当前位置:首页 » 基础知识 » 八年级上数学前二章的知识点
扩展阅读
腾讯动漫收费多少钱 2025-01-16 21:06:53
轩逸经典自动全险多少钱 2025-01-16 21:05:08
高中同学分离了怎么办 2025-01-16 20:51:11

八年级上数学前二章的知识点

发布时间: 2025-01-16 18:49:03

1. 初二数学上册书知识点总结

学习八年级数学知识点的时间不多。学习会使你获得许多你成长所必需的“能源”,以下是我为大家整理的初二数学上册书知识点总结,希望你们喜欢。

初二数学上册书知识点总结1-40

1 全等三角形的对应边、对应角相等 ¬

2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 ¬

3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 ¬

4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 ¬

5 边边边公理(SSS) 有三边对应相等的两个三角形全等 ¬

6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 ¬

7 定理1 在角的平分线上的点到这个角的两边的距离相等 ¬

8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 ¬

9 角的平分线是到角的两边距离相等的所有点的集合 ¬

10 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) ¬

21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 ¬

22 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 ¬

23 推论3 等边三角形的各角都相等,并且每一个角都等于60° ¬

24 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) ¬

25 推论1 三个角都相等的三角形是等边三角形 ¬

26 推论 2 有一个角等于60°的等腰三角形是等边三角形 ¬

27 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 ¬

28 直角三角形斜边上的中线等于斜边上的一半 ¬

29 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 ¬

30 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 ¬

31 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 ¬

32 定理1 关于某条直线对称的两个图形是全等形 ¬

33 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 ¬

34定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 ¬

35逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 ¬

36勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 ¬

37勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形 ¬

38定理 四边形的内角和等于360° ¬

39四边形的外角和等于360° ¬

40多边形内角和定理 n边形的内角的和等于(n-2)×180° ¬

初二数学上册书知识点总结41-80

41推论 任意多边的外角和等于360° ¬

42平行四边形性质定理1 平行四边形的对角相等 ¬

43平行四边形性质定理2 平行四边形的对边相等 ¬

44推论 夹在两条平行线间的平行线段相等 ¬

45平行四边形性质定理3 平行四边形的对角线互相平分 ¬

46平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 ¬

47平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 ¬

48平行四边形判定定理3 对角线互相平分的四边形是平行四边形 ¬

49平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 ¬

50矩形性质定理1 矩形的四个角都是直角 ¬

51矩形性质定理2 矩形的对角线相等 ¬

52矩形判定定理1 有三个角是直角的四边形是矩形 ¬

53矩形判定定理2 对角线相等的平行四边形是矩形 ¬

54菱形性质定理1 菱形的四条边都相等 ¬

55菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 ¬

56菱形面积=对角线乘积的一半,即S=(a×b)÷2 ¬

57菱形判定定理1 四边都相等的四边形是菱形 ¬

58菱形判定定理2 对角线互相垂直的平行四边形是菱形 ¬

59正方形性质定理1 正方形的四个角都是直角,四条边都相等 ¬

60正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 ¬

61定理1 关于中心对称的两个图形是全等的 ¬

62定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 ¬

63逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 ¬

点平分,那么这两个图形关于这一点对称 ¬

64等腰梯形性质定理 等腰梯形在同一底上的两个角相等 ¬

65等腰梯形的两条对角线相等 ¬

66等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 ¬

67对角线相等的梯形是等腰梯形 ¬

68平行线等分线段定理 如果一组平行线在一条直线上截得的线段 ¬

相等,那么在其他直线上截得的线段也相等 ¬

69 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 ¬

70 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 ¬

三边 ¬

71 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 ¬

的一半 ¬

72 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 ¬

一半 L=(a+b)÷2 S=L×h ¬

73 (1)比例的基本性质 如果a:b=c:d,那么ad=bc ¬

如果ad=bc,那么a:b=c:d ¬

74 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d ¬

75 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 ¬

(a+c+…+m)/(b+d+…+n)=a/b ¬

76 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 ¬

线段成比例 ¬

77 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 ¬

78 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 ¬

79 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 ¬

80 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 ¬

初二数学上册书知识点总结81-136

81 相似三角形判定定理1 两角对应相等,两三角形相似(ASA) ¬

