当前位置:首页 » 基础知识 » 初一上册每课数学题知识点
扩展阅读
女生歌词为什么 2025-01-10 15:29:53

初一上册每课数学题知识点

发布时间: 2025-01-10 08:10:33

‘壹’ 苏教版初中数学知识

初中几何证明题重要的是全等,特别是初三中用的很多
初二中的梯形几何也很重要,新课本中的相关知识较少,但到了初三用的很多,主要是要记住经典例题的图形,在遇到新题是去构成熟悉的图形
函数也是很重要的,初二主要是正比例函数和一次函数,题目不难,主要弄清楚函数图形和变化趋势,初三的二次函数较难,是考试压轴题的必选,对于函数,必有坐标,解题的关键是每个点的坐标,函数与几何的结合题是难题,一般是大题,做题是不要求得满分,要尽量多得分
另外代数袋鼠方面因式分解是一个重点,其中十字相乘法最难,但到了初三用的很多,要打好基础
解方程不是难点,在多练习的基础上便可游刃有余,主要是一元二次方程的诸多方法
用方程解决实际问题要注意是否要舍去

‘贰’ 初一数学上册重点难点

代数

有理数

★重难点★ 有理数的有关概念及性质,数轴、绝对值和相反数的全面掌握,有理数的运算(加减乘除、乘方以及混合运算)

一、 重要概念

1.数的分类及概念

2.非负数:正实数与零的统称。(表为:x≥0)

常见的非负数有: 0、1、2…

性质:若干个非负数的和为0,则每个非负担数均为0。

3.倒数: ①定义及表示法

②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.0<a 1;a>1时,1/a<1;D.积为1。</a

4.相反数: ①定义及表示法

②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(“三要素”)

②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数—自然数)

定义及表示: 奇数:2n-1

偶数:2n(n为自然数)

7.绝对值:①定义(两种):

代数定义:

几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

二、 有理数的运算

1. 运算法则(加、减、乘、除、乘方、开方)

2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的] 分配律)

3. 运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”

到“右”(如5÷ ×5);C.(有括号时)由“小”到“中”到“大”。

整式

★重难点★ 整式的有关概念及性质,整式的运算,去括号(代数式运算中最常用、最基本的恒等变形),同类项、乘法公式、分解因式

一、 重要概念

1.整式

用运算符号把数或表示数的字母连结而成的`式子,叫做代数式。单独

的一个数或字母也是代数式。

没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

分类:单项式、多项式

3.单项式与多项式

没有加减运算的整式叫做单项式。(数字与字母的积—包括单独的一个数或字母)

几个单项式的和,叫做多项式。

4.系数与指数

区别与联系:①从位置上看;②从表示的意义上看

5.同类项及其合并

条件:①字母相同;②相同字母的指数相同

合并依据:乘法分配律

9.指数

⑴ ( —幂,乘方运算)

① a>0时,>0;②a0(n是偶数), <0(n是奇数)

⑵零指数: =1(a≠0)

负整指数: =1/ a(a≠0,p是正整数)

二、 运算定律、性质、法则

3.整式运算法则(去括号、添括号法则)

4.幂的运算性质:① · = ;② ÷ = ;③ = ;④ = ;

5.乘法法则:⑴单×单;⑵单×多;⑶多×多。

6.乘法公式:(正、逆用)

(a+b)(a-b)= (a±b) = ±2ab+

7.除法法则:⑴单÷单;⑵多÷单。

8.因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。

11.科学记数法: (1≤a<10,n是整数=

方程(组)

★重点★一元一次、二元一次方程组的解法;方程的有关应用题(特别是行程、工程问题)

一、 基本概念

1.方程、方程的解(根)、方程组的解、解方程(组)

二、 解方程的依据—等式性质

1.a=b←→a+c=b+c

2.a=b←→ac=bc (c≠0)

三、 解法

1.一元一次方程的解法:去分母→去括号→移项→合并同类项→

系数化成1→解。

2. 元一次方程组的解法:⑴基本思想:“消元”⑵方法:①代入法

②加减法

六、 列方程(组)解应用题

(一)概述

列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:

⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。

⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。

⑶用含未知数的代数式表示相关的量。

⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。

⑸解方程及检验。

⑹答案。

综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。

(二)常用的相等关系

1. 行程问题(匀速运动) 基本关系:s=vt

⑴相遇问题(同时出发): ⑵追及问题(同时出发): ⑶水中航行: ;

2. 配料问题:溶质=溶液×浓度 溶液=溶质+溶剂

3.增长率问题:

4.工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位“1”)。

5.几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。

(三)注意语言与解析式的互化

如,“多”、“少”、“增加了”、“增加为(到)”、“同时”、“扩大为(到)”、“扩大了”、……

又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc。

四注意从语言叙述中写出相等关系。

如,x比y大3,则x-y=3或x=y+3或x-3=y。又如,x与y的差为3,则x-y=3。五注意单位换算

如,“小时”“分钟”的换算;s、v、t单位的一致等。

‘叁’ 人教版七年级上册数学知识点整理

马上寒假了,为了帮助大家更好的学习初中数学。下面我整理了人教版七年级上册数学知识点,供大家参考。

一、整式的加减

1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。

2.单项式的系数与次数:单项式中的数字因数,称单项式的系数;单项式中所有字母指数的和,叫单项式的次数。

3.多项式:几个单项式的和叫多项式。

4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。

5.整式:①单项式②多项式。

6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。

7.合并同类项法则:系数相加,字母与字母的指数不变。

8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。

9.整式的加减:

一找:(划线);

二“+”:(务必用+号开始合并);

三合:(合并)。

10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。

二、一元一次方程

1.等式:用“=”号连接而成的式子叫等式。

2.等式的性质:

等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;

等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式。

3.方程:含未知数的等式,叫方程。

4.方程的解:使等式左右两边相等的未知数的值叫方程的解;

注意:“方程的解就能代入”。

5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1。

6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

8.一元一次方程解法的一般步骤:

化简方程----------分数基本性质。

去分母----------同乘(不漏乘)最简公分母。

去括号----------注意符号变化。

移项----------变号(留下靠前)。

合并同类项--------合并后符号。

系数化为1---------除前面。

9.列一元一次方程解应用题:

(1)读题分析法:…………多用于“和,差,倍,分问题”。

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。

(2)画图分析法:…………多用于“行程问题”。

利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。

三、绝对值

1、绝对值的几何定义:一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。

2、绝对值的代数定义

(1)一个正数的绝对值是它本身;

(2)一个负数的绝对值是它的相反数;

(3)0的绝对值是0。

3、可用字母表示为

(1)如果a>0,那么|a|=a;

(2)如果a<0,那么|a|=-a;

(3)如果a=0,那么|a|=0。

4、可归纳为

(1)a≥0,<═>|a|=a(非负数的绝对值等于本身;绝对值等于本身的数是非负数。)

(2)a≤0,<═>|a|=-a(非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。)

5、绝对值的性质

任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。所以,a取任何有理数,都有|a|≥0。即

(1)0的绝对值是0;绝对值是0的数是0.即:a=0<═>|a|=0;

(2)一个数的绝对值是非负数,绝对值最小的数是0.即:|a|≥0;

(3)任何数的绝对值都不小于原数。即:|a|≥a;

(4)绝对值是相同正数的数有两个,它们互为相反数。即:若|x|=a(a>0),则x=±a;

(5)互为相反数的两数的绝对值相等。即:|-a|=|a|或若a+b=0,则|a|=|b|;

(6)绝对值相等的两数相等或互为相反数。即:|a|=|b|,则a=b或a=-b;

(7)若几个数的绝对值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)。

6、有理数大小的比较

(1)利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比右边的小;

