❶ 高一数学必修4的知识点的总结
同角三角函数基本关系
⒈同角三角函数的基本关系式
倒数关系:
tanα •cotα=1
sinα •cscα=1
cosα •secα=1
商的关系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方关系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函数关系六角形记忆法
六角形记忆法:(参看图片或参考资料链接)
构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
(1)倒数关系:对角线上两个函数互为倒数;
(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。
(主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。
(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。
两角和差公式
⒉两角和与差的三角函数公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβ
tan(α+β)=——————
1-tanα •tanβ
tanα-tanβ
tan(α-β)=——————
1+tanα •tanβ
倍角公式
⒊二倍角的正弦、余弦和正切公式(升幂缩角公式)
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
2tanα
tan2α=—————
1-tan^2(α)
半角公式
⒋半角的正弦、余弦和正切公式(降幂扩角公式)
1-cosα
sin^2(α/2)=—————
2
1+cosα
cos^2(α/2)=—————
2
1-cosα
tan^2(α/2)=—————
1+cosα
万能公式
⒌万能公式
2tan(α/2)
sinα=——————
1+tan^2(α/2)
1-tan^2(α/2)
cosα=——————
1+tan^2(α/2)
2tan(α/2)
tanα=——————
1-tan^2(α/2)
万能公式推导
附推导:
sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,
(因为cos^2(α)+sin^2(α)=1)
再把*分式上下同除cos^2(α),可得sin2α=tan2α/(1+tan^2(α))
然后用α/2代替α即可。
同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。
三倍角公式
⒍三倍角的正弦、余弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
3tanα-tan^3(α)
tan3α=——————
1-3tan^2(α)
三倍角公式推导
附推导:
tan3α=sin3α/cos3α
=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)
上下同除以cos^3(α),得:
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
=2sinαcos^2(α)+(1-2sin^2(α))sinα
=2sinα-2sin^3(α)+sinα-2sin^2(α)
=3sinα-4sin^3(α)
cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=(2cos^2(α)-1)cosα-2cosαsin^2(α)