82 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 ¬

83 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS) ¬

84 判定定理3 三边对应成比例,两三角形相似(SSS) ¬

85 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三 ¬

角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 ¬

86 性质定理1 相似三角形对应高的比,对应中线的比与对应角平 ¬

分线的比都等于相似比 ¬

87 性质定理2 相似三角形周长的比等于相似比 ¬

88 性质定理3 相似三角形面积的比等于相似比的平方 ¬

89 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 ¬

于它的余角的正弦值 ¬

90任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等 ¬

于它的余角的正切值 ¬

91圆是定点的距离等于定长的点的集合 ¬

92圆的内部可以看作是圆心的距离小于半径的点的集合 ¬

93圆的外部可以看作是圆心的距离大于半径的点的集合 ¬

94同圆或等圆的半径相等 ¬

95到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半 ¬

径的圆 ¬

96和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直 ¬

平分线 ¬

97到已知角的两边距离相等的点的轨迹,是这个角的平分线 ¬

98到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距 ¬

离相等的一条直线 ¬

99定理 不在同一直线上的三点确定一个圆. ¬

100垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 ¬

101推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ¬

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ¬

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 ¬

102推论2 圆的两条平行弦所夹的弧相等 ¬

103圆是以圆心为对称中心的中心对称图形 ¬

104定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 ¬

相等,所对的弦的弦心距相等 ¬

105推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 ¬

弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 ¬

106定理 一条弧所对的圆周角等于它所对的圆心角的一半 ¬

107推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 ¬

108推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 ¬

对的弦是直径 ¬

109推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 ¬

110定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 ¬

的内对角 ¬

111①直线L和⊙O相交 d

②直线L和⊙O相切 d=r ¬

③直线L和⊙O相离 d>r ¬

112切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 ¬

113切线的性质定理 圆的切线垂直于经过切点的半径 ¬

114推论1 经过圆心且垂直于切线的直线必经过切点 ¬

115推论2 经过切点且垂直于切线的直线必经过圆心 ¬

116切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, ¬

圆心和这一点的连线平分两条切线的夹角 ¬

117圆的外切四边形的两组对边的和相等 ¬

118弦切角定理 弦切角等于它所夹的弧对的圆周角 ¬

119推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 ¬

120相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积 ¬

相等 ¬

121推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的 ¬

两条线段的比例中项 ¬

122切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割 ¬

线与圆交点的两条线段长的比例中项 ¬

123推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 ¬

124如果两个圆相切,那么切点一定在连心线上 ¬

125①两圆外离 d>R+r ②两圆外切 d=R+r ¬

③两圆相交 R-r<d r) ¬</d

④两圆内切 d=R-r(R>r) ⑤两圆内含d r) ¬

126定理 相交两圆的连心线垂直平分两圆的公共弦 ¬

127定理 把圆分成n(n≥3): ¬

⑴依次连结各分点所得的多边形是这个圆的内接正n边形 ¬

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 ¬

128定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 ¬

129正n边形的每个内角都等于(n-2)×180°/n ¬

130定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 ¬

131正n边形的面积Sn=pnrn/2 p表示正n边形的周长 ¬

132正三角形面积√3a/4 a表示边长 ¬

133如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 ¬

360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4 ¬

134弧长计算公式:L=n兀R/180 ¬

135扇形面积公式:S扇形=n兀R^2/360=LR/2 ¬

136内公切线长= d-(R-r) 外公切线长= d-(R+r)¬

2. 八年级上册数学书蓝字知识点

第一章 一元一次不等式和一元一次不等式组一、一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。能使不等式成立的未知数的值,叫做不等式的解. 不等式的解不唯一,把所有满足不等式的解集合在一起,构成不等式的解集. 求不等式解集的过程叫解不等式.由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组不等式组的解集 :一元一次不等式组各个不等式的解集的公共部分。等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式. 基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.二、不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变. (注:移项要变号,但不等号不变。)性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.不等式的基本性质<1>、 若a>b, 则a+c>b+c;<2>、若a>b, c>0 则ac>bc若c<0, 则ac<bc 不等式的其他性质:反射性:若a>b,则b<a;传递性:若a>b,且b>c,则a>c三、解不等式的步骤:1、去分母; 2、去括号; 3、移项合并同类项; 4、系数化为1。 