(2)利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数大于负数。

四、代数式

1、代数式:用基本运算符号把数和字母连接而成的式子叫做代数式,如n,-1,2n+500,abc。单独的一个数或一个字母也是代数式。

2、单项式:表示数与字母的乘积的代数式叫单项式。单独的一个数或一个字母也是代数式。

3、单项式的系数:单项式中的数字因数。

4、单项式的次数:一个单项式中,所有字母的指数和。

5、多项式:

几个单项式的和叫做多项式。每个单项式叫做多项式的项,不含字母的项叫做常数项。

多项式里次数最高项的次数,叫做这个多项式的次数。常数项的次数为0。

6、整式:

单项式和多项式统称为整式。

注意:分母上含有字母的不是整式。

7、代数式书写规范:

(1)数与字母、字母与字母中的乘号可以省略不写或用“·”表示,并把数字放到字母前;

(2)出现除式时,用分数表示;

(3)带分数与字母相乘时,带分数要化成假分数;

(4)若运算结果为加减的式子,当后面有单位时,要用括号把整个式子括起来。

‘肆’ 初一上册数学难点

祝你好好学习,天天上上,加油
新初一数学的知识点及重点难点
上册
第一章
有理数
1.
正数和负数
2.
有理数
3.
有理数的加减
4.
有理数的乘除
5.
有理数的乘方
重点:数轴、相反数、绝对值、有理数计算、科学计数法、有效数字
难点:绝对值
易错点:绝对值、有理数计算
中考必考:科学计数法、相反数
选择题
第二章
整式的加减
1.
整式
2.
整式的加减
重点:单项式与多项式的概念及系数和次数的确定、同类项、整式加减
难点:单项式与多项式的系数和次数的确定、合并同类项
易错点:合并同类项、计算失误、整数次数的确定
中考必考:同类项、整数系数次数的确定、整式加减
第三章
一元一次方程
1.
从算式到方程
2.
解一元一次方程——合并同类项与移项
3.
解一元一次方程——去括号去分母
4.
实际问题与一元一次方程
重点:一元一次方程
定义、解法、应用
难点:一元一次方程的解法
步骤
易错点:去分母时,不含有分母项易漏乘、解应用题时,不知道如何找等量关系
第四章
图形认识实步
1.
多姿多彩的图形
2.
直线、射线、线段
3.

4.
课题实习——设计制作长方形形状的包装纸盒
重点:直线、射线、线段、角的认识、中点和角平分线的相关计算、余角和补角,方位角等
难点:中点和角平分线的相关计算、余角和补角的应用
易错点:等量关系不会转化、

‘伍’ 七年级数学上册知识点总结第一章

学习是一架保持平衡的.天平,一边是付出,一边是收获,少付出少收获,多付出多收获,不劳必定无获!要想取得理想的成绩,下面给大家分享一些关于 七年级数学 上册知识点 总结 第一章,希望对大家有所帮助。

第一章有理数

一.正数和负数

⒈正数和负数的概念

负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数

注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)

②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。

2.具有相反意义的量

若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:

零上8℃表示为:+8℃;零下8℃表示为:-8℃

支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数:

比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。

3.0表示的意义

⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;

⑵0是正数和负数的分界线,0既不是正数,也不是负数。

二.有理数

1.有理数的概念

⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)

⑵正分数和负分数统称为分数

⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2. (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

(2)有理数的分类: ①按正、负分类:

②按有理数的意义来分:

总结:①正整数、0统称为非负整数(也叫自然数)

②负整数、0统称为非正整数

③正有理数、0统称为非负有理数

④负有理数、0统称为非正有理数

(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

(4)自然数? 0和正整数;a>0 ? a是正数;a<0 ? a是负数;

a≥0 ? a是正数或0 ? a是非负数;a≤ 0 ? a是负数或0 ? a是非正数.

三.数轴

⒈数轴的概念

规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

2.数轴上的点与有理数的关系

⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)

3.利用数轴表示两数大小

⑴在数轴上数的大小比较,右边的数总比左边的数大;

⑵正数都大于0,负数都小于0,正数大于负数;

⑶两个负数比较,距离原点远的数比距离原点近的数小。

4.数轴上特殊的最大(小)数

⑴最小的自然数是0,无最大的自然数;

⑵最小的正整数是1,无最大的正整数;

⑶最大的负整数是-1,无最小的负整数

5.a可以表示什么数

⑴a>0表示a是正数;反之,a是正数,则a>0;

⑵a<0表示a是负数;反之,a是负数,则a<0

⑶a=0表示a是0;反之,a是0,,则a=0

6.数轴上点的移动规律

根据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得到所需的点的位置。

四.相反数

⒈相反数

只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。

注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负;

⑶0的相反数是它本身;相反数为本身的数是0。

2.相反数的性质与判定

⑴任何数都有相反数,且只有一个;

⑵0的相反数是0;

⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0

3.相反数的几何意义

在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。0的相反数对应原点;原点表示0的相反数。

说明:在数轴上,表示互为相反数的两个点关于原点对称。

4.相反数的求法

⑴求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5);0的相反数还是0;

⑵求多个数的和或差的相反数是,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。化简得-5a-b);注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

⑶求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化简得5);)相反数的和为0 ? a+b=0 ? a、b互为相反数

5.相反数的表示 方法

⑴一般地,数a 的相反数是-a ,其中a是任意有理数,可以是正数、负数或0。

当a>0时,-a<0(正数的相反数是负数)

当a<0时,-a>0(负数的相反数是正数)

当a=0时,-a=0,(0的相反数是0)

6.多重符号的化简

多重符号的化简规律:“+”号的个数不影响化简的结果,可以直接省略;“-”号的个数决定最后化简结果;即:“-”的个数是奇数时,结果为负,“-”的个数是偶数时,结果为正。

五.绝对值

⒈绝对值的几何定义

一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。

2.绝对值的代数定义

⑴一个正数的绝对值是它本身; ⑵一个负数的绝对值是它的相反数; ⑶0的绝对值是0.

可用字母表示为:

①如果a>0,那么|a|=a; ②如果a<0,那么|a|=-a; ③如果a=0,那么|a|=0。

可归纳为①:a≥0,<═> |a|=a (非负数的绝对值等于本身;绝对值等于本身的数是非负数。)

②a≤0,<═> |a|=-a (非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。)

3.绝对值的性质

任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。所以,a取任何有理数,都有|a|≥0。即 (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;绝对值是0的数是0.即:a=0 <═> |a|=0;

⑵一个数的绝对值是非负数,绝对值最小的数是0.绝对值可表示为:或 ;即:|a|≥0;绝对值的问题经常分类讨论;

⑶任何数的绝对值都不小于原数。即:|a|≥a; ; ;

⑷绝对值是相同正数的数有两个,它们互为相反数。即:若|x|=a(a>0),则x=±a;

⑸互为相反数的两数的绝对值相等。即:|-a|=|a|或若a+b=0,则|a|=|b|;|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,

⑹绝对值相等的两数相等或互为相反数。即:|a|=|b|,则a=b或a=-b;

⑺若几个数的绝对值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。

(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)

4.有理数大小的比较

⑴利用数轴比较两个数的大小:数轴上的两个数相比较,左边的数总比右边的数小,或者右边的数总比左边的数大

⑵利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数大于负数。

(3)正数的绝对值越大,这个数越大;

(4)正数永远比0大,负数永远比0小;

(5)正数大于一切负数;

(6)大数-小数 > 0,小数-大数 < 0.

