❶ 初三数学上册课本知识点总结
课堂临时报佛脚,不如 课前预习 好。其实任何学科都是一样的,学习任何一门学科,勤奋都是最好的 学习 方法 ,没有之一,书山有路勤为径。下面是我给大家整理的一些初三数学的知识点,希望对大家有所帮助。
初三数学课本知识点
数学—函数
1、二次函数的三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2+k[抛物线的顶点p(h,k)]
交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点a(x?,0)和b(x?,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a
2、二次函数的图像
在数学平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
iv.抛物线的性质
1.数学抛物线是轴对称图形。对称轴为直线x=-b/2a。
数学对称轴与抛物线唯一的交点为抛物线的顶点p。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点p,坐标为:p(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,p在y轴上;当δ=b^2-4ac=0时,p在x轴上。
3.数学二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
初三新学期数学知识点
一元一次方程:
①在一个方程中,只含有一个未知数,并且未知数的指数是
1、这样的方程叫一元一次方程。
②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
解一元一次方程的步骤:
去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。
解二元一次方程组的方法:代入消元法/加减消元法。
2、不等式与不等式组
不等式:
①用符号”=“号连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
③不等式的两边都乘以或者除以一个正数,不等号方向不变。
④不等式的两边都乘以或除以同一个负数,不等号方向相反。
不等式的解集:
①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。
一元一次不等式组:
①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
③求不等式组解集的过程,叫做解不等式组。
九年级数学 知识点归纳
一、平行线分线段成比例定理及其推论:
1.定理:三条平行线截两条直线,所得的对应线段成比例。
2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条线段平行于三角形的第三边。
二、相似预备定理:
平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。
三、相似三角形:
1.定义:对应角相等,对应边成比例的三角形叫做相似三角形。
2.性质:(1)相似三角形的对应角相等;
(2)相似三角形的对应线段(边、高、中线、角平分线)成比例;
(3)相似三角形的周长比等于相似比,面积比等于相似比的平方。
说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应。
3.判定定理:
(1)两角对应相等,两三角形相似;
(2)两边对应成比例,且夹角相等,两三角形相似;
(3)三边对应成比例,两三角形相似;
(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似。
初三数学复习知识点
有理数、整式的加减、一元一次方程、图形的初步认识。
(1)有理数:是初中数学的基础内容,中考试题中分值约为3-6分,多以选择题,填空题,计算题的形式出现,难易度属于简单。
【考察内容】复数以及混合运算(期中、期末必考计算)数轴、相反数、绝对值和倒数(选择、填空)。
(2)整式的加减:中考试题中分值约为4分,题型以选择和填空题为主,难易度属于易。
【考察内容】
①整式的概念和简单的运算,主要是同类项的概念和化简求值
②完全平方公式,平方差公式的几何意义
③利用提公因式法和公式法分解因式。
(3)一元一次方程:是初一学习重点内容,主要学习内容有(归纳、 总结 、延伸)应用题思维、步骤、文字题,根据已知条件求未知。中考分值约为1-3分,题型主要以选择和填空题为主,极少出现简答题,难易度为易。
【考察内容】
①方程及方程解的概念
②根据题意列一元一次方程
③解一元一次方程。题型:追击、相遇、时间速度路程的关系、打折销售、利润公式。
(4)几何:角和线段,为下册学三角形打基础
相交线和平行线、实数、平面直角坐标系、二元一次方程组、不等式和不等式组和数据库的收集整理与描述。
(1)相交线和平行线:相交线和平行线是历年中考中常见的考点。通常以填空,选择题形式出现。分值为3-4分,难易度为易。
【考察内容】
①平行线的性质(公理)
②平行线的判别方法
③构造平行线,利用平行线的性质解决问题。
(2)平面直角坐标系:中考试题中分值约为3-4分,题型以选择,填空为主,难易度属于易。
【考察内容】
①考察平面直角坐标系内点的坐标特征
②函数自变量的取值范围和球函数的值
③考察结合图像对简单实际问题中的函数关系进行分析。
(3)二元一次方程组:中考分值约为3-6分,题型主要以选择,解答为主,难易度为中。
【考察内容】
①方程组的解法,解方程组
②根据题意列二元一次方程组解经济问题。
(4)不等式和不等式组:中考试题中分值约为3-8分,选择,填空,解答题为主。
【考察内容:】
①一元一次不等式(组)的解法,不等式(组)解集的数轴表示,不等式(组)的整数解等,题型以选择,填空为主。
②列不等式(组)解决经济问题,调配问题等,主要以解答题为主。
③留意不等式(组)和函数图像的结合问题。
(5)数据库的收集整理与描述
分值一般在6-10分,题型近几年主要以解答题出现,偶尔以选择填空出现。难易度为中。
初三数学上册课本知识点总结相关 文章 :
★ 九年级数学上册重要知识点总结
★ 初三上册数学知识点总结
★ 初三数学知识点上册总结归纳
★ 九年级上册数学知识点归纳整理
★ 初三上册数学知识点归纳
★ 九年级上册数学知识点归纳
★ 初中数学必备知识点总结初三数学上册一二章知识点
★ 初三数学上学期学习总结
★ 九年级上册数学知识点
★ 初三上册数学知识点
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();❷ 九年级上册数学主要内容
九年级上册数学期末基础知识复习
二次根式
知识点1.二次根式 重点:掌握二次根式的概念。 难点:二次根式有意义的条件
式子
(a≥0)叫做二次根式.
知识点 2.最简二次根式
重点:掌握最简二次根式的条件[来源:学.难点:正确分清是否为最简二次根式
同时满足:①被开方数的因数是整数,因式是整式(分母中不含根号);②被开方数中含能开得尽方的因数或因式.这样的二次根式叫做最简二次根式.