四、解不等式组的步骤:1、解出不等式的解集2、在同一数轴表示不等式的解集。 五、列一元一次不等式组解实际问题的一般步骤:(1) 审题;(2)设未知数,找(不等量)关系式;(3)设元,(根据不等量)关系式列不等式(组)(4)解不等式组;检验并作答。六、常考题型: 1、 求4x-6 7x-12的非负数解. 2、已知3(x-a)=x-a+1r的解适合2(x-5) 8a,求a 的范围.3、当m取何值时,3x+m-2(m+2)=3m+x的解在-5和5之间。 第二章 分解因式一、公式:1、 ma+mb+mc=m(a+b+c)2、a2-b2=(a+b)(a-b)3、a2±2ab+b2=(a±b)2 二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。 1、把几个整式的积化成一个多项式的形式,是乘法运算.2、把一个多项式化成几个整式的积的形式,是因式分解.3、ma+mb+mc m(a+b+c)4、因式分解与整式乘法是相反方向的变形。三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式. 找公因式的一般步骤:(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.四、分解因式的一般步骤为:(1)若有“-”先提取“-”,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式. 分解因式的方法:1、提公因式法。2、运用公式法。 第三章 分式注:1°对于任意一个分式,分母都不能为零. 2°分式与整式不同的是:分式的分母中含有字母,整式的分母中不含字母. 3°分式的值为零含两层意思:分母不等于零;分子等于零。( 中B≠0时,分式有意义;分式 中,当B=0分式无意义;当A=0且B≠0时,分式的值为零。)常考知识点:1、分式的意义,分式的化简。2、分式的加减乘除运算。3、分式方程的解法及其利用分式方程解应用题。第四章 相似图形一、 定义 表示两个比相等的式子叫比例.如果a与b的比值和c与d的比值相等,那么 或a∶b=c∶d,这时组成比例的四个数a,b,c,d叫做比例的项,两端的两项叫做外项,中间的两项叫做内项.即a、d为外项,c、b为内项. 如果选用同一个长度单位量得两条线段AB、CD的长度分别是m、n,那么就说这两条线段的比(ratio)AB∶CD=m∶n,或写成 = ,其中,线段AB、CD分别叫做这两个线段比的前项和后项.如果把 表示成比值k,则 =k或AB=k??CD. 四条线段a,b,c,d中,如果a与b的比等于c与d的比,即 ,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段. 黄金分割的定义:在线段AB上,点C把线段AB分成两条线段AC和BC,如果 ,那么称线段AB被点C黄金分割(golden section),点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.其中 ≈0.618. 引理:平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例. 相似多边形: 对应角相等,对应边成比例的两个多边形叫做相似多边形. 相似多边形:各角对应相等、各边对应成比例的两个多边形叫做相似多边形。 相似比:相似多边形对应边的比叫做相似比.二、比例的基本性质:1、若ad=bc(a,b,c,d都不等于0),那么 .如果(b,d都不为0),那么ad=bc.2、合比性质:如果 ,那么 。3、等比性质:如果 =…= (b+d+…+n≠0),那么 。4、更比性质:若 那么 。5、反比性质:若 那么 三、求两条线段的比时要注意的问题:(1)两条线段的长度必须用同一长度单位表示,如果单位长度不同,应先化成同一单位,再求它们的比;(2)两条线段的比,没有长度单位,它与所采用的长度单位无关;(3)两条线段的长度都是正数,所以两条线段的比值总是正数.四、相似三角形(多边形)的性质:相似三角形对应角相等,对应边成比例,相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比。相似多边形的周长比等于相似比,面积比等于相似比的平方.五、全等三角形的判定方法有:ASA,AAS,SAS,SSS,直角三角形除此之外再加HL六、相似三角形的判定方法,判断方法有:1.三边对应成比例的两个三角形相似;2.两角对应相等的两个三角形相似;3.两边对应成比例且夹角相等;4.定义法: 对应角相等,对应边成比例的两个三角形相似。5、定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。 在特殊的三角形中,有的相似,有的不相似.1、两个全等三角形一定相似.2、两个等腰直角三角形一定相似.3、两个等边三角形一定相似.4、两个直角三角形和两个等腰三角形不一定相似.七、位似图形上任意一对对应点到位似中心的距离之比等于位似比。 如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫位似中心,这时的相似比又称为位似比。八、常考知识点:1、比例的基本性质,黄金分割比,位似图形的性质。2、相似三角形的性质及判定。相似多边形的性质。第五章 数据的收集与处理(1)普查的定义:这种为了一定目的而对考察对象进行的全面调查,称为普查.(2)总体:其中所要考察对象的全体称为总体。(3)个体:组成总体的每个考察对象称为个体(4)抽样调查:(sampling investigation):从总体中抽取部分个体进行调查,这种调查称为抽样调查.(5)样本(sample):其中从总体中抽取的一部分个体叫做总体的一个样本。(6) 当总体中的个体数目较多时,为了节省时间、人力、物力,可采用抽样调查.为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性.还要注意关注样本的大小. (7)我们称每个对象出现的次数为频数。而每个对象出现的次数与总次数的比值为频率。数据波动的统计量:极差:指一组数据中最大数据与最小数据的差。方差:是各个数据与平均数之差的平方的平均数。标准差:方差的算术平方根。识记其计算公式。一组数据的极差,方差或标准差越小,这组数据就越稳定。还要知平均数,众数,中位数的定义。刻画平均水平用:平均数,众数,中位数。 刻画离散程度用:极差,方差,标准差。常考知识点:1、作频数分布表,作频数分布直方图。2、利用方差比较数据的稳定性。3、平均数,中位数,众数,极差,方差,标准差的求法。3、频率,样本的定义 第六章 证明一、对事情作出判断的句子,就叫做命题. 即:命题是判断一件事情的句子。一般情况下:疑问句不是命题.图形的作法不是命题. 每个命题都有条件(condition)和结论(conclusion)两部分组成. 条件是已知的事项,结论是由已知事项推断出的事项. 一般地,命题都可以写成“如果……,那么……”的形式.其中“如果”引出的部分是条件,“那么”引出的部分是结论. 要说明一个命题是一个假命题,通常可以举出一个例子,使它具备命题的条件,而不具有命题的结论.这种例子称为反例。二、三角形内角和定理:三角形三个内角的和等于180度。1、证明三角形内角和定理的思路是将原三角形中的三个角“凑”到一起组成一个平角.一般需要作辅助线.既可以作平行线,也可以作一个角等于三角形中的一个角.2、三角形的外角与它相邻的内角是互为补角.三、三角形的外角与它不相邻的内角关系是:(1)三角形的一个外角等于和它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个和它不相邻的内角.四、证明一个命题是真命题的基本步骤是:(1)根据题意,画出图形.(2)根据条件、结论,结合图形,写出已知、求证.(3)经过分析,找出由已知推出求证的途径,写出证明过程. 在证明时需注意:(1)在一般情况下,分析的过程不要求写出来.(2)证明中的每一步推理都要有根据. 如果两条直线都和第三条直线平行,那么这两条直线也相互平行。30。所对的直角边是斜边的一半。斜边上的高是斜边的一半。常考知识点:1、三角形的内角和定理,及三角形外角定理。2两直线平行的性质及判定。命题及其条件和结论,真假命题的定义。(从网上经过反复比较后给你找的,采纳哦!)%D%A