5.绝对值的化简

①当a≥0时, |a|=a ; ②当a≤0时, |a|=-a

6.已知一个数的绝对值,求这个数

一个数a的绝对值就是数轴上表示数a的点到原点的距离,一般地,绝对值为同一个正数的有理数有两个,它们互为相反数,绝对值为0的数是0,没有绝对值为负数的数。

六.有理数的加减法.

1.有理数的加法法则

⑴同号两数相加,取相同的符号,并把绝对值相加;

⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;

⑶互为相反数的两数相加,和为零;

⑷一个数与0相加,仍得这个数。

2.有理数加法的运算律

⑴加法交换律:a+b=b+a

⑵加法结合律:(a+b)+c=a+(b+c)

在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:

①互为相反数的两个数先相加——“相反数结合法”;

②符号相同的两个数先相加——“同号结合法”;

③分母相同的数先相加——“同分母结合法”;

④几个数相加得到整数,先相加——“凑整法”;

⑤整数与整数、小数与小数相加——“同形结合法”。

3.加法性质

一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。即:

⑴当b>0时,a+b>a ⑵当b<0时,a+b

4.有理数减法法则

减去一个数,等于加上这个数的相反数。用字母表示为:a-b=a+(-b)。

5.有理数加减法统一成加法的意义

在有理数加减法混合运算中,根据有理数减法法则,可以将减法转化成加法后,再按照加法法则进行计算。

在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。如:

(-8)+(-7)+(-6)+(+5)=-8-7-6+5.

和式的读法:①按这个式子表示的意义读作“负8、负7、负6、正5的和”

②按运算意义读作“负8减7减6加5”

6.有理数加减混合运算中运用结合律时的一些技巧:

七.有理数的乘除法

1.有理数的乘法法则

法则一:两数相乘,同号得正,异号得负,并把绝对值相乘;(“同号得正,异号得负”专指“两数相乘”的情况,如果因数超过两个,就必须运用法则三)

法则二:任何数同0相乘,都得0;

法则三:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数;

法则四:几个数相乘,如果其中有因数为0,则积等于0.

2.倒数

乘积是1的两个数互为倒数,其中一个数叫做另一个数的倒数,用式子表示为a·=1(a≠0),就是说a和互为倒数,即a是的倒数,是a的倒数。

互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么的倒数是;倒数是本身的数是±1;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数.

注意:①0没有倒数;

②求假分数或真分数的倒数,只要把这个分数的分子、分母点颠倒位置即可;求带分数的倒数时,先把带分数化为假分数,再把分子、分母颠倒位置;

③正数的倒数是正数,负数的倒数是负数。(求一个数的倒数,不改变这个数的性质);

④倒数等于它本身的数是1或-1,不包括0。

3.有理数的乘法运算律

⑴乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。即ab=ba

⑵乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。即(ab)c=a(bc).

⑶乘法分配律:一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,在把积相加。即a(b+c)=ab+ac

4.有理数的除法法则

(1)除以一个不等0的数,等于乘以这个数的倒数;注意:零不能做除数,

(2)两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0

5.有理数的乘除混合运算

(1)乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

(2)有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除,后加减’的顺序进行。

八.有理数的乘方

1.乘方的概念

求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在 中,a 叫做底数,n 叫做指数。

(1)a2是重要的非负数,即a2≥0;若a2+|b|=0 ? a=0,b=0;

(2)据规律 底数的小数点移动一位,平方数的小数点移动二位

2.乘方的性质

(1)负数的奇次幂是负数,负数的偶次幂的正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .

(2)正数的任何次幂都是正数,0的任何正整数次幂都是0。

九.有理数的混合运算

做有理数的混合运算时,应注意以下运算顺序:

1.先乘方,再乘除,最后加减;

2.同级运算,从左到右进行;

3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。

十.科学记数法

把一个大于10的数表示成 的形式(其中, n是正整数),这种记数法是科学记数法

近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.

有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.

混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.

特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.

等于本身的数汇总:

相反数等于本身的数:0

倒数等于本身的数:1,-1

绝对值等于本身的数:正数和0

平方等于本身的数:0,1

立方等于本身的数:0,1,-1.


七年级数学上册知识点总结第一章相关 文章 :

★ 高一数学必修三第一章复习题

★ 高一数学必修1第一章测试题含答案

★ 7年级下册生物思维导图

★ 八年级上册数学手抄报内容

‘陆’ 初一上册数学期末知识点

初一上册数学期末知识点 篇1

一.线段、射线、直线

1.正确理解直线、射线、线段的概念以及它们的区别:

名称图形表示方法端点长度

直线直线AB(或BA)

直线l无端点无法度量

射线射线OM1个无法度量

线段线段AB(或BA)

线段l2个可度量长度

2.直线公理:经过两点有且只有一条直线。

二.比较线段的长短

1.线段公理:两点间线段最短;两之间线段的长度叫做这两点之间的距离。

2.比较线段长短的两种方法:

①圆规截取比较法;

②刻度尺度量比较法。

3.用刻度尺可以画出线段的中点,线段的和、差、倍、分;

用圆规可以画出线段的和、差、倍。

三.角的度量与表示

1.角:有公共端点的两条射线组成的图形叫做角;

这个公共端点叫做角的顶点;

这两条射线叫做角的边

2.角的表示法:角的符号为“∠”

初一上册数学期末知识点 篇2

①求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数(负奇负,负偶正)。正数的任何次幂都是正数,0的任何次幂都是0。

②偶次方等于一个正数的值有两个(两个互为相反数)如:a2=4,a=2或a=-2

注意:|a|+b2=0 得:a=0 且 b=0

强记:a0=1(a≠0);(-1)2=1 ;-12=-1;(-1)3=-1;

-13=-1; (-2)2 =4;-22=-4;(-2)3 =-8;-23=-8

③有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。注意:12-4×5=12-20(不能把-变+)

④把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a n比原整数位减1。(注意科学计数法与原数的互划。

⑤四舍五入到哪一位就是精确到哪一位,四舍五入时望后多看一位采用四舍五入。比如:3.5449精确到0.01就是3.54而不是3.55. (再如: 2.40万:精确到百位;6.5×104精确到千位,有数量级和科学计数法的要还原成原数,看数量级和科学计数法的最后一个数)。

初一上册数学期末知识点 篇3

数轴的三要素:原点、正方向、单位长度(三者缺一不可)。

任何一个有理数,都可以用数轴上的一个点来表示。(反过来,不能说数轴上所有的点都表示有理数)

如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。(0的相反数是0)

在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。

数轴上两点表示的数,右边的总比左边的大。正数在原点的右边,负数在原点的左边。

绝对值的定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离。数a的绝对值记作|a|。

正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。

绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;

互为相反数的两数(除0外)的绝对值相等;

任何数的绝对值总是非负数,即|a|0

比较两个负数的大小,绝对值大的反而小。比较两个负数的大小的步骤如下:

①先求出两个数负数的绝对值;

②比较两个绝对值的大小;

③根据两个负数,绝对值大的反而小做出正确的判断。

绝对值的性质:

①对任何有理数a,都有|a|0

②若|a|=0,则|a|=0,反之亦然

③若|a|=b,则a=b

④对任何有理数a,都有|a|=|-a|

有理数加法法则:

①同号两数相加,取相同符号,并把绝对值相加。

②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大数的绝对值减去较小数的绝对值。

③一个数同0相加,仍得这个数。

加法的交换律、结合律在有理数运算中同样适用。

灵活运用运算律,使用运算简化,通常有下列规律:

①互为相反的两个数,可以先相加;

②符号相同的数,可以先相加;

③分母相同的数,可以先相加;

④几个数相加能得到整数,可以先相加。

有理数减法法则:

