A. 小学四年级下册数学复习资料
加法交换律:a+b=b+b
加法结合律:a+b+c=a+(b+c)
1 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 加数+加数=和
和-一个加数=另一个加数
7 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 因数×因数=积
积÷一个因数=另一个因数
9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
有的可能不是
第一单元乘法
1、三位数乘两位数,所得的积不是四位数就是五位数。
2、三位数乘两位数的计算法则:先用两位数的个位上的数与三位数的每一位相乘,乘得的积和个位对齐,再用两位数十位上的数与三位数的每一位相乘,所得的积和十位对齐,最后把两次乘得的积相加。
3、末尾有0的乘法计算方法:现把两个乘数不是零的部分相乘,再看两个乘数末尾一共有几个零,就在积的末尾加几个零。
第二单元升和毫升
1、1升(L)=1000毫升(ml 、mL)
2、从里面量长、宽、高都是1分米的正方体容器正好是1升。1升水重1千克。生活中一杯水大约250毫升;一个高压锅大约盛水6升;一个家用水池大约盛水30升,一个脸盆大约盛水10升;一个浴缸大约盛水400升;一个热水瓶的容量大约是2升,一个金鱼缸大约有水30升,一瓶饮料大约是400毫升,一锅水有5升,一汤勺水有10毫升。
3、一个健康的成年人血液总量约为4000----5000毫升。义务献血者每次献血量一般为200毫升。
4、1毫升大约等于20滴水。
第三单元三角形
1、围成三角形的条件:较短两条边长度的和一定大于第三条边。
2、从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。
3、三角形具有稳定性(也就是当一个三角形的三条边的长度确定后,这个三角形的形状和大小都不会改变),生活中很多物体利用了这样的特性。如:人字梁、斜拉桥、自行车车架。
4、三个角都是锐角的三角形是锐角三角形。(两个内角的和大于第三个内角。)
5、有一个角是直角的三角形是直角三角形。(两个内角的和等于第三个内角。两个锐角的和是90度。两条直角边互为底和高。)
6、有一个角是钝角的三角形是钝角三角形。(两个内角的和小于第三个内角。)
7、任意一个三角形至少有两个锐角,都有三条高,三角形的内角和都是180度。(锐角三角形的三条高都在三角形内;直角三角形有两条高落在两条直角边上;钝角三角形有两条高在三角形外)。
8、把一个三角形分成两个直角三角形就是画它的高。
9、两条边相等的三角形是等腰三角形,相等的两条边叫做腰,另外一条边叫做底,两条腰的夹角叫做顶角,底和腰的两个夹角叫做底角,它的两个底角也相等,是轴对称图形,有一条对称轴(跟底边高正好重合。)三条边都
相等的三角形是等边三角形,三条边都相等,三个角也都
相等(每个角都是60°,所有等边三角形的三个角都是60°。)
10、有一个角是直角的等腰三角形叫做等腰直角三角形,
它的底角等于45°,顶角等于90°。
10、求三角形的一个角=180°-另外两角的和
11、等腰三角形的顶角=180°-底角×2=180°-底角-底角
12、等腰三角形的底角=(180°-顶角)÷2
13、一个三角形最大的角是60度,这个三角形一定是等边三角形。
14、多边形的内角和=180°×(n-2){n为边数}
第四单元混合运算
1、混合运算中:先乘除后加减,既有小括号,又有中括号,要先算小括号里面的,再算中括号里的。
第五单元平行四边形和梯形
1、两组对边互相平行的四边形叫平行四边形,它的对边平行且相等,对角相等。从一个顶点向对边可以作两种不同的高。
底和高一定要对应。一个平行四边形有无数条高。
2、用两块完全一样的三角尺可以拼成一个平行
四边形。
3、平行四边形容易变形(不稳定性)。生活中许
多物体都利用了这样的特性。如:(电动伸缩门、铁拉门、
伸降机)把平行四边形拉成一个长方形,周长不变,面积变了。平行四边形不是轴对称图形。
4、只有一组对边平行的四边形叫梯形。平
行的一组对边较短的叫做梯形的上底,较长的
叫做梯形的下底,不平行的一组对边叫做梯形
的腰,两条平行线之间的距离叫做梯形的高
(无数条)。
5、两条腰相等的梯形叫等腰梯形,它的两个底角相等,是轴对称图形,有一条对称轴。直角梯形有且只有两个直角。
6、两个完全一样的梯形可以拼成一个平行四边形。
7、正方形、长方形属于特殊的平行四边形。
第六单元找规律
1、搭配型规律:两种事物的个数相乘。(如帽子和衣服的搭配)
2、排列:(1)爸爸、妈妈、我排列照相,有几种排法:2×3。
(2)5个球队踢球,每两队踢一场,要踢多少场:4+3+2+1
第七单元运算律
1、乘法交换律:a×b=b×a
2、乘法结合律:(a×b)×c=a×(b×c)
3、乘法分配律:(a+b)×c=a×c+b×c(合起来乘等于分别乘)
4、衍生:(a-b)×c=a×c-b×c
5、简便运算典型例题:
102×35=(100+2)×35 36×101-36=36×(101-1)
35×98=35×(100-2)=35×100-35×2
第八单元对称、平移和旋转
1、画图形的另一半:(1)找对称轴(2)找对应点(3)连成图形。
2、正三边形(等边三角形)有3条对称轴,正四边形(正方形)有4条对称轴,正五边形有5条对称轴,……正n变形有n条对称轴。