3. 八年级数学上册段考哪章重点

1.全等三角形的四种判定方法会出大题

2.轴对称图形会出一个选择题

3.垂直平分线的判定和性质,

4.等腰三角形等边对等角,三线合一

5.用坐标表示轴对称.

6算一个数的平方根

7.有理数和无理数的判别会考选择题

8.根据所给数据写它的函数关系式

9.判断哪些是一次函数形式

10.函数中自变量的取值范围

11.函数图象的画法

12.判别正比例函数图象

13.用函数图象看一元一次方程的解,用函数图象看二元一次方程组

14.整式乘法:同底数幂相乘,幂的乘方,积的乘方综合一个计算题

15.单项式与多项式相乘,多项式与多项式相乘出计算题

16.平方差公式,完全平方公式的简便计算

17.整式除法:同底数幂相除,任何不等于0的数的0次幂都等于1(必考)

18.单项式相除,多项式除以单项式

19.因式分解:找一个整式的公因式,公式法化简

  • 希望你能考好,有什么问题尽管问

4. 求北师大版八年级数学上册知识点总结

北师大版《数学》(八年级上册)知识点总结
第一章 勾股定理
1、勾股定理
直角三角形两直角边a,b的平方和等于斜边c的平方,即
2、勾股定理的逆定理
如果三角形的三边长a,b,c有关系 ,那么这个三角形是直角三角形。
3、勾股数:满足 的三个正整数,称为勾股数。
第二章 实数
一、实数的概念及分类
1、实数的分类
正有理数
有理数 零 有限小数和无限循环小数
实数 负有理数
正无理数
无理数 无限不循环小数
负无理数
2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:
(1)开方开不尽的数,如 等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如 +8等;
(3)有特定结构的数,如0.1010010001…等;
(4)某些三角函数值,如sin60o等
二、实数的倒数、相反数和绝对值
1、相反数
实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。
2、绝对值
在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|≥0)。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
3、倒数
如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。
4、数轴
规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算
三、平方根、算数平方根和立方根
1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0。
表示方法:记作“ ”,读作根号a。
性质:正数和零的算术平方根都只有一个,零的算术平方根是零。
2、平方根:一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。
表示方法:正数a的平方根记做“ ”,读作“正、负根号a”。
性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
开平方:求一个数a的平方根的运算,叫做开平方。

注意 的双重非负性:
0
3、立方根
一般地,如果一个数x的立方等于a,即x3=a那么这个数x就叫做a 的立方根(或三次方根)。
表示方法:记作
性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意: ,这说明三次根号内的负号可以移到根号外面。
四、实数大小的比较
1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
2、实数大小比较的几种常用方法
(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
(2)求差比较:设a、b是实数,

(3)求商比较法:设a、b是两正实数,
(4)绝对值比较法:设a、b是两负实数,则 。
(5)平方法:设a、b是两负实数,则 。
五、算术平方根有关计算(二次根式)
1、含有二次根号“ ”;被开方数a必须是非负数。
2、性质:
(1)

(2)