=2cos^3(α)-cosα+(2cosα-2cos^3(α))
=4cos^3(α)-3cosα
即
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
三倍角公式联想记忆
记忆方法:谐音、联想
正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))
余弦三倍角:4元3角 减 3元(减完之后还有“余”)
☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。
和差化积公式
⒎三角函数的和差化积公式
α+β α-β
sinα+sinβ=2sin—----•cos—---
2 2
α+β α-β
sinα-sinβ=2cos—----•sin—----
2 2
α+β α-β
cosα+cosβ=2cos—-----•cos—-----
2 2
α+β α-β
cosα-cosβ=-2sin—-----•sin—-----
2 2
积化和差公式
⒏三角函数的积化和差公式
sinα •cosβ=0.5[sin(α+β)+sin(α-β)]
cosα •sinβ=0.5[sin(α+β)-sin(α-β)]
cosα •cosβ=0.5[cos(α+β)+cos(α-β)]
sinα •sinβ=- 0.5[cos(α+β)-cos(α-β)]
❷ 求高一数学必修四的知识点总结,
总结知识点这样的事还是上课的时候每天都做,休息了再赶基本没效率,我只能给你列一下考点。
第一章。
1.熟记每个特殊角所对应弧度。
2.三角函数的三种基本图像要记住,各自的定义域值域奇偶性周期增减性对称轴对称中心这些如果你数学学得特别好可以不记,考场现场推导,如果不是特别优异的那就背过,其实如果你努力学过数学的话会知道其实没必要刻意背,在一遍遍地做题中就已经熟练了。考试的时候一定会把图像变形考你,规律是x上左加右减,y上上加下减。
3.诱导公式,这个不少,书上都有自己翻,补充的一个是sin(3π/2+α)=-cosα,sin(3π/2-α)=-cosα,cos(3π/2+α)=sinα,cos(3π/2-α)=-sinα。背吧。
3.求变形后的函数图像的函数式,通常是考sin的,y=Asin(ωx+φ),w根据周期T求,cos和sin的是T=2π/w,tan是T=π/w。A看图像纵向的中间值,这个图像高度的一半就是A,这个时候只剩下φ一个未知数了,带一组数进去求,这是基本求法,考试还会变形,比如不给全图像,这样有时候求不出A,但一定会给其他条件,想想就行了。
4.振幅、周期、相位什么的,不是重难点,看看书知道概念就行。
第二章。
这儿我学的真的不好= =只能给你点一下。
1.加减运算里算出0向量一定要加箭头。
2.数量积公式,从而求数量积,夹角余弦(一向量在另一向量上的投影),考试时普遍给你a和b的绝对值,干这个用的。
3.求夹角时,两个向量的起点一定要在一点。
4.三角形不等式,三点共线定理,三角形的中心、重心、中线、垂线什么的判定,选择题常让求一个点的位置。
5.加减运算求得是向量,数量积求得是一个数。
6.向量在平面坐标系中的相关。用坐标求数量积,两向量垂直时、平行时的特殊式子,书上都有。
第三章。
这里就是无穷无尽的公式,不难,背背背就够了,如果需要,我记了一堆公式,告诉我你qq我发给你图,iPad上我好像没法发图片。
PS.原创+手打。
❸ 楂树腑鏁板︼细蹇呬慨涓銆佷簩銆佷笁銆佸洓銆佷簲锛岄変慨涓銆佷簩銆佷笁銆佸洓锛岀煡璇嗙偣鍏ㄥ綊绾
楂树腑鏁板︼细蹇呬慨涓銆佷簩銆佷笁銆佸洓銆佷簲锛岄変慨涓銆佷簩銆佷笁銆佸洓锛岀煡璇嗙偣鍏ㄥ綊绾冲备笅镓绀猴细
涓銆80鍒嗗强浠ヤ笅镄勮幂敓锛