3、图形的平移,先画平移方向,再把关键的点平移到指定的地方,最后连接成图。(本学期学习两次平移,如从左上平移到右下,先向右平移,再向下平移。)
4、图形的旋转,先找点,再把关键的边旋转到指定的地方,(注意方向和角度)再连线。(不管是平移还是旋转,基本图形不能改变。)
第九单元倍数和因数
1、4×3=12,或12÷3=4。那么12是3和4的倍数,3和4是12的因数。(倍数和因数是相互存在的,不可以说12是倍数,或者说3是因数。只能说谁是谁的倍数,谁是谁的因数。)
2、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。如18的因数有:1、2、3、6、9、18。
3、一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。如:18的倍数有:18、36、54、72、90……(省略号非常重要)
4、一个数最大的因数等于这个数最小的倍数(都是它本身)。
5、是2的倍数的数叫做偶数。(个位是0、2、4、6、8的数)
6、不是2的倍数的数叫做奇数。(个位是1、3、5、7、9的数)
7、个位上是2、4、6、8、0的数是2的倍数,个位上是0或5的数是5的倍数。
8、既是2的倍数又是5的倍数个位上一定是0。(如:10、20、30、40……)
9、一个数各位上数字的和是3的倍数,这个数就是3的倍数。(如:453各位上数字的和是4+3+5=12,因为12是3的倍数,所以453也是3的倍数。)
10、一个数只有1和它本身两个因数的数叫素数。(或质数)如:2、3、5、7、11、13、17、19…… 2是素数中唯一的偶数。(所以“所有的素数都是奇数”这一说法是错误的。)
11、一个数除了1和它本身两个因数外,还有其它因数的数叫合数。如:4、6、8、9、10……
12、1既不是素数也不是合数,因为1的因数只有1个:1
13、哥德巴赫猜想:任何大于2的偶数都是两个素数之和。20=3+17、40=11+2、8=3+5、10=3+7、12=5+7、14=3+11=7+7、30=23+7=13+17
14、100以内的素数表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
15、三个连续自然数(3、4、5),三个连续奇数(3、5、7),三个连续偶数(4、6、8)的和都是3的倍数。
第十单元用计算器探索规律
1、积的变化规律:
①一个因数缩小几倍,另一个因数扩大相同的倍数,积不变。
②一个因数缩小(或扩大几倍),另一个因数不变,积也随着缩小(或扩大)几倍。
2、商的变化规律:
①被除数和除数同时扩大(或缩小)相同的倍数,(0除外),商不变。(余数会变)
②被除数扩大(或缩小)几倍,除数不变,商也随之扩大(或缩小)几倍。
③被除数不变,除数缩小几倍(0除外),商反而扩大几倍。
第十二单元统计
1、折线统计图不仅能够看出数量的多少,而且能够更清楚地看出数量的增减变化情况。折线统计图的制作步骤:①定点 ②写数据 ③连线 ④写日期
第十三单元用字母表示数
1、用字母表示数的基本规律:
如果正方形的边长用a表示,周长用C表示,面积用S表示。那么:正方形的周长:C=a×4 正方形的面积:S=a×a。
a×4或4×a通常可以写成4•a或4a;a×a可以写成a•a,也可以写成a2,读作“a的平方”。如果是a与1相乘,就可以直接写成a。
附:常用数量关系
正方形的面积=边长×边长 (S=a×a=a2)
正方形的周长=边长×4 (C=a×4=4a)
长方形的面积=长×宽 (S=a×b=ab)
长方形的周长=(长+宽)×2 C=(a+b)×2
总价=单价×数量 单价=总价÷数量 数量=总价÷单价
路程=速度×时间 速度=路程÷时间 时间=路程÷速度
工总=工效×时间 工效=工总÷时间 时间=工总÷时间
房间面积=每块地面砖面积×块数
块数=房间面积÷每块面积
相遇的路程=(甲速度+乙速度)×相遇的时间=甲速度×时间+乙速度×时间
相距的路程=(甲速度—乙速度)×时间=甲速度×时间—乙
四 年 级 下 学 期 数 学 复 习 提 纲
领域 主要内容 重 点 难 点 相 关 概 念
数与代数 乘法 三位数乘两位数的笔算
三步计算解决实际问题 三位数中间有0的笔算。 三位数乘两位数,所得的积不是四位数就是五位数。
末尾有0的乘法计算方法:先把两个乘数不是零的部分相乘,再看两个乘数末尾一共有几个零,就在积的末尾加几个零。
混合运算 三步计算混合运算的运算顺序,中括号。 明确运算顺序,提高计算正确率。 先乘除后加减;既有小括号,又有中括号,要先算小括号里面的,再算中括号里的。
运算律 应用乘法分配律进行简便运算 乘法交换律、结合律、分配律的简便运算。 1、乘法交换律:a×b=b×a
2、乘法结合律:(a×b)×c=a×(b×c)
3、乘法分配律:(a+b)×c=a×c+b×c(合起来乘等于分别乘)
4、拓展:(a-b)×c=a×c-b×c
5、简便运算典型例题:102×35=(100+2)×35
36×101-36=36×(101-1) 35×98=35×(100-2)=35×100-35×2
用计算器
探索规律 积的变化规律
商的不变规律,用简便方法计算被除数和除数末尾都有0的除法 在计算和解决实际问题中的应用。 1、积的变化规律:
一个因数缩小(或扩大几倍),另一个因数不变,积也同时缩小(或扩大)相同的倍数。
2、商的变化规律:
被除数和除数同时扩大(或缩小)相同的倍数,(0除外),商不变。(余数会变)
倍数
因数 找10以内某个自然数的所有倍数(100以内)、找100以内某个自然数的所有因数
偶数和奇数,素数和合数的特征,2、5和3的倍数的特征 在掌握意义的基础上综合进行各类判断,明白每类自然数的特征。 1、4×3=12,或12÷3=4。那么12是3和4的倍数,3和4是12的因数。(倍数和因数是相互存在的,不可以说12是倍数,或者说3是因数。只能说谁是谁的倍数,谁是谁的因数。)
2、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。
3、一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。
4、一个数最大的因数等于这个数最小的倍数(都是它本身)。
5、是2的倍数的数叫做偶数。(个位是0、2、4、6、8的数)
6、不是2的倍数的数叫做奇数。(个位是1、3、5、7、9的数)
7、个位上是2、4、6、8、0的数是2的倍数,个位上是0或5的数是5的倍数。
8、既是2的倍数又是5的倍数个位上一定是0。
9、一个数各位上数字的和是3的倍数,这个数就是3的倍数。(如:453各位上数字的和是4+3+5=12,因为12是3的倍数,所以453也是3的倍数。)
10、一个数只有1和它本身两个因数的数叫素数(或质数)。如:2、3、5、7、11、13、17、19、23、29、31、37、41、47……
2是素数中唯一的偶数。(所以“所有的素数都是奇数”这句话是错误的。)
11、一个数除了1和它本身两个因数外,还有其它因数的数叫合数。
12、1既不是素数也不是合数,因为1的因数只有1个:1
13、100以内的素数表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
14、三个连续自然数(3、4、5),三个连续奇数(3、5、7),三个连续偶数(4、6、8)的和都是3的倍数。
找规律 进一步认识生活中的简单搭配、简单排列现象的规律。对几种事物进行有序的搭配或排列。 运用规律解决一些简单的实际问题。 1、搭配型规律:两种事物的个数相乘。(如帽子和衣服的搭配)
2、排列:(1)爸爸、妈妈、我排列照相,有几种排法:2×3。
(2)5个球队踢球,每两队踢一场,要踢多少场:4+3+2+1
用字母
表示数 用含有字母的式子表示简单的数量、数量关系和公式,求含有字母的式子的值,化简“ax+bx”的式子。 在具体的情境中用字母表示数量关系。 1、用字母表示数的基本规律:
如果正方形的边长用a表示,周长用C表示,面积用S表示。那么:正方形的周长:C=a×4 正方形的面积:S=a×a。
a×4或4×a通常可以写成4·a或4a;a×a可以写成a·a,也可以写成a2,读作“a的平方”。如果是a与1相乘,就可以直接写成a。
2、用字母表示数量关系:小玲到商店买1枝钢笔和4本笔记本,每枝钢笔7元,每本笔记本a元。她一共付出(7+4a)元。
3、用数代替字母求出含有字母的式子的值。4、化简含有字母的式子。
解决问题
的策略
用画图和列表的策略解决有关面积和行程的实际问题 运用画图解决面积的增减问题。
正确画示意图
合理列表
常用的数量关系:
正方形的面积=边长×边长 (S=a×a=a2)
正方形的周长=边长×4 (C=a×4=4a)
长方形的面积=长×宽 (S=a×b=ab)
长方形的周长=(长+宽)×2 (C=(a+b)×2)
总价=单价×数量 单价=总价÷数量 数量=总价÷单价
路程=速度×时间 速度=路程÷时间 时间=路程÷速度
工总=工效×时间 工效=工总÷时间 时间=工总÷时间
房间面积=每块地面砖面积×地砖的块数
地砖的块数=房间面积÷每块地砖的面积
相遇的路程=(甲速度+乙速度)×相遇的时间=甲速度×时间+乙速度×时间
相距的路程=(甲速度—乙速度)×时间=甲速度×时间—乙速度×时间
空间与图形 三角形 三角形的分类、内角和、求第三个角的度数,正确测量和画出三角形的高 三角形两边之和大于第三边的应用。 1、围成三角形的条件:较短两条边长度的和一定大于第三条边。
2、从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。
3、三角形的分类:(按边分类
三个角都是锐角的三角形是锐角三角形。(两个内角的和大于第三个内角。)
有一个角是直角的三角形是直角三角形。(两个内角的和等于第三个内角。两个锐角的和是90度。两条直角边互为底和高。)
有一个角是钝角的三角形是钝角三角形。(两个内角的和小于第三个内角。)
两条边相等的三角形是等腰三角形,相等的两条边叫做腰,另外一条边叫做底,两条腰的夹角叫做顶角,底和腰的两个夹角叫做底角,它的两个底角也相等,是轴对称图形,有一条对称轴(跟底边高正好重合。)
三条边都相等的三角形是等边三角形,三条边都相等,三个角也都相等(每个角都是60°,所有等边三角形的三个角都是60°。)
4、任意一个三角形至少有两个锐角,都有三条高,三角形的内角和都是180度。
5、把一个三角形分成两个直角三角形就是画它的高。
6、有一个角是直角的等腰三角形叫做等腰直角三角形,它的底角等于45°,顶角等于90°。
7、求三角形的一个角=180°-另外两角的和
8、等腰三角形的顶角=180°-底角×2=180°-底角-底角
9、等腰三角形的底角=(180°-顶角)÷2
10、一个三角形最大的角是60度,这个三角形一定是等边三角形。