(3) ( )
(4) ( )
3、运算结果若含有“ ”形式,必须满足:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式
六、实数的运算
(1)六种运算:加、减、乘、除、乘方 、开方
(2)实数的运算顺序
先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
(3)运算律
加法交换律
加法结合律
乘法交换律
乘法结合律
乘法对加法的分配律
第三章 图形的平移与旋转
一、平移
1、定义
在平面内,将一个图形整体沿某方向移动一定的距离,这样的图形运动称为平移。
2、性质
平移前后两个图形是全等图形,对应点连线平行且相等,对应线段平行且相等,对应角相等。
二、旋转
1、定义
在平面内,将一个图形绕某一定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角叫做旋转角。
2、性质
旋转前后两个图形是全等图形,对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角等于旋转角。
第四章 四边形性质探索
一、四边形的相关概念
1、四边形
在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。
2、四边形具有不稳定性
3、四边形的内角和定理及外角和定理
四边形的内角和定理:四边形的内角和等于360°。
四边形的外角和定理:四边形的外角和等于360°。
推论:多边形的内角和定理:n边形的内角和等于 180°;
多边形的外角和定理:任意多边形的外角和等于360°。
6、设多边形的边数为n,则多边形的对角线共有 条。从n边形的一个顶点出发能引(n-3)条对角线,将n边形分成(n-2)个三角形。
二、平行四边形
1、平行四边形的定义
两组对边分别平行的四边形叫做平行四边形。
2、平行四边形的性质
(1)平行四边形的对边平行且相等。
(2)平行四边形相邻的角互补,对角相等
(3)平行四边形的对角线互相平分。
(4)平行四边形是中心对称图形,对称中心是对角线的交点。
常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。
(2)推论:夹在两条平行线间的平行线段相等。
3、平行四边形的判定
(1)定义:两组对边分别平行的四边形是平行四边形
(2)定理1:两组对角分别相等的四边形是平行四边形
(3)定理2:两组对边分别相等的四边形是平行四边形
(4)定理3:对角线互相平分的四边形是平行四边形
(5)定理4:一组对边平行且相等的四边形是平行四边形
4、两条平行线的距离
两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。
平行线间的距离处处相等。
5、平行四边形的面积
S平行四边形=底边长×高=ah
三、矩形
1、矩形的定义
有一个角是直角的平行四边形叫做矩形。
2、矩形的性质
(1)矩形的对边平行且相等
(2)矩形的四个角都是直角
(3)矩形的对角线相等且互相平分
(4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。
3、矩形的判定
(1)定义:有一个角是直角的平行四边形是矩形
(2)定理1:有三个角是直角的四边形是矩形
(3)定理2:对角线相等的平行四边形是矩形
4、矩形的面积
S矩形=长×宽=ab
四、菱形
1、菱形的定义
有一组邻边相等的平行四边形叫做菱形
2、菱形的性质
(1)菱形的四条边相等,对边平行
(2)菱形的相邻的角互补,对角相等
(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角
(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。
3、菱形的判定
(1)定义:有一组邻边相等的平行四边形是菱形
(2)定理1:四边都相等的四边形是菱形
(3)定理2:对角线互相垂直的平行四边形是菱形
4、菱形的面积
S菱形=底边长×高=两条对角线乘积的一半
五、正方形 (3~10分)
1、正方形的定义
有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质
(1)正方形四条边都相等,对边平行
(2)正方形的四个角都是直角
(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角
(4)正方形既是中心对称图形又是轴对称图形;对称中心是对角线的交点;对称轴有四条,是对角线所在的直线和对边中点连线所在的直线。
3、正方形的判定
判定一个四边形是正方形的主要依据是定义,途径有两种:
先证它是矩形,再证它是菱形。
先证它是菱形,再证它是矩形。
4、正方形的面积
设正方形边长为a,对角线长为b
S正方形=
六、梯形
(一) 1、梯形的相关概念
一组对边平行而另一组对边不平行的四边形叫做梯形。
梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底。
梯形中不平行的两边叫做梯形的腰。
梯形的两底的距离叫做梯形的高。
2、梯形的判定
(1)定义:一组对边平行而另一组对边不平行的四边形是梯形。
(2)一组对边平行且不相等的四边形是梯形。
(二)直角梯形的定义:一腰垂直于底的梯形叫做直角梯形。
一般地,梯形的分类如下:
一般梯形
梯形 直角梯形
特殊梯形
等腰梯形
(三)等腰梯形
1、等腰梯形的定义
两腰相等的梯形叫做等腰梯形。
2、等腰梯形的性质
(1)等腰梯形的两腰相等,两底平行。
(2)等腰梯形同一底上的两个角相等,同一腰上的两个角互补。
(3)等腰梯形的对角线相等。
(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。
3、等腰梯形的判定
(1)定义:两腰相等的梯形是等腰梯形
(2)定理:在同一底上的两个角相等的梯形是等腰梯形
(3)对角线相等的梯形是等腰梯形。(选择题和填空题可直接用)
(四)梯形的面积
(1)如图,
(2)梯形中有关图形的面积:
① ;
② ;

