 根据比的基本性质,把比的前项和后项同时乘上或者同时除以相同的数(零除外)。 是一个比,它的前项和后项都是整数。
4、 比例尺
图上距离和实际距离的比,叫做这幅图的比例尺。即图上距离:实际距离=比例尺。通常把比例尺写成前项(或后项)是1的比。
5、 正比例和反比例的区别与联系
相同点 不同点
特征 关系式
正比例关系 两种相关联的量,一种量变化,另一种量也随着变化。 两种量中相对应的两个数比值一定。 yx = k(一定)
反比例关系 两种量中相对应的两个数的积一定。 x×y=k(一定)
第三章 应用题
第一节 一般复合应用题
知识要点
1、复合应用题
两步或两步以上的应用题,通常叫做复合应用题。复合应用题是由几道有联系的简单应用题组合而成的。不具备特定的结构特征和解题规律的复合应用题,叫做一般复合应用题。
2、一般复合应用题的解法
一般复合应用题无一定的解答规律,可以把它先分解成几个简单的一步应用题,分别求出间接问题,然后求出结果。在具体分析解答中,一般采用分析法,综合法,或分析综合法。对于比较复杂的问题,可以运用图示法、假设法、转化法等帮助分析。
(1)分析法:就是从问题入手,逐步分析题里的已知条件。
(2)综合法:就是从应用题的已知条件,逐步推向未知,直到求出解。
(3)分析综合法:是将分析法|综合法结合起来交替使用的方法。当已知条件中有明显计算过程时就用综合法顺推,遇到困难时再转向原题所提的问题用分析法帮忙,逆推几步,顺推和逆推联系上了,问题就解决了。
3、一般复合应用题的解题步骤
解答一般复合应用题,按照以下步骤进行:
(1)审清题意,并找出已知条件和所求问题;
(2)分析题目里的数量关系,从而确定先算什么,再算什么……最后算什么;
(3)列出算式,算出得数;
(4)进行检验,写出答案。
第二节 典型应用题
知识要点
1、典型应用题
用两步或两步以上运算解答的并且有一定解答规律的应用题叫典型应用题。如求平均数应用题、相遇问题、归一应用题等。要特别注意认识各类应用题的特点,并掌握其解题规律。
2、求平均数问题
(1)求平均数问题的特点:把各“部分量”合并为“总量”,然后按“总份数”平均,求其中一份是多少。
(2)求平均数问题的解题规律:解答这类问题的关键是先求出“总量”和“总份数”,然后用总量÷总份数=平均数。
(3)有些复杂的求平均数问题,我们根据平均数就是移出大数多出部分给小数后得到相等数的实质,用“移多补少法”解答。
3、归一问题
(1)归一问题的特点:从已知条件中求出“单一量”,再以“单一量”为标准去计算所求的量。归一问题通常分为正归一和反归一两种。
(2)归一问题的解题规律:在解题过程中,首先求出一个单位数量,然后以这个“单位量”为标准,根据题目的要求,用乘法算出若干个“单位量”是多少,这是正归一的解题规律。或用除法算出总量包含多少个“单位量”,这是反归一的解题规律。归一问题还可以用倍比问题的解题方法求解。
4、相遇问题
(1)特点:a.两个运动物体;b.运动方向相向;c.运动时间同时。
(2)解题规律:速度和×相遇时间=路程 路程÷速度和=相遇时间
路程÷相遇时间=速度和