11、多边形的内角和=180°×(n-2){n为边的条数}
平行四边形、梯形 平行四边形、梯形的特征,正确测量和画出平行四边形、梯形的高。 根据平行四边形、梯形的底画高。图形之间的变换。
1、两组对边互相平行的四边形叫平行四边形,它的对边平行且相等,对角相等。从一个顶点向对边可以作两种不同的高。底和高一定要对应。一个平行四边形有无数条高。
2、用两块完全一样的三角尺可以拼成一个平行四边形。
3、平行四边形容易变形(不稳定性)。生活中许多物体都利用了这样的特性。如:(电动伸缩门、铁拉门、伸降机)把平行四边形拉成一个长方形,周长不变,面积变了。平行四边形不是轴对称图形。
4、只有一组对边平行的四边形叫梯形。平
行的一组对边较短的叫做梯形的上底,较长的
叫做梯形的下底,不平行的一组对边叫做梯形
的腰,两条平行线之间的距离叫做梯形的高
(无数条)。
5、两条腰相等的梯形叫等腰梯形,它的两个底角相等,是轴对称图形,有一条对称轴。直角梯形有且只有两个直角。
6、两个完全一样的梯形可以拼成一个平行四边形。
7、正方形、长方形属于特殊的平行四边形。
对称、平移
和旋转 确定轴对称图形的对称轴,画简单轴对称图形的对称轴。根据对称轴画另一半
在方格纸上把简单图形连续平移两次。将简单图形旋转90度 画出简单图形按逆时针、顺时针旋转90度后的图形 1、画图形的另一半:(1)找对称轴(2)找对应点(3)连成图形。
2、正三边形(等边三角形)有3条对称轴,正四边形(正方形)有4条对称轴,正五边形有5条对称轴,……正n变形有n条对称轴。
3、图形的平移,先画平移方向,再把关键的点平移到指定的地方,最后连接成图。(本学期学习两次平移,如从左上平移到右下,先向右平移,再向下平移。)
4、图形的旋转,先找点,再把关键的边旋转到指定的地方,(注意方向和角度)再连线。(不管是平移还是旋转,基本图形不能改变。)
升和毫升 升和毫升之间的进率。升和毫升在生活中的应用。 升和毫升在生活中的应用 1、1升(L)=1000毫升(ml 、mL)
2、从里面量长、宽、高都是1分米的正方体容器正好是1升。1升水重1千克。生活中一杯水大约250毫升;一个高压锅大约盛水6升;一个家用水池大约盛水30升,一个脸盆大约盛水10升;一个浴缸大约盛水400升;一个热水瓶的容量大约是2升,一个金鱼缸大约有水30升,一瓶饮料大约是400毫升,一锅水有5升,一汤勺水有10毫升。
3、一个健康的成年人血液总量约为4000----5000毫升。义务献血者每次献血量一般为200毫升。
4、1毫升大约等于20滴水。
统计 统计 画折线统计图,对折线统计图的数据进行分析。根据数据特点和实际需要选择条形统计图.或折线统计图。 对折线统计图的数据进行分析。 折线统计图不仅能够看出数量的多少,而且能够更清楚地看出数量的增减变化情况。折线统计图的制作步骤:①定点 ②写数据 ③连线 ④写日期
回答者: 61084773400 | 一级 | 2011-6-19 17:38
一、运算顺序:
在没有括号的算式里如果只有加减法或只有乘除法有依次计算。在没有括号的算式里,有加减法又有乘除法,要先乘除法,后算加减法。算式里有括号时,要先算括号里面的。加减乘除法统称四则运算。一个数加0得原数任何一个数乘0得00不能做除数,0除以一个非0的数等于0。0除0得不到固定的商。5除0得不到商
二、位置与方向
1.根据方向和距离确定或者绘制物体的具体点。(比例尺、角的画法和度量)
2.位置间的相对性。会描述两个物体间相互位置关系。(观测点的确定)
B在A的东偏北30度2000米处;
A在B的西偏南30度200米处。
3.简单路线图的绘制。
三、运算定律及简便运算:
1.加法运算定律:
加法交换律:两个数相加,交换加数得位置,和不变。a+b=b+a
加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加 再加上第一个数 ,和不变。(a+b)+c=a+(b+c) 加法这两个定律往往结合在一起使用。如:165+93+35=93+(165+35) 依据是什么?
. 2、 连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和 。 a-b-c=a-(b+c)
3、乘法运算定律:
乘法交换律: 两个数相乘,交换因数的位置,积不变。bXa=aXb
乘法结合律: 三个数相乘,可以先把前两个数相乘,再乘第三个数 ,也可以先把后两个数相乘,再乘以第一个数,积不变。 (axb)xc=ax(bxc) 乘法这两个定律往往结合在一起使用。如:(axb)xc=ax(bxc)。如:125
乘法分配率:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。(a+b)xc=axc+bxc
4.连除的性质:一个数连续除以两个数,等于除以这两个数的积。 a除b除c=a除{b乘c}
a+b=b+a {a+b}+c=a+{b+c} 165+93+35=93+{165+35} {a+b}Xc=aXc+bXc 分母是101001000........可用小数表示
小数的单位是十分之_百分之一.千分之一
每相邻的两个计数单位的进率是+整数整读.小数依次读出每1个整数整写小数依次目小数末尾睑0可去掉
小数扩大十倍,有向右移动一位扩大100倍向右移动两位一千倍向右移动一位。。。
小数向左移一位缩小+倍向左移动两位缩小一百倍向左移动三位缩小一千倍........