七、有关中点四边形问题的知识点:
(1)顺次连接任意四边形的四边中点所得的四边形是平行四边形;
(2)顺次连接矩形的四边中点所得的四边形是菱形;
(3)顺次连接菱形的四边中点所得的四边形是矩形;
(4)顺次连接等腰梯形的四边中点所得的四边形是菱形;
(5)顺次连接对角线相等的四边形四边中点所得的四边形是菱形;
(6)顺次连接对角线互相垂直的四边形四边中点所得的四边形是矩形;
(7)顺次连接对角线互相垂直且相等的四边形四边中点所得的四边形是正方形;
八、中心对称图形
1、定义
在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
2、性质
(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定
如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
九、四边形、矩形、菱形、正方形、梯形、等腰梯形、直角梯形的关系图:

第五章 位置的确定
一、 在平面内,确定物体的位置一般需要两个数据。
二、平面直角坐标系及有关概念
1、平面直角坐标系
在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。
3、点的坐标的概念
对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。
点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当 时,(a,b)和(b,a)是两个不同点的坐标。
平面内点的与有序实数对是一一对应的。
4、不同位置的点的坐标的特征
(1)、各象限内点的坐标的特征
点P(x,y)在第一象限
点P(x,y)在第二象限
点P(x,y)在第三象限
点P(x,y)在第四象限
(2)、坐标轴上的点的特征
点P(x,y)在x轴上 ,x为任意实数
点P(x,y)在y轴上 ,y为任意实数
点P(x,y)既在x轴上,又在y轴上 x,y同时为零,即点P坐标为(0,0)即原点
(3)、两条坐标轴夹角平分线上点的坐标的特征
点P(x,y)在第一、三象限夹角平分线(直线y=x)上 x与y相等
点P(x,y)在第二、四象限夹角平分线上 x与y互为相反数
(4)、和坐标轴平行的直线上点的坐标的特征
位于平行于x轴的直线上的各点的纵坐标相同。
位于平行于y轴的直线上的各点的横坐标相同。
(5)、关于x轴、y轴或原点对称的点的坐标的特征
点P与点p’关于x轴对称 横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,-y)
点P与点p’关于y轴对称 纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(-x,y)
点P与点p’关于原点对称 横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(-x,-y)
(6)、点到坐标轴及原点的距离
点P(x,y)到坐标轴及原点的距离:
(1)点P(x,y)到x轴的距离等于
(2)点P(x,y)到y轴的距离等于
(3)点P(x,y)到原点的距离等于
三、坐标变化与图形变化的规律:

坐标( x , y )的变化 图形的变化
x × a或 y × a 被横向或纵向拉长(压缩)为原来的 a倍
x × a, y × a 放大(缩小)为原来的 a倍
x ×( -1)或 y ×( -1) 关于 y 轴或 x 轴对称
x ×( -1), y ×( -1) 关于原点成中心对称
x +a或 y+ a 沿 x 轴或 y 轴平移 a个单位
x +a, y+ a 沿 x 轴平移 a个单位,再沿 y 轴平移 a个单
第六章 一次函数
一、函数:
一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
二、自变量取值范围
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。
三、函数的三种表示法及其优缺点
(1)关系式(解析)法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图象法
用图象表示函数关系的方法叫做图象法。
四、由函数关系式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
五、正比例函数和一次函数
1、正比例函数和一次函数的概念
一般地,若两个变量x,y间的关系可以表示成 (k,b为常数,k 0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。
特别地,当一次函数 中的b=0时(即 )(k为常数,k 0),称y是x的正比例函数。
2、一次函数的图像: 所有一次函数的图像都是一条直线
3、一次函数、正比例函数图像的主要特征:
一次函数 的图像是经过点(0,b)的直线;正比例函数 的图像是经过原点(0,0)的直线。
k的符号 b的符号 函数图像 图像特征
k>0 b>0 y

0 x

图像经过一、二、三象限,y随x的增大而增大。
b<0 y

0 x

图像经过一、三、四象限,y随x的增大而增大。
K<0 b>0 y

0 x

图像经过一、二、四象限,y随x的增大而减小
b<0
y

0 x

图像经过二、三、四象限,y随x的增大而减小。
注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。
4、正比例函数的性质
一般地,正比例函数 有下列性质:
(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;
(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。
5、一次函数的性质
一般地,一次函数 有下列性质:
(1)当k>0时,y随x的增大而增大
(2)当k<0时,y随x的增大而减小
6、正比例函数和一次函数解析式的确定
确定一个正比例函数,就是要确定正比例函数定义式 (k 0)中的常数k。确定一个一次函数,需要确定一次函数定义式 (k 0)中的常数k和b。解这类问题的一般方法是待定系数法。
7、一次函数与一元一次方程的关系:
任何一个一元一次方程都可转化为:kx+b=0(k、b为常数,k≠0)的形式. 而一次函数解析式形式正是y=kx+b(k、b为常数,k≠0).当函数值为0时,即kx+b=0就与一元一次方程完全相同.
结论:由于任何一元一次方程都可转化为kx+b=0(k、b为常数,k≠0)的形式.所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值.
从图象上看,这相当于已知直线y=kx+b确定它与x轴交点的横坐标值.
第七章 二元一次方程组
1、二元一次方程
含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。
2、二元一次方程的解
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
3、二元一次方程组
含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
4二元一次方程组的解
二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。
5、二元一次方程组的解法
(1)代入(消元)法(2)加减(消元)法
6、一次函数与二元一次方程(组)的关系:
(1)一次函数与二元一次方程的关系:
直线y=kx+b上任意一点的坐标都是它所对应的二元一次方程kx- y+b=0的解
(2)一次函数与二元一次方程组的关系:
二元一次方程组 的解可看作两个一次函数