第三节 分数、百分数应用题
知识要点
1、分数乘法应用题
已知一个数,求它的几分之几(百分之几)是多少,用乘法。
即“一个数×几分之几(百分之几)”。
用等式表示三量的关系:单位“1”的量×对应分率=对应数量
2、分数除法应用题
(1)已知一个数的几分之几(百分之几)是多少,求这个数,用除法。即“多少÷几分之几”。
用等式表示三量的关系:对应数量÷对应分率=单位“1”的量
(2)求一个数是另一个数的几分之几(百分之几),用除法。即“一个数÷另一个数”
用等式表示三量的关系:对应数量÷单位“1”的量=对应分率
3、工程问题的应用题
把工作总量用“1”表示,工作效率用单位时间内做工作总量的“几分之一”表示。根据工作总量与工作效率,就能求出合作完成工作的时间。
三量之间的关系式:工作效率×工作时间=工作总量
工作总量÷工作时间=工作效率
工作总量÷工作效率=工作时间
第四节 列方程解应用题
知识要点
1、列方程解应用题
列方程解应用题就是用字母代替应用题中的未知数,根据数量间的相等关系列方程,解方程。
2、列方程解应用题的一般步骤
(1)弄清题意,找出未知数并用x表示;
(2)找出应用题中数量间的相等关系,列方程;
(3)解方程;
(4)检验或验算,写出答案。
第五节 比和比例应用题
知识要点
比和比例应用题包括:比例尺、按比例分配和正反比例应用题。
(1)在比例尺应用题中,图上距离、实际距离和比例尺三者之间的关系式:图上距离:时间距离=比例尺。三个相关的量中,知道任意两个量,就可根据关系式,求出另一个量。在计算中,要注意各种量的单位在算式中必须统一。
(2)按比例分配的应用题:是把一个数量按照一定的比分配成几部分。按比例分配应用题是在比的意义、比与分数的关系的基础上来解决的。关键是要根据各部分之比,确定各部分量与总量之间的关系,即各部分占总量的几分之几。然后按照“求一个数(这里指分配的量)的几分之几是多少”的问题来解答。
(3)正比例应用题中的各种相关联的数量有正比例关系,关系式是:yx = k(一定),反比例应用题中的各种相关联的数量有反比例关系,关系式是:x ? y= k(一定)。解答正、反比例应用题,基本步骤是:
①分析数量关系,依据相关联的量之间的数量关系式,判定它们成什么比例;
②根据关系式列出等量关系式;
③设未知数,根据等量关系式列方程;
④解方程;⑤检验并写出答案
第四章 量的计算
知识要点
1、量、计量和计量单位的意义
事物的多少、长短、轻重、快慢等,这些可以测定的客观事物的特征叫做量。把一个要测定的量同一个作为标准的量相比较叫做计量。用来作为计量标准的量叫做计量单位。
2、常用计量单位及其进率
(1)长度、面积、地积、体积、容积、重量单位及其进率:
长度 1千米=1000米 1米=10分米=100厘米
1分米=10厘米 1厘米=10毫米
面积 1平方千米=1000000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米 地积 1平方千米=100公顷
1公顷=10000平方米
体积 1立方米=1000立方分米
1立方分米=1000立方厘米
1立方厘米=1000立方毫米 容积 1升=1000毫升
1立方分米=1升
1立方厘米=1毫升
重量 1吨=1000千克 1千克=1000克
(2)常用时间单位及其关系:
①年月日之间的关系可用下表来说明:
一年有12个月,平年全年有365天,闰年全年有366天。 按大小月分 1月、3月、5月、7月、8月、10月、12月是大月,每月有31天
4月、6月、9月、11月是小月,每月30天
2月既不是大月,也不是小月,平年2月28天,闰年2月29天
按四个季度分 1月、2月、3月属第一季度
4月、5月、6月属第二季度
7月、8月、9月属第三季度
10月、11月、12月属第四季度
②每个月分上、中、下三旬,上旬、中旬各有10天,下旬天数要根据月份确定,大月下旬11天,小月下旬10天 ,平年二月下旬8天,闰年二月下旬9天。
③1星期=7日 1日=24小时 1小时=60分 1分=60秒
④根据公历年份判断该年是平年还是闰年方法如下:
整百、整千的年份能被400整除,其他年份能被4整除的都是闰年,反之是平年。
3、同一类计量单位之间的化聚
(1)化法:把高级单位的单名数和复名数改换成低级单位的单名数的方法,叫做化法。主要用相应的进率乘高级单位的量数。
(2)聚法:把低级单位的单名数改换成高级单位的单名数或复名数的方法,叫做聚法。在聚的过程中,要用相应的进率去除相关的量数。
(3)化法和聚法的关系:
第五章 几何的初步知识
第一节 平面图形的认识和计算
知识要点
1、线
2、角
(1)角:从一点引出两条射线所组成的图形叫做角。
(2)角的分类:
3、平面图形
(1)三角形
①三角形的定义:由三条线段首尾互相连接围成的图形叫三角形。
②三角形的分类:
(2)四边形
①四边形的定义:由四条线段依次连接围成的封闭图形叫四边形。
②四边形的分类:
(3)特征及周长、面积计算公式:
第六章 统计图表
知识要点
1、统计表
(1)统计表:把收集到的资料进行数据整理后制成表格,用来分析情况,反映问题。这种表格叫做统计表,它一般分为单式统计表、复式统计表和百分数统计表三种类型。
(2)制作统计表:制作统计表时,首先要搜集数据,整理数据,然后根据资料和制表要求确定表的格式和项目。一般统计表包括总标题(表的名称)、纵标目(每一纵栏的标题)、横标目(每一横栏的标题)、数据资料栏等,此外还应注明数量单位和制表日期,必要时,还要注明制表人。
2、统计图
(1)统计图:用点、线、面等来表示相关联的量之间数量关系的图形,叫做统计图。常见的统计图有条形统计图、折线统计图和扇形统计图三种。
(2)条形统计图:
①条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按照一定的顺序排列起来。从条形统计图中很容易看出各种数量的多少。
②条形统计图的绘制方法:
a.整理数据;b.画出纵轴和横轴,用一个长度单位表示一定的数量;c.根据数量的多少画成宽窄一样,长短不同的直条,并按一定顺序排列起来;d.写出统计图的名称和制图日期,并标出图例。
(3)折线统计图
①折线统计图是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。它不但可表示数量的多少,而且能够清楚地表示出数量增减变化的情况。
②折线统计图的绘制方法:
a.整理数据;
b.画出纵轴和横轴,用一个长度单位表示一定的数量;
c.根据数量的多少描出各点,再把各点用线段顺次连接起来;
d.写出统计图的名称和制图日期,并标出图例。