减去一个数,等于加上这个数的相反数。

有理数减法运算时注意两变:

①改变运算符号;

②改变减数的性质符号(变为相反数)

有理数减法运算时注意一个不变:被减数与减数的位置不能变换,也就是说,减法没有交换律。

有理数的加减法混合运算的步骤:

①写成省略加号的代数和。在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;

②利用加法则,加法交换律、结合律简化计算。

(注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数应变成它本身的相反数。)

有理数乘法法则:

①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘,积仍为0。

如果两个数互为倒数,则它们的乘积为1。(如:-2与 、 等)

乘法的交换律、结合律、分配律在有理数运算中同样适用。

有理数乘法运算步骤:

①先确定积的符号;

②求出各因数的绝对值的积。

乘积为1的两个有理数互为倒数。注意:

①零没有倒数

②求分数的倒数,就是把分数的分子分母颠倒位置。一个带分数要先化成假分数。

③正数的倒数是正数,负数的倒数是负数。

有理数除法法则:

①两个有理数相除,同号得正,异号得负,并把绝对值相除。

②0除以任何非0的数都得0。0不可作为除数,否则无意义。

有理数的乘方

注意:

①一个数可以看作是本身的一次方,如5=51;

②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。

乘方的运算性质:

①正数的任何次幂都是正数;

②负数的奇次幂是负数,负数的偶次幂是正数;

③任何数的偶数次幂都是非负数;

④1的任何次幂都得1,0的任何次幂都得0;

⑤-1的偶次幂得1;-1的奇次幂得-1;

⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。

有理数混合运算法则:

①先算乘方,再算乘除,最后算加减。

②如果有括号,先算括号里面的。

初一上册数学期末知识点 篇4

①大于0的数叫正数。

②在正数前面加上“-”号的数,叫做负数。

③0既不是正数也不是负数。0是正数和负数的分界,是唯一的中性数。

④搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。

⑤正整数、0、负整数统称整数(结合数轴和一元一次方程出题),正分数和负分数统称分数。整数和分数统称有理数。

⑥非负数就是正数和零;非负整数就是正整数和0。

⑦“基准”题:有固定的基准数,和的求法:基准数×个数+与基准数相比较的数的代数和;平均数的求法:基准数+与基准数相比较的`数的代数和÷个数(写出原数,也可用小学知识解答);“非基准”题:无固定的基准数,如明天和今天比,后天和明天比。

初一上册数学期末知识点 篇5

整式的乘法:

①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。

②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

初一上册数学期末知识点 篇6

实数:—有理数与无理数统称为实数。

有理数:整数和分数统称为有理数。

无理数:无理数是指无限不循环小数。

自然数:表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。

数轴:规定了圆点、正方向和单位长度的直线叫做数轴。

相反数:符号不同的两个数互为相反数。

倒数:乘积是1的两个数互为倒数。

绝对值:数轴上表示数a的点与圆点的距离称为a的绝对值。一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。

初一上册数学期末知识点 篇7

一、概念梳理

⑴列一元一次方程解决实际问题的一般步骤是:审题,特别注意关键的字和词的意义,弄清相关数量关系,注意单位统一,注意设未知数;

①解:设出未知数(注意单位),

②根据相等关系列出方程,

③解这个方程,

④答(包括单位名称,最好检验)。

⑵一些固定模型中的等量关系:

①数字问题:表示一个三位数,则有=100a+10b+c(数位上的数字×位数)

②行程问题:基本公式:路程=时间×速度

甲乙同时相向行走相遇时:甲走的路程+乙走的路程=总路程

甲走的时间=乙走的时间;

甲乙同时同向行走追及时:甲走的路程-乙走的路程=甲乙之间距离

③工程问题(整体1):基本公式:工作量=工作时间×工作效率

各部分工作量之和=总工作量;

④储蓄问题:本息和=本金+利息;利息=本金×利率×时间

⑤商品销售问题:商品利润=售价-进价(成本价)

商品利润率=(售价-进价)/进价

⑥等积变形问题:面积或体积不变

⑦和、差、倍、分问题:多、少、几倍、几分之几

⑧按比例分配问题:一般设每份为x如:2:3:4为2x、3x、4x

⑨资源调配问题:资源、人员的调配(有时要间接设未知数)

二、思想方法(本单元常用到的数学思想方法小结)

⑴模型思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立一元一次方程的思想。

⑵方程思想:用方程解决实际问题的思想(如:按比例分配、线段的长、角的大小等)就是方程思想。

⑶转化(归纳)思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a的形式.体现了化“未知”为“已知”的化归思想。

⑷数形结合思想:如:数轴问题、在列方程解决行程问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来,体现了数形结合的优越性。

⑸分类(整体)思想:如:绝对值、偶次方、点在线段上(延长线上、线段外)、角在角内(外)在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用。

初一上册数学期末知识点 篇8

①大于0的数叫正数。

②在正数前面加上“-”号的数,叫做负数。

③0既不是正数也不是负数。0是正数和负数的分界,是唯一的中性数。

④搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。

⑤正整数、0、负整数统称整数(结合数轴和一元一次方程出题),正分数和负分数统称分数。整数和分数统称有理数。

⑥非负数就是正数和零;非负整数就是正整数和0。

⑦“基准”题:有固定的基准数,和的求法:基准数×个数+与基准数相比较的数的代数和;平均数的求法:基准数+与基准数相比较的数的代数和÷个数(写出原数,也可用小学知识解答);“非基准”题:无固定的基准数,如明天和今天比,后天和明天比。

‘柒’ 人教版初一数学上册知识点

第一章 有理数
1.1 正数和负数
阅读与思考 用正负数表示加工允许误差
1.2 有理数
1.3 有理数的加减法
实验与探究 填幻方
阅读与思考 中国人最先使用负数
1.4 有理数的乘除法
观察与思考 翻牌游戏中的数学道理
1.5 有理数的乘方
数学活动
小结
复习题1
第二章 整式的加减
2.1 整式
阅读与思考 数字1与字母X的对话
2.2 整式的加减
信息技术应用 电子表格与数据计算
数学活动
小结
复习题2
第三章 一元一次方程
3.1 从算式到方程
阅读与思考 “方程”史话
3.2 解一元一次方程(一)——合并同类项与移项
实验与探究 无限循环小数化分数
3.3 解一元一次方程(二)——去括号与去分母
3.4 实际问题与一元一次方程
数学活动
小结
复习题3
第四章 图形认识初步
4.1 多姿多彩的图形
阅读与思考 几何学的起源
4.2 直线、射线、线段
阅读与思考 长度的测量
4.3 角
4.4 课题学习 设计制作长方体形状的包装纸盒

‘捌’ 七年级数学上册知识点北师大版

数学是我们我们从小学到大的一门学科,如果能认认真真学下来,数学并不难,只是数学要下苦功去学,学会了很有意思。这次我给大家整理了 七年级数学 上册知识点北师大版,供大家阅读参考。

七年级数学上册知识点北师大版

第一章 丰富的图形世界

1、几何图形

从实物中抽象出来的各种图形,包括立体图形和平面图形。

2、点、线、面、体

(1)几何图形的组成

点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和 面相 交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、生活中的立体图形

柱:棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……

第二章 有理数及其运算

1.有理数

可表示为两个整数之比形式的数。

正有理数 整数

有理数 零 有理数

负有理数 分数

2、相反数:只有符号不同的两个数叫做互为相反数,0的相反数是0.