和 的图象的交点。

当函数图象有交点时,说明相应的二元一次方程组有解;当函数图象(直线)平行即无交点时,说明相应的二元一次方程组无解。

第八章 数据的代表
1、刻画数据的集中趋势(平均水平)的量:平均数 、众数、中位数
2、平均数
(1)平均数:一般地,对于n个数 我们把 叫做这n个数的算术平均数,简称平均数,记为 。
(2)加权平均数:
3、众数
一组数据中出现次数最多的那个数据叫做这组数据的众数。
4、中位数
一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

5. 八上数学第一次月考考试范围

八年级数学上册第一次月考的考试范围主要包括以下几个部分:

第一章:轴对称和平移


这部分主要考察轴对称的概念、性质,以及如何判断两个图形是否关于某条直线对称。同时,还会考察平移的概念、性质,以及平移后的图形与原图形的关系。

第二章:直角三角形


这部分主要考察直角三角形的性质、勾股定理及其逆定理、直角三角形的两个锐角互余等基本知识。同时,还会考察直角三角形的应用,如测高、斜坡等。

拓展知识:


在考试中,除了上述基本知识外,还可能会涉及一些拓展性的题目。这些题目可能包括一些对数学思想和方法的考察,如数学建模、数形结合、化归等。还可能涉及一些数学在实际问题中的应用,如数学建模在物理学、经济学等领域的应用。

在准备月考时,建议先掌握好基本概念和知识点,再通过做一些习题来加深理解和应用。对于一些较为复杂的问题,需要深入分析并理解问题的本质,再运用数学知识来解决。同时,要注意时间的分配和管理,确保能在有限的时间内完成所有的题目。

6. 数学八年级重点内容

第一章 全等三角形

一.知识框架

二.知识概念

1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。

2.全等三角形的性质: 全等三角形的对应角相等、对应边相等。

3.三角形全等的判定公理及推论有:

(1)“边角边”简称“SAS”

(2)“角边角”简称“ASA”

(3)“边边边”简称“SSS”

(4)“角角边”简称“AAS”

(5)斜边和直角边相等的两直角三角形(HL)。

4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).

在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。通过直观的理解和比较发现全等三角形的奥妙之处。在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。

第二章 轴对称

一.知识框架

二.知识概念

1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.性质: (1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(2)角平分线上的点到角两边距离相等。

(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(5)轴对称图形上对应线段相等、对应角相等。

3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

5.等腰三角形的判定:等角对等边。

6.等边三角形角的特点:三个内角相等,等于60°,

7.等边三角形的判定: 三个角都相等的三角形是等腰三角形。

有一个角是60°的等腰三角形是等边三角形

有两个角是60°的三角形是等边三角形。

8.直角三角形中,30°角所对的直角边等于斜边的一半。

9.直角三角形斜边上的中线等于斜边的一半。

本章内容要求学生在建立在轴对称概念的基础上,能够对生活中的图形进行分析鉴赏,亲身经历数学美,正确理解等腰三角形、等边三角形等的性质和判定,并利用这些性质来解决一些数学问题。

第三章 实数

一.知识框架

二.知识概念

1.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作 。0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根。

2.平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。

3.正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。

4.正数的立方根是正数;0的立方根是0;负数的立方根是负数。

5.数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0

实数部分主要要求学生了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算。重点是实数的意义和实数的分类;实数的运算法则及运算律。

第四章 一次函数

一.知识框架

二.知识概念

1.一次函数:若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。

2.正比例函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。

3.正比例函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中:当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小。

4.已知两点坐标求函数解析式:待定系数法

一次函数是初中学生学习函数的开始,也是今后学习其它函数知识的基石。在学习本章内容时,教师应该多从实际问题出发,引出变量,从具体到抽象的认识事物。培养学生良好的变化与对应意识,体会数形结合的思想。在教学过程中,应更加侧重于理解和运用,在解决实际问题的同时,让学习体会到数学的实用价值和乐趣。

第五章 整式的乘除与分解因式

一.知识概念

1.同底数幂的乘法法则: (m,n都是正数)

2.. 幂的乘方法则: (m,n都是正数)

3. 整式的乘法

(1) 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

(3).多项式与多项式相乘

多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

4.平方差公式:

5.完全平方公式:

6. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n).