‘陆’ 小学人教版五六年级数学、英语、语文知识要点

你到书店看一下小学升初中的考试题
开学dE
考试一般老师都在上面抽题的!

‘柒’ 小学一至六年级数学知识点

小学数学知识点总结
一年级上册
1、 数一数(1~10)
2、 比一比(多少、长短、高矮、)
3、 1~5的认识和加减法(比大小、第几、几和几、加法、减法、0的认识)
4、 认识物体和图形(长方体、正方体、圆柱、球、长方形、正方形、三角形、圆)
5、 分类
6、 6~10的认识和加减法(连加、连减、加减混合)
7、 11~20个数的认识(数位的认识)
8、 认识钟表(整时、半时)
9、 20以内的进位加法 (凑十、9、8、7、6加几,5、4、3、2加几)
10、 总复习
一年级下册
1、 位置(上下、左右、前后、位置)
2、 20以内的退位加法
3、 图形的拼组
4、 100以内数的认识(数数、数的组成,读数、写数,数的顺序、比较大小、整十数加一位数及相应的减法)
5、 认识人民币(简单的计算)
6、 100以内的加法和减法(一)(1、整十数加减整十数2、两位数加一位数和整十数3、两位数减一位数和整十数)
7、 认识时间
8、 找规律
9、 统计(条形统计图)
10、 总复习
二年级上册
1、 长度单位
2、 100以内的加法和减法(二)(1、两位数加两位数、不进位加、进位加2、两位数减两位数、不退位减、退位减3、连加、连减和加减混合、加减混合、加减估算)
3、 角的初步认识
4、 表内乘法(一)(1、乘法的初步认识2、2~6的乘法口诀)
5、 观察物体
6、 表内乘法(二)(7、8、9的乘法口诀)
7、 统计
8、 数学广角
9、 总复习
二年级下册
1、 解决问题
2、 表内除法(一)(1、除法的初步认识、平均分、除法2、用2~6的乘法口诀求商)
3、 图形与转换(锐角和钝角、平移和旋转)
4、 表内除法(二)(用7、8、9的乘法口诀求商、解决问题)
5、 万以内数的认识(1000以内数的认识、10000以内数的认识、整百整千数的加减法)
6、 克和千克
7、 万以内的加法和减法(一)
8、 统计
9、 找规律
10、 总复习
三年级上册
1、 测量(毫米、分米的认识,千米的认识,吨的认识)
2、 万以内的加法和减法(二)(1、加法,2、减法3、加减法的验算)
3、 四边形(四边形、平行四边形、周长、长方形和正方形的周长、估计)
4、 有余数的除法
5、 时、分、秒(秒的认识、时间的计算)
6、 多位数乘一位数(1、口算乘法,2、笔算乘法)
7、 分数的初步认识(1、分数的初步认识<几分之一、几分之几>,2、分数的简单计算)
8、 可能性
9、 数学广角
10、 总复习
三年级下册
1、 位置和方向
2、 除数是一位数的除法(1、口算除法,2、笔算乘法)
3、 统计(1、简单的数据分析,2、平均数)
4、 年、月、日(年月日、24小时计时法)
5、 两位数乘两位数(1、口算乘法,2、笔算乘法)
6、 面积(面积和面积单位、长方形和正方形面积的计算、面积单位间的进率、公顷与平方千米)
7、 小数的初步认识(认识小数、简单的小数加减法)
8、 解决问题
9、 数学广角
10、 总复习
四年级上册