3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。

4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。

5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,|a|≥0。若|a|=a,则a≥0;若|a|=-a,则a≤0。

正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。互为相反数的两个数的绝对值相等。

6、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。

7、有理数的运算

(1)五种运算:加、减、乘、除、乘方

多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为0,积就为0。

有理数加法法则:

同号两数相加,取相同的符号,并把绝对值相加。

异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

一个数同0相加,仍得这个数。

互为相反数的两个数相加和为0。

有理数减法法则:

减去一个数,等于加上这个数的相反数!

有理数乘法法则:

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘,积仍为0。

有理数除法法则:

两个有理数相除,同号得正,异号得负,并把绝对值相除。

0除以任何非0的数都得0。

注意:0不能作除数。

有理数的乘方:求n个相同因数a的积的运算叫做乘方。

正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数。

(2)有理数的运算顺序

先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。

(3)运算律

加法交换律、 加法结合律、乘法交换律、乘法结合律、乘法对加法的分配律。

8、科学记数法

一般地,一个大于10的数可以表示成的形式,其中,n是正整数,这种记数 方法 叫做科学记数法。(n=整数位数-1)

第三章 整式及其加减

1、代数式

用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。

注意:

①代数式中除了含有数、字母和运算符号外,还可以有括号;

②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;

③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。

※代数式的书写格式:

①代数式中出现乘号,通常省略不写,如vt;

②数字与字母相乘时,数字应写在字母前面,如4a;

③带分数与字母相乘时,应先把带分数化成假分数;

④数字与数字相乘,一般仍用“×”号,即“×”号不省略;

⑤在代数式中出现除法运算时,一般写成分数的形式,如4÷(a-4)应写作4/(a-4);注意: 分数线 具有“÷”号和括号的双重作用。

⑥在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如平方米。

2、整式

单项式和多项式统称为整式。

①单项式:都是数字和字母乘积的形式的代数式叫做单项式。单项式中,所有字母的指数之和叫做这个单项式的次数;数字因数叫做这个单项式的系数。

注意:

1.单独的一个数或一个字母也是单项式;

2.单独一个非零数的次数是0;

3.当单项式的系数为1或-1时,这个“1”应省略不写,如-ab的系数是-1,a3b的系数是1。

②多项式:几个单项式的和叫做多项式。多项式中,每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数。

3、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

注意:

①同类项有两个条件:所含字母相同;相同字母的指数也相同。

②同类项与系数无关,与字母的排列顺序无关;

③几个常数项也是同类项。

4、合并同类项法则:把同类项的系数相加,字母和字母的指数不变。

5、去括号法则

①根据去括号法则去括号:

括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号。

②根据分配律去括号:

括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的分配律用+1或-1去乘括号里的每一项以达到去括号的目的。

6、添括号法则

添“+”号和括号,添到括号里的各项符号都不改变;添“-”号和括号,添到括号里的各项符号都要改变。

7、整式的运算:

整式的加减法:(1)去括号;(2)合并同类项。

基本平面图形

1、线段、射线、直线

2、直线的性质

(1)直线公理:经过两个点有且只有一条直线。(两点确定一条直线)

(2)过一点的直线有无数条。

(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

3、线段的性质

(1)线段公理:两点之间的所有连线中,线段最短。(两点之间线段最短)

(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

(3)线段的大小关系和它们的长度的大小关系是一致的。

4、线段的中点:

点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。AM = BM =1/2AB (或AB=2AM=2BM)。

5、角

有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。

6、角的表示

角的表示方法有以下四种:

①用数字表示单独的角,如∠1,∠2,∠3等。

②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。

④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。

注意:用三个大写字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。

7、角的度量

角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。

把1°的角60等分,每一份叫做1分的角,1分记作“1’”。

把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。

1°=60’,1’=60”。

8、角的平分线

从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

9、角的性质

(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。

(2)角的大小可以度量,可以比较,角可以参与运算。

10、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。终边继续旋转,当它又和始边重合时,所形成的角叫做周角。

11、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭平面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。

从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以画(n-3)条对角线,把这个n边形分割成(n-2)个三角形。

12、圆:平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。

圆上任意两点A、B间的部分叫做圆弧,简称弧,读作“圆弧AB”或“弧AB”;由一条弧AB和经过这条弧的端点的两条半径OA、OB所组成的图形叫做扇形。顶点在圆心的角叫做圆心角。

学好数学的方法

1、上课前要调整好心态,一定不能想,哎,又是数学课,上课时听讲心情就很不好,这样当然学不好!

2、上课时一定要认真听讲,作到耳到、眼到、手到!这个很重要,一定要学会做笔记,上课时如果老师讲的快,一定静下心来听,不要记,下课时再整理到 笔记本 上!保持高效率!

3、俗话说兴趣是最好的老师,当别人谈论最讨厌的课时,你要告诉自己,我喜欢数学!

4、保证遇到的每一题都要弄会,弄懂,这个很重要!不会就问,不要不好意思,要学会举一反三!也就是要灵活运用!作的题不要求多,但要精!

5、要有错题集,把平时遇到的好题记下来,错题记下来,并要多看,多思考,不能在同一个地方绊倒!!

总之,学习数学,不要怕难,不要怕累,不要怕问!

学好数学的几条建议

1、要有学习数学的兴趣。“兴趣是最好的老师”。做任何事情,只要有兴趣,就会积极、主动去做,就会想方设法把它做好。但培养数学兴趣的关键是必须先掌握好数学基础知识和基本技能。有的同学老想做难题,看到别人上数奥班,自己也要去。如果这些同学连课内的基础知识都掌握不好,在里面学习只能滥竽充数,对学习并没有帮助,反而使自己失去学习数学的信心。我建议同学们可以看一些数学名人小 故事 、趣味数学等知识来增强学习的自信心。

2、要有端正的 学习态度 。首先,要明确学习是为了自己,而不是为了老师和父母。因此,上课要专心、积极思考并勇于发言。其次,回家后要认真完成作业,及时地把当天学习的知识进行复习,再把明天要学的内容做一下预习,这样,学起来会轻松,理解得更加深刻些。

3、要有“持之以恒”的精神。要使学习成绩提高,不能着急,要一步一步地进行,不要指望一夜之间什么都学会了。即使进步慢一点,只要坚持不懈,也一定能在数学的学习道路上获得成功!还要有“不耻下问”的精神,不要怕丢面子。其实无论知识难易,只要学会了,弄懂了,那才是最大的面子!

4、要注重学习的技巧和方法。不要死记硬背一些公式、定律,而是要靠分析、理解,做到灵活运用,举一反三。特别要重视课堂上学习新知识和分析练习的时候,不能思想开小差,管自己做与学习无关的事情。注意力一定要高度集中,并积极思考,遇到不懂题目时要及时做好记录,课后和同学进行探讨,做好查漏补缺。

5、要有善于观察、阅读的好习惯。只要我们做数学的有心人,细心观察、思考,我们就会发现生活中到处都有数学。除此之外,同学们还可以从多方面、多种 渠道 来学习数学。如:从电视、网络、《小学生数学报》、《数学小灵通》等报刊杂志上学习数学,不断扩展知识面。

6、要有自己的观点。现在,大部分同学遇到一些较难或不清楚的问题时,就不加思考,轻易放弃了,有的干脆听从老师、父母、书本的意见。即使是老师、长辈、书籍等权威,也不是没有一点儿失误的,我们要重视权威的意见,但绝不等于不加思考的认同。

7、要学会概括和积累。及时 总结 解题规律,特别是积累一些经典和特殊的题目。这样既可以学得轻松,又可以提高学习的效率和质量。

8、要重视其他学科的学习。因为各个学科之间是有着密切的联系,它对学习数学有促进的作用。如:学好语文对数学题目的理解有很大的帮助等等。


七年级数学上册知识点北师大版相关 文章 :

★ 初一数学北师大版知识点梳理

★ 北师大版初一数学知识点总结

★ 北师大版初一数学知识点归纳

★ 初一北师大版数学知识点

★ 初一数学知识点总结北师版

★ 北师大版七年级数学知识点总结

★ 七年级数学上册知识点总结第四章

★ 北师大版初中数学教案

★ 北师大版初中数学知识点提纲

★ 七年级数学的知识点归纳总结

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

‘玖’ 初一数学上册知识点总结

初一数学上册知识点总结1

代数初步知识

1. 代数式:用运算符号+ - 连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.