保留-位小数精确到+分位2位小数精确到百分位3位小数精确到千分位.....。
三条边围成的图形叫三角形
三角的1个角到它对边作-条直线这条直线叫三角形的高对边叫三角形的底
特性稳定任意两大于笫三边
角的分类;大小分锐角直角钝角长短分三边不等等腰三角形总等180度两个三角形能拼平行四边形
把小数点对齐计算叫小数加减法在数据描出各点用线连起来间隔数=总长除间隔长
两端教植棵数等于间隔+1只植一端棵数=间隔
都不植棵数=间隔--
封闭棵数=间隔
B. 谁能把小学一至六年级数学知识点详细的列出来
小学数学知识点总结
一年级上册
1、 数一数(1~10)
2、 比一比(多少、长短、高矮、)
3、 1~5的认识和加减法(比大小、第几、几和几、加法、减法、0的认识)
4、 认识物体和图形(长方体、正方体、圆柱、球、长方形、正方形、三角形、圆)
5、 分类
6、 6~10的认识和加减法(连加、连减、加减混合)
7、 11~20个数的认识(数位的认识)
8、 认识钟表(整时、半时)
9、 20以内的进位加法 (凑十、9、8、7、6加几,5、4、3、2加几)
10、 总复习
一年级下册
1、 位置(上下、左右、前后、位置)
2、 20以内的退位加法
3、 图形的拼组
4、 100以内数的认识(数数、数的组成,读数、写数,数的顺序、比较大小、整十数加一位数及相应的减法)
5、 认识人民币(简单的计算)
6、 100以内的加法和减法(一)(1、整十数加减整十数2、两位数加一位数和整十数3、两位数减一位数和整十数)
7、 认识时间
8、 找规律
9、 统计(条形统计图)
10、 总复习
二年级上册
1、 长度单位
2、 100以内的加法和减法(二)(1、两位数加两位数、不进位加、进位加2、两位数减两位数、不退位减、退位减3、连加、连减和加减混合、加减混合、加减估算)
3、 角的初步认识
4、 表内乘法(一)(1、乘法的初步认识2、2~6的乘法口诀)
5、 观察物体
6、 表内乘法(二)(7、8、9的乘法口诀)
7、 统计
8、 数学广角
9、 总复习
二年级下册
1、 解决问题
2、 表内除法(一)(1、除法的初步认识、平均分、除法2、用2~6的乘法口诀求商)
3、 图形与转换(锐角和钝角、平移和旋转)
4、 表内除法(二)(用7、8、9的乘法口诀求商、解决问题)
5、 万以内数的认识(1000以内数的认识、10000以内数的认识、整百整千数的加减法)
6、 克和千克
7、 万以内的加法和减法(一)
8、 统计
9、 找规律
10、 总复习
三年级上册
1、 测量(毫米、分米的认识,千米的认识,吨的认识)
2、 万以内的加法和减法(二)(1、加法,2、减法3、加减法的验算)
3、 四边形(四边形、平行四边形、周长、长方形和正方形的周长、估计)
4、 有余数的除法
5、 时、分、秒(秒的认识、时间的计算)
6、 多位数乘一位数(1、口算乘法,2、笔算乘法)
7、 分数的初步认识(1、分数的初步认识<几分之一、几分之几>,2、分数的简单计算)
8、 可能性
9、 数学广角
10、 总复习
三年级下册
1、 位置和方向
2、 除数是一位数的除法(1、口算除法,2、笔算乘法)
3、 统计(1、简单的数据分析,2、平均数)
4、 年、月、日(年月日、24小时计时法)
5、 两位数乘两位数(1、口算乘法,2、笔算乘法)
6、 面积(面积和面积单位、长方形和正方形面积的计算、面积单位间的进率、公顷与平方千米)
7、 小数的初步认识(认识小数、简单的小数加减法)
8、 解决问题
9、 数学广角
10、 总复习
四年级上册
1、 大数的认识(亿以内数的认识、数的产生、亿以上数的认识、计算工具的认识、用计算器计算)
2、 角的度量(直线、射线和角,角的度量、角的分类、画角)
3、 三位数乘两位数(1、口算乘法,2笔算乘法)
4、 平行四边形和梯形(垂直与平行、平行四边形与梯形)
5、 除数是两位数的除法(1、口算除法,2、笔算除法)
6、 统计
7、 数学广角(烙饼问题)
8、 总复习
四年级下册
1、 四则运算
2、 位置和方向
3、 运算定律与简便计算(1、加法运算定律,2、乘法运算定律,3、简便计算)
4、 小数的意义和性质(1、小数的意义和读写法<小数的产生和意义、小数的读法和写法>,2、小数的性质和大小比较<小数的大小比较、小数点移动>,3、生活中的小数,4求一个小数的近似数)
5、 三角形(三角形的特性、三角形的分类、三角形的内角和、图形的拼组)
6、 小数的加法和减法
7、 统计
8、 数学广角
9、 总复习
五年级上册
1、 小数乘法(小数乘整数、小数乘小数、积的近似数,连乘、乘加、乘减,整数乘法定律推广到小数)
2、 小数除法(小数除以整数、一个数除以小数、商的近似数、循环小数、用计算器探索规律、解决问题)
3、 观察物体
4、 简易方程(1、用字母表示数,1、解建议方程<方程的意义、解方程、稍复杂的方程>)
5、 多边形的面积(平行四边形的面积、三角形的面积、梯形的面积、组合图形的面积)
6、 统计与可能性
7、 数学广角
8、 总复习
五年级下册
1、 图形的变换(轴对称、旋转、欣赏设计)
2、 因数与倍数(1、因数和倍数,2、2、5、3倍数的特征,指数和和数)
3、 长方体和正方体(1、长方体和正方体的认识,2、长方体和正方体的表面积,3、长方体和正方体的体积、体积单位间的进率、容积和容积单位)
4、 分数的意义和性质(1、分数的意义<分数的产生\分数的意义\分数与除法>,2、真分数和假分数,3、分数的基本性质,4、约分<最大公因数、约分>,5、通分<最小公倍数、通分>,6、分数和小数的互化)
5、 分数的加法和减法(1、同分母分数加减法,2、异分母分数加减法,3、分数加减混合运算)
6、 统计
7、 数学广角
8、 总复习
六年级上册
1、 位置
2、 分数的乘法(1、分数乘法,2、解决问题,3、倒数的认识)