在应用时需要注意以下几点:

①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.

②任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义.

③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的; 当a<0时,a-p的值可能是正也可能是负的,如 ,

④运算要注意运算顺序.

7.整式的除法

单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

多项式除以单项式: 多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.

8.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.

分解因式的一般方法:1. 提公共因式法2. 运用公式法3.十字相乘法

分解因式的步骤:(1)先看各项有没有公因式,若有,则先提取公因式;

(2)再看能否使用公式法;

(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;

(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;

(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.

整式的乘除与分解因式这章内容知识点较多,表面看来零碎的概念和性质也较多,但实际上是密不可分的整体。在学习本章内容时,应多准备些小组合作与交流活动,培养学生推理能力、计算能力。在做题中体验数学法则、公式的简洁美、和谐美,提高做题效率。

7. 初二上学期数学所有知识点归纳

初二数学知识点
第一章 一次函数
1 函数的定义,函数的定义域、值域、表达式,函数的图像
2 一次函数和正比例函数,包括他们的表达式、增减性、图像
3 从函数的观点看方程、方程组和不等式
第二章 数据的描述
1 了解几种常见的统计图表:条形图、扇形图、折线图、复合条形图、直方图,了解各种图表的特点
条形图特点:
(1)能够显示出每组中的具体数据;
(2)易于比较数据间的差别
扇形图的特点:
(1)用扇形的面积来表示部分在总体中所占的百分比;
(2)易于显示每组数据相对与总数的大小
折线图的特点;
易于显示数据的变化趋势
直方图的特点:
(1)能够显示各组频数分布的情况;
(2)易于显示各组之间频数的差别
2 会用各种统计图表示出一些实际的问题
第三章 全等三角形
1 全等三角形的性质:
全等三角形的对应边、对应角相等
2 全等三角形的判定
边边边、边角边、角边角、角角边、直角三角形的HL定理
3 角平分线的性质
角平分线上的点到角的两边的距离相等;
到角的两边距离相等的点在角的平分线上。
第四章 轴对称
1 轴对称图形和关于直线对称的两个图形
2 轴对称的性质
轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;
线段垂直平分线上的点到线段两个端点的距离相等;
到线段两个端点距离相等的点在这条线段的垂直平分线上
3 用坐标表示轴对称
点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y).
4 等腰三角形
等腰三角形的两个底角相等;(等边对等角)
等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一)
一个三角形的两个相等的角所对的边也相等。(等角对等边)
5 等边三角形的性质和判定
等边三角形的三个内角都相等,都等于60度;
三个角都相等的三角形是等边三角形;
有一个角是60度的等腰三角形是等边三角形;
推论:
直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半。
在三角形中,大角对大边,大边对大角。

第五章 整式
1 整式定义、同类项及其合并
2 整式的加减
3 整式的乘法
(1)同底数幂的乘法:
(2)幂的乘方
(3)积的乘方
(4)整式的乘法
4 乘法公式
(1)平方差公式
(2)完全平方公式
5 整式的除法
(1)同底数幂的除法
(2)整式的除法
6 因式分解
(1)提共因式法
(2)公式法
(3)十字相乘法

初二下册知识点
第一章 分式
1 分式及其基本性质
分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变
2 分式的运算
(1)分式的乘除
乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母
除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2) 分式的加减
加减法法则:同分母分式相加减,分母不变,把分子相加减;
异分母分式相加减,先通分,变为同分母的分式,再加减
3 整数指数幂的加减乘除法
4 分式方程及其解法
第二章 反比例函数
1 反比例函数的表达式、图像、性质
图像:双曲线
表达式:y=k/x(k不为0)
性质:两支的增减性相同;
2 反比例函数在实际问题中的应用
第三章 勾股定理
1 勾股定理:直角三角形的两个直角边的平方和等于斜边的平方
2 勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章 四边形
1 平行四边形
性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;
对角线互相平分的四边形是平行四边形;
一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2 特殊的平行四边形:矩形、菱形、正方形
(1) 矩形
性质:矩形的四个角都是直角;
矩形的对角线相等;
矩形具有平行四边形的所有性质
判定: 有一个角是直角的平行四边形是矩形;
对角线相等的平行四边形是矩形;
推论: 直角三角形斜边的中线等于斜边的一半。
(2) 菱形
性质:菱形的四条边都相等;
菱形的对角线互相垂直,并且每一条对角线平分一组对角;
菱形具有平行四边形的一切性质
判定:有一组邻边相等的平行四边形是菱形;
对角线互相垂直的平行四边形是菱形;
四边相等的四边形是菱形。
(3) 正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
3 梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底边上的两个角相等;
等腰梯形的两条对角线相等;
同一个底上的两个角相等的梯形是等腰梯形。
第五章 数据的分析
加权平均数、中位数、众数、极差、方差