2.列代数式的几个注意事项:

(1)数与字母相乘,或字母与字母相乘通常使用 乘,或省略不写;

(2)数与数相乘,仍应使用乘,不用 乘,也不能省略乘号;

(3)数与字母相乘时,一般在结果中把数写在字母前面,如a5应写成5a;

(4)带分数与字母相乘时,要把带分数改成假分数形式,如a 应写成 a;

(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3a写成 的形式;

(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .

3.几个重要的代数式:(m、n表示整数)

(1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ;

(2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c;

(3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ;

(4)若b0,则正数是:a2+b ,负数是: -a2-b ,非负数是: a2 ,非正数是:-a2 .

初一数学上册知识点总结2

一、方程的有关概念

1.方程:含有未知数的等式就叫做方程.

2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.

3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.

注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.

二、等式的性质

等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.

等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c

等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb

三、移项法则: 把等式一边的某项变号后移到另一边,叫做移项.

四、去括号法则

1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.

2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.

五、解方程的一般步骤

1. 去分母(方程两边同乘各分母的最小公倍数)

2. 去括号(按去括号法则和分配律)

3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)

4. 合并(把方程化成ax = b (a≠0)形式)

5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=a(b).

六、用方程思想解决实际问题的一般步骤

1. 审:审题,分析题中已知什么,求什么,明确各数量之间的关系.

2. 设:设未知数(可分直接设法,间接设法)

3. 列:根据题意列方程.

4. 解:解出所列方程.

5. 检:检验所求的解是否符合题意.

6. 答:写出答案(有单位要注明答案)

初一数学上册知识点总结3

(1)凡能写成 形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

(2)有理数的分类: ① 整数 ②分数

(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

(4)自然数 0和正整数;a0 a是正数;a0 a是负数;

a≥0 a是正数或0 a是非负数;a≤ 0 ? a是负数或0 a是非正数.

有理数比大小:

(1)正数的绝对值越大,这个数越大;

(2)正数永远比0大,负数永远比0小;

(3)正数大于一切负数;

(4)两个负数比大小,绝对值大的反而小;

(5)数轴上的两个数,右边的数总比左边的数大;

(6)大数-小数 0,小数-大数 0.

初一数学上册知识点总结4

第一章:丰富的图形世界

1、几何图形

从实物中抽象出来的各种图形,包括立体图形和平面图形。

2、点、线、面、体

①几何图形的组成

点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

②点动成线,线动成面,面动成体。

3、生活中的立体图形

生活中的立体图形(按名称分)

柱:

①圆柱

②棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……

锥:

①圆锥

②棱锥

4、棱柱及其有关概念:

棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。

n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

5、正方体的平面展开图:

11种(经常考:考试形式:展开的图形能否围成正方体;正方体对面图案)

6、截一个正方体:

用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

7、三视图:

物体的三视图指主视图、俯视图、左视图。

主视图:从正面看到的图,叫做主视图。

左视图:从左面看到的图,叫做左视图。

俯视图:从上面看到的图,叫做俯视图。

第二章:有理数及其运算

1、有理数的分类

①正有理数

有理数{ ②零

③负有理数

有理数{ ①整数

②分数

2、相反数:

只有符号不同的两个数叫做互为相反数,零的`相反数是零

3、数轴:

规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。

4、倒数:

如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和—1。零没有倒数。

5、绝对值:

在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。

若|a|=a,则a≥0;

若|a|=-a,则a≤0。

正数的绝对值是它本身;

负数的绝对值是它的相反数;

0的绝对值是0。

互为相反数的两个数的绝对值相等。

6、有理数比较大小:

正数大于0,负数小于0,正数大于负数;

数轴上的两个点所表示的数,右边的总比左边的大;

两个负数,绝对值大的反而小。

7、有理数的运算:

①五种运算:加、减、乘、除、乘方

多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。

有理数加法法则:

同号两数相加,取相同的符号,并把绝对值相加。

异号两数相加,绝对值值相等时和为0;

绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

一个数同0相加,仍得这个数。

互为相反数的两个数相加和为0。

有理数减法法则:

减去一个数,等于加上这个数的相反数!

有理数乘法法则:

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘,积仍为0。

有理数除法法则:

两个有理数相除,同号得正,异号得负,并把绝对值相除。

0除以任何非0的数都得0。

注意:0不能作除数。

有理数的乘方:求n个相同因数a的积的运算叫做乘方。

正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数。

②有理数的运算顺序

先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。

③运算律(5种)

加法交换律

加法结合律

乘法交换律

乘法结合律

乘法对加法的分配律

8、科学记数法

一般地,一个大于10的数可以表示成a×

10n的形式,其中1≦n<10,n是正整数,这种记数方法叫做科学记数法。(n=整数位数—1)

第三章:整式及其加减

1、代数式

用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。

注意:

①代数式中除了含有数、字母和运算符号外,还可以有括号;

②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;

③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。

代数式的书写格式:

①代数式中出现乘号,通常省略不写,如vt;

②数字与字母相乘时,数字应写在字母前面,如4a;

③带分数与字母相乘时,应先把带分数化成假分数。

④数字与数字相乘,一般仍用“×”号,即“×”号不省略;

⑤在代数式中出现除法运算时,一般写成分数的形式;注意:分数线具有“÷”号和括号的双重作用。

⑥在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面。

2、整式:单项式和多项式统称为整式。

①单项式:

都是数字和字母乘积的形式的代数式叫做单项式。单项式中,所有字母的指数之和叫做这个单项式的次数;数字因数叫做这个单项式的系数。

注意:

单独的一个数或一个字母也是单项式;

单独一个非零数的次数是0;

当单项式的系数为1或—1时,这个“1”应省略不写,如—ab的系数是—1,a3b的系数是1。

②多项式:

几个单项式的和叫做多项式。多项式中,每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数。

③同类项:

所含字母相同,并且相同字母的指数也相同的项叫做同类项。

注意:

①同类项有两个条件:a。所含字母相同;b。相同字母的指数也相同。

②同类项与系数无关,与字母的排列顺序无关;

③几个常数项也是同类项。

4、合并同类项法则:

把同类项的系数相加,字母和字母的指数不变。

5、去括号法则

①根据去括号法则去括号:

括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“—”号,把括号和它前面的“—”号去掉,括号里各项都改变符号。

②根据分配律去括号:

括号前面是“+”号看成+1,括号前面是“—”号看成—1,根据乘法的分配律用+1或—1去乘括号里的每一项以达到去括号的目的。

6、添括号法则

添“+”号和括号,添到括号里的各项符号都不改变;添“—”号和括号,添到括号里的各项符号都要改变。

7、整式的运算:

整式的加减法:(1)去括号;(2)合并同类项。

第四章基本平面图形

1、线段、射线、直线

名称

表示方法

端点

长度

直线

直线AB(或BA)

直线l

无端点

无法度量

射线

射线OM

1个

无法度量

线段

线段AB(或BA)

线段l

2个

可度量长度

2、直线的性质

①直线公理:经过两个点有且只有一条直线。(两点确定一条直线。)