锅氩氩皯棰樼洰骞朵笉鏄链閲嶈佺殑锛屽逛簬杩欓儴鍒呜幂敓钥岃█锛屾妸锘烘湰镄勭煡璇嗕綋绯绘⒊鐞嗗ソ锛岃冭瘯蹇呰冮樼洰镄勯桦瀷鏂规硶鏁寸悊濂借繖镓嶆槸链閲嶈佺殑锛屽︿範瑕佺偣锛氩熀纭鐭ヨ瘑+锘虹棰桦瀷+鍙桦纺棰桦瀷銆
1銆佽佸︿细锅氩噺娉曪纴浣犱笉瑕佽椽澶氾纴浠涔堥兘𨱍冲︼纴涓寮犲嵎瀛愬摢涓棰樼殑鍒嗘暟閮芥兂寰楋纴杩欐槸涓嶆g‘镄勶纴涓瀹氲佸惊搴忔笎杩涳纴鍏堣В鍐冲姏镓鑳藉强镄勫繀钥幂偣銆
2銆佽佷粠锘烘湰姒傚康鍏ユ坠锛屽埆涓寮濮嫔氨锅氱患钖堥樻垨钥呴毦棰桡纴鍏堟妸缁忓吀镄勯桦瀷鎼炴竻妤氾纴铹跺悗鍐嶅仛涓浜涗腑妗i桡纴娣卞寲涓镣圭偣灏卞彲浠ヤ简锛屽厛涓岖伴毦棰樸
3銆佸緢澶氩︾敓镄勯梾棰桦氨鍦ㄤ簬锘烘湰镄勫叕寮忋佹柟娉曡颁笉浣忥纸璺熸病瀛﹁繃涓镙凤纴姣镞犲嵃璞★级銆佽颁笉娓咃纸妯℃1涓ゅ彲锛屼技鏄钥岄潪锛夈佽颁笉鐗锛埚綋澶╄颁綇浜嗭纴绗浜屽ぉ鍙埚缮浜嗭级锛屾墍浠ワ纴瀵逛簬涔嫔墠鎺屾彙浜嗙殑鐭ヨ瘑锛岃佸畾链熺殑銆侀戠箒镄勯吨澶嶏纴涓阆崭竴阆岖殑锷犳繁鍗拌薄銆
浠ヤ笂鏄姣忎竴涓楂树腑瀛︾敓镓蹇呴’瀛︿範镄勚备笂杩板唴瀹硅嗙洊浜嗛珮涓阒舵典紶缁熺殑鏁板﹀熀纭鐭ヨ瘑鍜屽熀链鎶鑳界殑涓昏侀儴鍒嗭纴鍏朵腑鍖呮嫭闆嗗悎銆佸嚱鏁般佹暟鍒椼佷笉绛夊纺銆佽В涓夎掑舰銆佺珛浣揿嚑浣曞埯姝ャ佸钩闱㈣В鏋愬嚑浣曞埯姝ョ瓑銆备笉钖岀殑鏄鍦ㄤ缭璇佹墦濂藉熀纭镄勫悓镞讹纴杩涗竴姝ュ己璋冧简杩欎簺鐭ヨ瘑镄勫彂鐢熴佸彂灞曡繃绋嫔拰瀹为檯搴旂敤锛岃屼笉鍦ㄦ妧宸т笌闅惧害涓婂仛杩囬珮镄勮佹眰銆傛ゅ栵纴锘虹鍐呭硅缮澧炲姞浜嗗悜閲忋佺畻娉曘佹傜巼銆佺粺璁$瓑鍐呭广
❹ 高中数学必修1~5分别讲什么内容,详细的
亲,这个要看你用的什么教材的啦~
搜个目录就可以了呀~
比如下面是人教版的:
【必修一】
第一章集合与函数概念
1.1集合
1.2函数及其表示
1.3函数的基本性质
第二章基本初等函数(Ⅰ)
2.1指数函数
2.2对数函数
2.3幂函数
第三章函数的应用
3.1函数与方程
3.2函数模型及其应用
【必修二】
第一章空间几何体
1.1空间几何体的结构
1.2 空间几何体的三视图和直观图
1.3 空间几何体的表面积与体积
第二章点、直线、平面之间的位置关系
2.1空间点、直线、平面之间的位置关系
2.2直线、平面平行的判定及其性质
2.3直线、平面垂直的判定及其性质
第三章直线与方程
3.1直线的倾斜角与斜率
3.2直线的方程
3.3直线的交点坐标与距离公式
第四章圆与方程
4.1圆的方程
4.2直线、圆的位置关系
4.3空间直角坐标系
【必修三】
第一章算法初步
1.1算法与程序框图
1.2基本算法语句
1.3算法案例
第二章统计
2.1随机抽样
2.2用样本估计总体
2.3变量间的相关关系
第三章概率
3.1随机事件的概率
3.2古典概型
3.3几何概型
【必修四】
第一章三角函数
1.1任意角和弧度制
1.2任意角的三角函数
1.3三角函数的诱导公式
1.4三角函数的图象和性质
1.5函数的图象
1.6三角函数模型的简单应用
第二章平面向量
2.1平面向量的实际背景及基本概念
2.2平面向量的线性运算
2.3平面向量的基本定理及坐标表示
2.4平面向量的数量积
2.5平面向量应用举例
第三章三角恒等变换
3.1两角和与差的正弦、余弦和正切公式
3.2简单的三角恒等变换
【必修五】
第一章解三角形
1.1正弦定理和余弦定理
1.2应用举例
第二章数列
2.1数列的概念与简单表示法
2.2等差数列
2.3等差数列的前n项和
2.4等比数列
2.5等比数列的前n项和
第三章不等式
3.1不等关系与不等式
3.2一元二次不等式及其解法
3.3二元一次不等式(组)与简单的线性规划问题
3.4基本不等式
祝你好运O(∩_∩)O~
❺ 必修四数学有哪些内容
第一章:三角函数
第二章:平面向量
第三章:三角恒等变换