3、 分数的除法(1、分数的除法,2、解决问题,3、比和比的应用<比的意义、比的基本性质、比的应用>)
4、 圆(1、认识圆,2、圆的周长,3、圆的面积)
5、 百分数(1、百分数的意义和写法,2、百分数和分数、小数的互化,3、用百分数解决问题、折扣、纳税、合理存款)
6、 统计
7、 数学广角
8、 总复习
六年级下册
1、 负数
2、 圆柱与圆锥(1、圆柱<圆柱的认识、圆柱的表面积、圆柱的体积>,2、圆锥<圆锥的认识、圆锥的体积>)
3、 比例(1、比例的意义和基本性质<比例的意义、比例的基本性质、解比例>,2、正比例和反比例的意义<成正比例的量、成反比例的量>3、比例的应用<比例尺、图形的放大与缩小、用比例解决问题>)
4、 统计
5、 数学广角
6、 整理和复习(1、数和代数、数的运算、式与方程、常见的量、比和比例,2、空间与图形<图形的认识和测量、图形与变换、图形与位置>、3、统计与可能性,4、综合应用)
C. 四年级数学下册知识点
四年级数学下册知识点1
第一单元知识点(四则运算)
1. 在没有括号的算式里,如果只有加、减法或者只有乘除法,都要从左往右按顺序计算。(这是同级运算)
2. 在没有括号的算式里,有乘、除法和加减法,要先算乘除法,在算加减法。(这是两级运算)
3. 算式里有括号,先算括号里面的,在算括号外面的。
4. 加法、减法、乘法和除法统称四则运算。
5. 一个数加上0还得原数,一个数减去0也得原数。
6. 被减数等于减数,差是0。
7. 一个数和零相乘,仍得0。
8. 0除以一个非0的数,还得0。
9. 0不能作除数。
10. 在解决问题时,如果列综合算式,必须用脱式计算。
11. 任何数除以0都得0。(×)因为0不能做除数。
第二单元知识点(观察物体)
1. 如何确定物体所在的位置?
(1)明确方向。
(2)明确距离。
2.根据方向和距离来确定物体的位置。
3.在生活中一般先说物体所在方向离的近(夹角较小)的方位。
4.平面图形的一般画法:
(1)先确定某建筑物的方向。
(2)再确定角度。(测量角度时,哪个方位在前,0刻度线就对准谁。)
(3)最后确定距离。
5.两个城市的位置具有相对性,方向相对,角度和距离不发生改变。例如:甲地在乙地的南偏东30度500米处,则乙地在甲地的北偏西30度500米处。
第三单元知识点(运算定律)
1.两个数相加,两个加数交换位置,和不变。这叫做加法交换律。
用字母表示为:a+b=b+a
2.三个数相加,先把前两个数相加,再加第三个数,或者先把后两个数相加,再加第一个数,和不变。这叫做加法结合律。用字母表示为:(a+b)+c=a+(b+c)
3.两个数相乘,交换两个因数的位置,积不变。这叫做乘法交换律。
用字母表示为:a×b=b×a
4.三个数相乘,先让前两个数相乘,再乘第三个数,或者先让后两个数相乘,再乘第一个数,积不变。这叫做乘法结合律。
用字母表示为:(a×b) ×c=a×(b×c)
5.两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。用字母表示为:(a+b)×c=a×c+b×c
6. 类似于乘法分配律的简便公式;
(a-b)×c=a×c-b×c
(a+b)÷c=a÷c+b÷c
(a-b)÷c=a÷c-b÷c
7.从一个数里连续减去两个数,等于从这个数里减去另两个数的和。这叫做减法的运算性质。用字母表示为:a-b-c=a-(b+c)
8.在一个带有括号的算式中,括号前面是“+”,去掉括号后,括号里面的运算符号不发生改变。用字母表示为:a+(b+c)=a+b+c a+(b-c)=a+b-c
括号前面是“-”,去掉括号后,括号里面的运算符号发生了变化,“+”变“-”, “-”变“+”。 用字母表示为:a-(b+c)=a-b-c a-(b-c)=a-b+c
9.一个数连续除以两个数,等于这个数除以另两个数的积。这时除法的运算性质。用字母表示为:a÷b÷c=a÷(b×c)
10. 在一个带有括号的算式中,括号前面是“×”,去掉括号后,括号里面的运算符号不发生改变。用字母表示为:
a×(b×c)=a×b×c a×(b÷c)=a×b÷c
括号前面是“÷”,去掉括号后,括号里面的运算符号发生了改变。用字母表示为:a÷(b×c)=a÷b÷c a÷(b÷c)=a÷b×c
12. 另两种简便方法:
(1) 把一个因数改写成两个一位数相乘的形式。
(2) 把一个因数改写成两个数相除的形式,然后变成乘除混和运算。
第四单元知识点(小数的意义和性质)
1. 在进行测量和计算时,往往不能正好得到整数的结果,这时就需要用小数来表示,这样就产生了小数。
2. 分母是10、100、1000……的分数可以仿照整数的写法写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数,叫做小数。
3. 小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……每相邻两个计数单位间的进率是10。
4.一位小数的计数单位是十分之一(写作0.1),两位小数的计数单位是百分之一(写作0.01),,三位小数的计数单位是千分之一(写作0.001)。
5.十分之几用一位小数表示,百分之几用两位小数表示,千分之几用三位小数表示……
6. 小数的读法:
(1)先读整数部分,再读点,最后读小数部分。
(2)整数部分按照整数的读法来读,小数部分要依次读出每个数字。
(3)整数部分是0的小数,整数部分就读“零”,小数部分有几个0,就读几个零。
7.小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
8.利用小数的性质进行小数的化简和改写。
例如:0.70=0.7 105.0900=105.09(这是小数的化简)
又如:不改变数的大小,把下面各数写成三位小数
0.2=0.200 4.08=4.080 3=3.000(这是改写小数)
9.如何比较小数的大小?