②过一点的直线有无数条。

③直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

3、线段的性质

①线段公理:两点之间的所有连线中,线段最短。(两点之间线段最短。)

②两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

③线段的大小关系和它们的长度的大小关系是一致的。

4、线段的中点:

点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。AM = BM =1/2AB (或AB=2AM=2BM)。

5、角:

有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。

6、角的表示

角的表示方法有以下四种:

①用数字表示单独的角,如∠1,∠2,∠3等。

②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。

④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。

注意:用三个大写字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。

7、角的度量

角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。

把1°的角60等分,每一份叫做1分的角,1分记作“1’”。

把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。

1°=60’,1’=60”

8、角的平分线

从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

9、角的性质

①角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。

②角的大小可以度量,可以比较,角可以参与运算。

10、平角和周角:

一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。

终边继续旋转,当它又和始边重合时,所形成的角叫做周角。

11、多边形:

由若干条不在同一条直线上的线段首尾顺次相连组成的封闭平面图形叫做多边形。

连接不相邻两个顶点的线段叫做多边形的对角线。

从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以画(n—3)条对角线,把这个n边形分割成(n—2)个三角形。

12、圆:

平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。

固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。

圆上任意两点A、B间的部分叫做圆弧,简称弧,读作“圆弧AB”或“弧AB”;

由一条弧AB和经过这条弧的端点的两条半径OA、OB所组成的图形叫做扇形。

顶点在圆心的角叫做圆心角。

第五章一元一次方程

1、方程

含有未知数的等式叫做方程。

2、方程的解

能使方程左右两边相等的未知数的值叫做方程的解。

3、等式的性质

①等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。

②等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式。

4、一元一次方程

只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程。

5、移项:

把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项。

6、解一元一次方程的一般步骤:

①去分母

②去括号

③移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。)

④合并同类项

⑤将未知数的系数化为1

第六章数据的收集与整理

1、普查与抽样调查

为了特定目的对全部考察对象进行的全面调查,叫做普查。

其中被考察对象的全体叫做总体,组成总体的每一个被考察对象称为个体。

从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体抽取的一部分个体叫做总体的一个样本。

2、扇形统计图

扇形统计图:利用圆与扇形来表示总体与部分的关系,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。(各个扇形所占的百分比之和为1)

圆心角度数=360°×该项所占的百分比。(各个部分的圆心角度数之和为360°)

3、频数直方图

频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组画在横轴上,纵轴表示各组数据的频数。

4、各种统计图的特点

条形统计图:能清楚地表示出每个项目的具体数目。

折线统计图:能清楚地反映事物的变化情况。

扇形统计图:能清楚地表示出各部分在总体中所占的百分比。

初一数学上册知识点总结5

1、 我们把实物中抽象的各种图形统称为几何图形(geometric figure).

2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形(solidfigure).

3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形(planefigure).

4、将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图(net).

5、几何体简称为体(solid).

6、包围着体的是面(surface),面有平的面和曲的面两种.

7、面与面相交的地方形成线(line),线和线相交的地方是点(point).

8、点动成面,面动成线,线动成体.

9、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线.简述为:两点确定一条直线(公理).

10、当两条不同的直线有一个公共点时,我们就称这两条直线相交(intersection),这个公共点叫做它们的交点(pointof intersection).

11、点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点(center).

12、经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短.简单说成:两点之间,线段最短.(公理)

13、连接两点间的线段的长度,叫做这两点的距离(distance).

14、角∠(angle)也是一种基本的几何图形.

15、把一个周角360等分,每一份就是1度(degree)的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″.

16、从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线(angular bisector).

17、如果两个角的和等于90°(直角),就是说这两个叫互为余角(complementaryangle),即其中的每一个角是另一个角的余角.

18、如果两个角的和等于180°(平角),就说这两个角互为补角(supplementaryangle),即其中一个角是另一个角的补角

19、等角的补角相等,等角的余角相等.

‘拾’ 初一上学期数学各章知识点及经典例题

第一册
第一章有理数

1.1正数和负数

以前学过的0以外的数前面加上负号“-”的书叫做负数。

以前学过的0以外的数叫做正数。

数0既不是正数也不是负数,0是正数与负数的分界。

在同一个问题中,分别用正数和负数表示的量具有相反的意义

1.2有理数

1.2.1有理数

正整数、0、负整数统称整数,正分数和负分数统称分数。

整数和分数统称有理数。

1.2.2数轴

规定了原点、正方向、单位长度的直线叫做数轴。

数轴的作用:所有的有理数都可以用数轴上的点来表达。

注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。

⑵同一根数轴,单位长度不能改变。

一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

1.2.3相反数

只有符号不同的两个数叫做互为相反数。

数轴上表示相反数的两个点关于原点对称。

在任意一个数前面添上“-”号,新的数就表示原数的相反数。

1.2.4绝对值

一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。

在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。

⑵两个负数,绝对值大的反而小。

1.3有理数的加减法

1.3.1有理数的加法

有理数的加法法则:

⑴同号两数相加,取相同的符号,并把绝对值相加。

⑵绝对值不相等的饿异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

⑶一个数同0相加,仍得这个数。

两个数相加,交换加数的位置,和不变。

加法交换律:a+b=b+a

三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。

加法结合律:(a+b)+c=a+(b+c)

1.3.2有理数的减法

有理数的减法可以转化为加法来进行。

有理数减法法则:

减去一个数,等于加这个数的相反数。

a-b=a+(-b)

1.4有理数的乘除法

1.4.1有理数的乘法

有理数乘法法则:

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。

两个数相乘,交换因数的位置,积相等。

ab=ba

三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

(ab)c=a(bc)

一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

a(b+c)=ab+ac

数字与字母相乘的书写规范:

⑴数字与字母相乘,乘号要省略,或用“”

⑵数字与字母相乘,当系数是1或-1时,1要省略不写。

⑶带分数与字母相乘,带分数应当化成假分数。

用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,则式子2x+3x是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数。

一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即

ax+bx=(a+b)x

上式中x是字母因数,a与b分别是ax与bx这两项的系数。

去括号法则:

括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号。

括号前是“-”,把括号和括号前的“-”去掉,括号里各项都改变符号。

括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反。

1.4.2有理数的除法

有理数除法法则:

除以一个不等于0的数,等于乘这个数的倒数。

a÷b=a·(b≠0)

两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算。乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

1.5有理数的乘方

1.5.1乘方

求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。

负数的奇次幂是负数,负数的偶次幂是正数。

正数的任何次幂都是正数,0的任何正整数次幂都是0。

有理数混合运算的运算顺序:

⑴先乘方,再乘除,最后加减;

⑵同极运算,从左到右进行;

⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行

1.5.2科学记数法

把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。

用科学记数法表示一个n位整数,其中10的指数是n-1。

1.5.3近似数和有效数字

接近实际数目,但与实际数目还有差别的数叫做近似数。

精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。

从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。

对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字。

第二章一元一次方程

2.1从算式到方程

2.1.1一元一次方程

含有未知数的等式叫做方程。

只含有一个未知数(元),未知数的指数都是1(次),这样的方程叫做一元一次方程。

分析实际问题中的数量关系,利用其中的相等关系列出方程,是数学解决实际问题的一种方法。

解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

2.1.2等式的性质

等式的性质1等式两边加(或减)同一个数(或式子),结果仍相等。

等式的性质2等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2.2从古老的代数书说起——一元一次方程的讨论⑴

把等式一边的某项变号后移到另一边,叫做移项。

2.3从“买布问题”说起——一元一次方程的讨论⑵

方程中有带括号的式子时,去括号的方法与有理数运算中括号类似。

解方程就是要求出其中的未知数(例如x),通过去分母、去括号、移项、合并、系数化为1等步骤,就可以使一元一次方程逐步向着x=a的形式转化,这个过程主要依据等式的性质和运算律等。