1、 大数的认识(亿以内数的认识、数的产生、亿以上数的认识、计算工具的认识、用计算器计算)
2、 角的度量(直线、射线和角,角的度量、角的分类、画角)
3、 三位数乘两位数(1、口算乘法,2笔算乘法)
4、 平行四边形和梯形(垂直与平行、平行四边形与梯形)
5、 除数是两位数的除法(1、口算除法,2、笔算除法)
6、 统计
7、 数学广角(烙饼问题)
8、 总复习
四年级下册
1、 四则运算
2、 位置和方向
3、 运算定律与简便计算(1、加法运算定律,2、乘法运算定律,3、简便计算)
4、 小数的意义和性质(1、小数的意义和读写法<小数的产生和意义、小数的读法和写法>,2、小数的性质和大小比较<小数的大小比较、小数点移动>,3、生活中的小数,4求一个小数的近似数)
5、 三角形(三角形的特性、三角形的分类、三角形的内角和、图形的拼组)
6、 小数的加法和减法
7、 统计
8、 数学广角
9、 总复习
五年级上册
1、 小数乘法(小数乘整数、小数乘小数、积的近似数,连乘、乘加、乘减,整数乘法定律推广到小数)
2、 小数除法(小数除以整数、一个数除以小数、商的近似数、循环小数、用计算器探索规律、解决问题)
3、 观察物体
4、 简易方程(1、用字母表示数,1、解建议方程<方程的意义、解方程、稍复杂的方程>)
5、 多边形的面积(平行四边形的面积、三角形的面积、梯形的面积、组合图形的面积)
6、 统计与可能性
7、 数学广角
8、 总复习
五年级下册
1、 图形的变换(轴对称、旋转、欣赏设计)
2、 因数与倍数(1、因数和倍数,2、2、5、3倍数的特征,指数和和数)
3、 长方体和正方体(1、长方体和正方体的认识,2、长方体和正方体的表面积,3、长方体和正方体的体积、体积单位间的进率、容积和容积单位)
4、 分数的意义和性质(1、分数的意义<分数的产生\分数的意义\分数与除法>,2、真分数和假分数,3、分数的基本性质,4、约分<最大公因数、约分>,5、通分<最小公倍数、通分>,6、分数和小数的互化)
5、 分数的加法和减法(1、同分母分数加减法,2、异分母分数加减法,3、分数加减混合运算)
6、 统计
7、 数学广角
8、 总复习
六年级上册
1、 位置
2、 分数的乘法(1、分数乘法,2、解决问题,3、倒数的认识)
3、 分数的除法(1、分数的除法,2、解决问题,3、比和比的应用<比的意义、比的基本性质、比的应用>)
4、 圆(1、认识圆,2、圆的周长,3、圆的面积)
5、 百分数(1、百分数的意义和写法,2、百分数和分数、小数的互化,3、用百分数解决问题、折扣、纳税、合理存款)
6、 统计
7、 数学广角
8、 总复习
六年级下册
1、 负数
2、 圆柱与圆锥(1、圆柱<圆柱的认识、圆柱的表面积、圆柱的体积>,2、圆锥<圆锥的认识、圆锥的体积>)
3、 比例(1、比例的意义和基本性质<比例的意义、比例的基本性质、解比例>,2、正比例和反比例的意义<成正比例的量、成反比例的量>3、比例的应用<比例尺、图形的放大与缩小、用比例解决问题>)
4、 统计
5、 数学广角
6、 整理和复习(1、数和代数、数的运算、式与方程、常见的量、比和比例,2、空间与图形<图形的认识和测量、图形与变换、图形与位置>、3、统计与可能性,4、综合应用)
以上回答你满意么?