先比较整数部分,整数部分相同,比较十分位上的数;十分位上的数相同,比较百分位上的数;百分位上的数相同,比较千分位上的数……
10.小数点移动的规律:
(1)小数点向右
移动一位,小数就扩大到原数的10倍;
移动两位,小数就扩大到原数的100倍;
移动三位,小数就扩大到原数的1000倍;
……
(2)小数点向左
移动一位,小数就缩小到原数的1/10;
移动两位,小数就缩小到原数的1/100;
移动三位,小数就缩小到原数的1/1000;
……
11.把量和单位名称合起来的数叫名数。
12.单名数:只带一个单位名称的名数。例如:4千米、0.8吨、15.38元……
13.复名数:带有两个或两个以上的单位名称的名数。例如:
20元5角8分 5吨600克……
14.名数改写的规律:先找进率;再看是把高级单位改写成低级单位,还是是把低级单位改写成高级单位;最后移动小数点。口诀如下:
(1)高到低,乘进率,小数点,向右移,移几位,看进率。
例如:1.32千克=(1320 )克 (58 )厘米=0.58米
1千克=1000克 1米=100厘米
高→低 低←高
1.32×1000=1320克 0.58×100=58厘米
(2)低到高,用除法,小数点,向左移,移几位,看进率。
例如:
7450米=(7.45 )千米 (9.02)吨=9020千克
1千米=1000米 1吨=1000千克
低→高 高←低
7450÷1000=7.45千米 9020÷1000=9.02吨
15.求小数的近似数,可用“四舍五入”法。
16.在表示近似数时,小数末尾的0不能去掉。
17.求小数的近似数的方法:
求近似数时,保留整数,表示精确到个位,看十分位上的数;保留一位小数,表示精确到十分位,看百分位上的数;保留两位小数,表示精确到百分位,看百分位上的数;保留三位小数,表示精确到千分位,看万分位上的数……。然后根据“四舍五入”法进行取舍。
例如:9.953≈ 10 (保留整数)
9.953≈10.0 (保留一位小数)
9.953≈9.95 (保留两位小数)
23.4395≈23.440 (保留三位小数)
18. 1.0比1精确。保留的位数越多,数就越精确。
19.如何把一个数改写成以万为单位的数?
方法一:把已知数的小数点向左移动四位,进行化简后,在数的末尾加写一个万字。
方法二:(1)先找万位;(2)在万位后面点“.”;(3)根据实际情况进行化简;(4)在数的末尾加写一个万字;(5)如果有单位名称一定照抄过来。
20.如何把一个数改写成以亿为单位的数?
方法一:把已知数的小数点向左移动八位,进行化简后,在数的末尾加写一个亿字。
方法二:(1)先找亿位;(2)在亿位后面点“.”;(3)根据实际情况进行化简;(4)在数的末尾加写一个亿字;(5)如果有单位名称一定照抄过来。
注:对于改写的方法,同学们灵活掌握。
21.下列各数中的“6”分别表示什么?
6.32(表示6个一) 0.6(表示6个十分之一) 0.86(表示6个百分之一)
62.32(表示6个十) 3.416(表示千分之一)
22.三位小数一定小于四位小数。(×)例如:1.003﹥0.5678
23.去掉小数点后面的0,小数的大小不变。(×)
应该是去掉小数末尾的零,小数的大小不变。
24.小数就是比1小的数。(×)例如:10.1﹥1
25.近似数是0.5的两位小数有5个。(×)
近似数是0.5的两位小数有9个,分别是:0.45、0.46、0.47、0.48、0.49、0.51、0.52、0.53、0.54。(先看百分位上的数,再利用“四舍五入” 法。)
26.近似数4.0与精确数4.0末尾的0都可以去掉。(×)
在表示近似数时,小数末尾的0不能去掉。
27.小数的位数越多,数就越大。(×)
28.小数都比自然数小。(×)
29.整数都大于小数。(×)
30.0.4与0.6之间的小数只有一个。(×)因为0.4与0.6之间的小数有无数个。31.近似数是6.50的三位小数中,最大是(6.504),最小是(6.495)。
方法:求最大近似数时,一定比6.50大,千分位上的数必须“舍”,也就是千分位上只能是1、2、3、4,其中最大的数是4,所以近似数是6.50的三位小数中,最大是6.504。
求最小的近似数时,一定比6.50小一个计数单位(本题少一个0.01,也就是6.49),这时千分位上的数必须“入”, 千分位上只能是5、6、7、8、9,其中最小的'数是5,所以近似数是6.50的三位小数中,最小是6.495。
四年级数学下册知识点2
运算定律及简便运算
一、加法运算定律:
1、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a
2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(a+b)+c=a+b+c
加法的这两个定律往往结合起来一起使用。
如:165+93+35=93+(165+35)依据是什么?