去分母:

⑴具体做法:方程两边都乘各分母的最小公倍数

⑵依据:等式性质2

⑶注意事项:①分子打上括号

②不含分母的项也要乘
2.4再探实际问题与一元一次方程
第三章图形认识初步

3.1多姿多彩的图形

现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形。

3.1.1立体图形与平面图形

长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。

长方形、正方形、三角形、圆等都是平面图形。

许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。

3.1.2点、线、面、体

几何体也简称体。长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体。

包围着体的是面。面有平的面和曲的面两种。

面和面相交的地方形成线。

线和线相交的地方是点。

几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。

3.2直线、射线、线段

经过两点有一条直线,并且只有一条直线。

两点确定一条直线。

点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。

直线桑一点和它一旁的部分叫做射线。

两点的所有连线中,线段最短。简单说成:两点之间,线段最短。

3.3角的度量

角也是一种基本的几何图形。

度、分、秒是常用的角的度量单位。

把一个周角360等分,每一份就是一度的角,记作1;把1度的角60等分,每份叫做1分的角,记作1;把1分的角60等分,每份叫做1秒的角,记作1。

3.4角的比较与运算

3.4.1角的比较

从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。类似的,还有叫的三等分线。

3.4.2余角和补角

如果两个角的和等于90(直角),就说这两个角互为余角。

如果两个角的和等于180(平角),就说这两个角互为补角。

等角的补角相等。

等角的余角相等。

第四章数据的收集与整理

收集、整理、描述和分析数据是数据处理的基本过程。

4.1喜爱哪种动物的同学最多——全面调查举例

用划记法记录数据,“正”字的每一划(笔画)代表一个数据。

考察全体对象的调查属于全面调查。

4.2调查中小学生的视力情况——抽样调查举例

抽样调查是从总体中抽取样本进行调查,根据样本来估计总体的一种调查。

统计调查是收集数据常用的方法,一般有全面调查和抽样调查两种,实际中常常采用抽样调查的方式。调查时,可用不同的方法获得数据。除问卷调查、访问调查等外,查阅文献资料和实验也是获得数据的有效方法。

利用表格整理数据,可以帮助我们找到数据的分布规律。利用统计图表示经过整理的数据,能更直观地反映数据规律。

4.3课题学习调查“你怎样处理废电池?”

调查活动主要包括以下五项步骤:

一、设计调查问卷

⑴设计调查问卷的步骤

①确定调查目的;

②选择调查对象;

③设计调查问题

⑵设计调查问卷时要注意:

①提问不能涉及提问者的个人观点;

②不要提问人们不愿意回答的问题;

③提供的选择答案要尽可能全面;

④问题应简明;

⑤问卷应简短。

二、实施调查

将调查问卷复制足够的份数,发给被调查对象。

实施调查时要注意:

⑴向被调查者讲明哪些人是被调查的对象,以及他为什么成为被调查者;

⑵告诉被调查者你收集数据的目的。

三、处理数据

根据收回的调查问卷,整理、描述和分析收集到的数据。

四、交流

根据调查结果,讨论你们小组有哪些发现和建议?

五、写一份简单的调查报告

第二册

第五章相交线与平行线

5.1相交线

5.1.1相交线

有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。

两条直线相交有4对邻补角。

有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。

两条直线相交,有2对对顶角。

对顶角相等。

5.1.2

两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

注意:⑴垂线是一条直线。

⑵具有垂直关系的两条直线所成的4个角都是90。

⑶垂直是相交的特殊情况。

⑷垂直的记法:a⊥b,AB⊥CD。

画已知直线的垂线有无数条。

过一点有且只有一条直线与已知直线垂直。

连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。

直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

5.2平行线

5.2.1平行线

在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。

在同一平面内两条直线的关系只有两种:相交或平行。

平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

5.2.2直线平行的条件

两条直线被第三条直线所截,在两条被截线的同一方,截线的同一旁,这样的两个角叫做同位角。

两条直线被第三条直线所截,在两条被截线之间,截线的两侧,这样的两个角叫做内错角。

两条直线被第三条直线所截,在两条被截线之间,截线的同一旁,这样的两个角叫做同旁内角。

判定两条直线平行的方法:

方法1两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。

方法2两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。

方法3两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。

5.3平行线的性质

平行线具有性质:

性质1两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。

性质2两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。

性质3两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。

同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。

判断一件事情的语句叫做命题。

5.4平移

⑴把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。

图形的这种移动,叫做平移变换,简称平移。

第六章平面直角坐标系

6.1平面直角坐标系

6.1.1有序数对

有顺序的两个数a与b组成的数对,叫做有序数对。

6.1.2平面直角坐标系

平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴取2向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。

平面上的任意一点都可以用一个有序数对来表示。

建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。

6.2坐标方法的简单应用

6.2.1用坐标表示地理位置

利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:

⑴建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;

⑵根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;

⑶在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

6.2.2用坐标表示平移

在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b))。

在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。

第七章三角形

7.1与三角形有关的线段

7.1.1三角形的边

由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。相邻两边组成的角,叫做三角形的内角,简称三角形的角。

顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC”。

三角形两边的和大于第三边。

7.1.2三角形的高、中线和角平分线

7.1.3三角形的稳定性

三角形具有稳定性。

7.2与三角形有关的角

7.2.1三角形的内角

三角形的内角和等于180。

7.2.2三角形的外角

三角形的一边与另一边的延长线组成的角,叫做三角形的外角。

三角形的一个外角等于与它不相邻的两个内角的和。

三角形的一个外角大于与它不相邻的任何一个内角。

7.3多边形及其内角和

7.3.1多边形

在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

n边形的对角线公式:

各个角都相等,各条边都相等的多边形叫做正多边形。

7.3.2多边形的内角和

n边形的内角和公式:180(n-2)

多边形的外角和等于360。

7.4课题学习镶嵌

第八章二元一次方程组

8.1二元一次方程组

含有两个未知数,并且未知数的指数都是1的方程叫做二元一次方程

把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。

使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解

二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

8.2消元

由二元一次方程组中的一个方程,将一个未知数用含有另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。

两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。这种方法叫做加减消元法,简称加减法。

8.3再探实际问题与二元一次方程组
第九章不等式与不等式组

9.1不等式

9.1.1不等式及其解集

用“<”或“>”号表示大小关系的式子叫做不等式。

使不等式成立的未知数的值叫做不等式的解。

能使不等式成立的未知数的取值范围,叫做不等式解的集合,简称解集。

含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。

9.1.2不等式的性质

不等式有以下性质:

不等式的性质1不等式两边加(或减)同一个数(或式子),不等号的方向不变。

不等式的性质2不等式两边乘(或除以)同一个正数,不等号的方向不变。

不等式的性质3不等式两边乘(或除以)同一个负数,不等号的方向改变。

9.2实际问题与一元一次不等式

解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为x<a(或x>a)的形式。

9.3一元一次不等式组

把两个不等式合起来,就组成了一个一元一次不等式组。

几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集。解不等式就是求它的解集。

对于具有多种不等关系的问题,可通过不等式组解决。解一元一次不等式组时。一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集。

9.4课题学习利用不等关系分析比赛
第十章实数

10.1平方根

如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根。a的算术平方根记为,读作“根号a”,a叫做被开方数。

如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根。

求一个数a的平方根的运算,叫做开平方。

10.2立方根

如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根。

求一个数的立方根的运算,叫做开立方。

10.3实数

无限不循环小数又叫做无理数。

有理数和无理数统称实数。

一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0。