‘捌’ 小学数学知识数怎么画四五六年级的也行,就是能很好的归纳出小学数学的基本知识点

知识树是今年来比较流行的知识点归类的方法之一。实际和原来的画括号是相同的。仅仅是形象化了而已。
比如,树干表示 “数”,第一级分叉表示:整数,分数,小数。第三级分叉,整数的可以分为自然数和负整数,分数再分成分数和百分数,小数分成有限小数和无限小数,接着第四级继续分......
这是一种系统梳理知识的过程,每一步中都要具体理解相关的知识点,包括概念、性质、特点等等。
具体在学习使用时,先学画分类比较少的,等学会了就都可以用了。

‘玖’ 人教版小学六年级数学上册各单元知识点整理归纳总结

《小学苏教数学一二三四五六上册知识点归纳》网络网盘资源免费下载

链接:https://pan..com/s/1C0FyvStiI3Q1lrSHYNkUsw提取码:9wi8

小学苏教数学一二三四五六上册知识点归纳|一年级上册数学期末复习知识点归纳(17页).doc|五年级上册数学数学期末复习知识点归纳(7页).doc|五年级上册数学期末复习知识点归纳(23页)(教师版).docx|五年级上册数学期末复习知识点归纳(21页)(学生版).docx|四年级上册数学期末复习知识点归纳(20页)(教师版).docx|四年级上册数学期末复习知识点归纳(18页)(学生版).docx|三年级上册数学数学期末复习知识点归纳(3页).doc|三年级上册数学期末复习知识点归纳(22页)(教师版).docx|三年级上册数学期末复习知识点归纳(20页)(学生版).docx|六年级上册数学期末复习知识点归纳(17页)(教师版).doc|六年级上册数学期末复习期末知识点归纳(4页).doc|六年级上册期末复习期末知识点归纳(16页)(学生版).doc|二年级上册数学期末复习知识点归纳(3页).docx

‘拾’ 小学六年级数学必考知识点有哪些

小学六年级数学必考知识点:

一、分数

1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。

3.分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。

二、百分数

1、定义:百分数是表示一个数是另一个数的百分之几。百分数也叫做百分率或百分比。百分数通常不写成分数的形式,而在原来的分子后面加上百分号“%”来表示。例如:百分之九十,90%;百分之一百零八点五,108.5%......百分数在工农业生产、科学技术、各种实验中有着十分广泛的应用,特别是在进行调查统计、分析比较时,经常要用到百分数。

2、百分数的意义:是能在生产生活中能将事物占总体的比例形容的更加完整,让省去许多不必要的言语,简易而恰当。

三、分数除法

1、分数除法:分数除法是分数乘法的逆运算。

2、分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

四。比例

1、在比例里,两个外项的乘积等于两个内项的乘积。比例的性质用于解比例。

2、比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式子是叫做比例。比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。因此,比和比例的意义也有所不同。