3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。a-b-c=a-b+c
二、乘法运算定律:
1、乘法交换律:两个数相乘,交换因数的位置,积不变。a×b=b×a
2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。(a×b)×c=a×b×c
乘法的这两个定律往往结合起来一起使用。如:125×78×8的简算
3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这个数相乘,再把积相加。
(a+b)×c=a×c+b×c a-b×c=a×c-b×c
鸡兔问题公式
(1)已知总头数和总脚数,求鸡、兔各多少:
(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;
总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;
总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”
解一(100-2×36)÷(4-2)=14(只)………兔;
36-14=22(只)……………………………鸡。
解二(4×36-100)÷(4-2)=22(只)………鸡;
36-22=14(只)…………………………兔。
(答略)
(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式
(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数
或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;
总头数-鸡数=兔数。(例略)
(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;
总头数-鸡数=兔数。(例略)
(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:
(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”
解一(4×1000-3525)÷(4+15)
=475÷19=25(个)
解二1000-(15×1000+3525)÷(4+15)
=1000-18525÷19
=1000-975=25(个)(答略)
(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……。它的解法显然可套用上述公式。)
(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:
〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;
〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。
例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?”
解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2
=20÷2=10(只)……………………………鸡
〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2
=12÷2=6(只)…………………………兔(答略)
鸡兔同笼
1、鸡兔同笼属于假设问题,假设的和最后结果相反。
2、“鸡兔同笼”问题的解题方法
假设法:
①假如都是兔
②假如都是鸡
③古人“抬脚法”:
解答思路:
假如每只鸡、每只兔各抬起一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”。这样,鸡和兔的脚的总数就少了一半。这种思维方法叫化归法。
3、公式:
鸡兔总脚数÷2-鸡兔总数=兔的只数;
鸡兔总数-兔的只数=鸡的只数。
四则运算
1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
5、先乘除,后加减,有括号,提前算
关于“0”的运算
1、“0”不能做除数; 字母表示:a÷0错误
2、一个数加上0还得原数; 字母表示:a+0=a
3、一个数减去0还得原数; 字母表示:a-0=a
4、被减数等于减数,差是0; 字母表示:a-a=0
5、一个数和0相乘,仍得0; 字母表示:a×0=0
6、0除以任何非0的数,还得0; 字母表示:0÷a(a≠0)=0
7、0÷0得不到固定的商; 5÷0得不到商.(无意义)
D. 小学一至六年级数学知识点归纳(大全)
小学一至六年级数学知识点归纳
一、数与代数
1. 数的认识:包括整数、小数、分数的认识及其性质。
2. 数的运算:加减乘除法的运算规则及混合运算,包括简便运算和实际应用题。
3. 代数初步认识:用字母表示数,简单的一元一次方程求解。
二、空间与几何
1. 图形的认识:点、线、面、三角形、四边形、圆等图形的性质及分类。
2. 图形的测量:周长、面积的计算方法,体积与容积的概念及计算。
3. 图形的运动与位置:平移、旋转、对称等图形的变换,方位与距离的确定。
三、统计与概率
1. 统计图表:认识各种统计图表,如条形统计图、折线统计图等。
2. 统计观念的应用:收集数据,描述数据,分析数据的简单方法。
3. 概率初步认识:简单事件发生的可能性及概率计算。
四、实践与综合运用
1. 数学广角:生活中的数学问题解决,如年龄问题、植树问题等。
2. 数学趣味知识:趣味数学题目,数学小故事等。
详细解释:
一、数与代数部分是数学的基础,涉及到数的认识以及运算规则,为后续学习代数打下基础。代数初步认识部分则是开始接触用字母代替数的概念,以及简单方程求解的方法。
二、空间与几何部分主要是培养学生对于图形的认识和测量能力,以及图形的运动与位置的理解。这部分内容对于培养学生的空间观念非常重要。
三、统计与概率部分则是引导学生开始接触数据的收集、描述和分析,以及事件发生的可能性。这对于培养学生的数据分析能力非常有帮助。
四、实践与综合运用部分则是将数学知识应用到实际生活中,通过解决生活中的数学问题,增强学生对数学的兴趣和应用能力。此外,还包含一些趣味数学知识和故事,以提高学生的数学素养。
以上就是小学一至六年级数学的主要知识点归纳,每个知识点都是数学学习的基础,需要学生牢固掌握。
E. 四年级下册,第二单元数学知识树怎么做
小学数学教学知识树通常含:(1)数与代数(2)空间图形(3)统计概率(4)实践与综合运用这四大块再具体到哪几个单元,什么专题。这就是整册教材的知识树。