知识点3.同类二次根式
重点:掌握同类二次根式的概念 难点:正确分清是否为同类二次根式
几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫同类二次根式.
知识点4.二次根式的性质
重点:掌握二次根式的性质 难点:理解和熟练运用二次根式的性质
①(
)2=a(a≥0);
②
=│a│=
;
知识点5.分母有理化及有理化因式
重点:掌握分母有理化及有理化因式的概念
难点:熟练进行分母有理化,求有理化因式
把分母中的根号化去,叫做分母有理化;两个含有二次根式的代数式相乘,若它们的积不含二次根式,则称这两个代数式互为有理化因式.
例观察下列分母有理化的计算:
,从计算结果中找出规律,并利用这一规律计算:
=_____________
解题思路:
知识点6.二次根式的运算
重点:掌握二次根式的运算法则 难点:熟练进行二次根式的运算
(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.
(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.
(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.
=
·
(a≥0,b≥0);
(b≥0,a>0).
(4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.
最新考题中考要求及命题趋势1、掌握二次根式的有关知识,包括概念,性质、运算等;2、熟练地进行二次根式的运算
一 元 二 次 方 程
一、知识结构:
一元二次方程:概念、解与解法、实际应用、根与系数的关系。
二、考点精析
考点一、概念(1)定义:①只含有一个未知数,并且②未知数的最高次数是2,这样的③整式方程就是一元二次方程。
(2)一般表达式:
⑶难点:如何理解 “未知数的最高次数是2”:①该项系数不为“0”;②未知数指数为“2”;
③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
例2、方程
是关于x的一元二次方程,则m的值为 。
考点二、方程的解
⑴概念:使方程两边相等的未知数的值,就是方程的解。 ⑵应用:利用根的概念求代数式的值;
典型例题:例1、已知
的值为2,则
的值为
。
考点三、解法
⑴方法:①直接开方法;②因式分解法;③配方法;④公式法 ⑵关键点:降次
类型一、直接开方法:
※※对于
,
等形式均适用直接开方法
典型例题:例1、解方程:
=0;
例2、若
,则x的值为 。
类型二、因式分解法:
※方程特点: 左边可以分解为两个一次因式的积,右边为“0”,
※方程形式:如
,
,
典型例题:例1、
的根为( )A .
B .
C .
D.
例2、若
,则4x+y的值为 。
类型三、配方法
※在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。
典型例题:试用配方法说明
的值恒大于0。
类型四、公式法⑴条件:
⑵公式:
,
典型例题: 例1、选择适当方法解下列方程:
⑴
⑵
⑶
类型五、 “降次思想”的应用
⑴求代数式的值; ⑵解二元二次方程组。
典型例题:已知
,求代数式
的值。
考点四、根的判别式
根的判别式的作用:①定根的个数;②求待定系数的值;③应用于其它。
典型例题:例1、若关于
的方程
有两个不相等的实数根,则k的取值范围是 。
考点五、方程类问题中的“分类讨论”
典型例题: 例1、讨论关于x的方程
根的情况。
考点六、应用解答题
⑴“碰面”问题;⑵“复利率”问题;⑶“几何”问题;
⑷“最值”型问题;⑸“图表”类问题
典型例题:
1、将一条长20cm的铁丝剪成两段,并以每一段铁丝的长度为周长作成一个正方形。
(1)要使这两个正方形的面积之和等于17cm2,那么这两段铁丝的长度分别为多少?
考点七、根与系数的关系
⑴前提:对于
而言,当满足①
、②
时,
才能用韦达定理。
⑵主要内容:
⑶应用:整体代入求值。
典型例题:例1、已知关于x的方程
有两个不相等的实数根
,
(1)求k的取值范围;
(2)是否存在实数k,使方程的两实数根互为相反数?若存在,求出k的值;若不存在,请说明理由。
旋转
知识网络图表
图案设计
识别及应用
关于原点对称的点的坐标
中心对称
中心对称图形
图形旋转
平移及性质
平移及性质
旋转及性质
(1)
中心对称:把一个图形绕某一点旋转
,如果能与另一个图形重合.这个点叫对称中心,这两个图形中的对应点关于这一点对称.
(2)
关于旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前后的图形全等。
第1题. 下列是中心对称图形的有()
(1)线段;(2)角;(3)等边三角形;(4)正方形;(5)平行四边形;(6)矩形;(7)等腰梯形.
A.2个 B.3个 C.4个 D.5个
答案:C.
第5题. 在线段、射线、两条相交直线、五角星中,是中心对称图形的个数为()
A.1个 B.2个 C.3个 D.4个 答案:B.
圆
一、知识点
1、与圆有关的角——圆心角、圆周角
(1)图中的圆心角 ∠ AOB ;圆周角∠
ACB ;
(2)如图,已知∠AOB=50度,则∠ACB= 25
度;
(3)在上图中,若AB是圆O的直径,则∠AOB= 180
度;则∠ACB= 90
度;
2、圆的对称性:
(1)圆是轴对称图形,其对称轴是任意一条
过圆心 的直线;
圆是中心对称图形,对称中心为 圆心 .
(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.
如图,∵CD是圆O的直径,CD⊥AB于E∴ = , =
3、点和圆的位置关系有三种:点在圆 ,点在圆 ,点在圆 ;
4、直线和圆的位置关系有三种:相 、相 、相 .
5、圆与圆的位置关系:
6、切线性质:
例4:(1)如图,PA是⊙O的切线,点A是切点,则∠PAO= 度
(2)如图,PA、PB是⊙O的切线,点A、B是切点,
则 = ,∠ =∠ ;
7、圆中的有关计算
(1)弧长的计算公式:
例5:若扇形的圆心角为60°,半径为3,则这个扇形的弧长是多少?
解:因为扇形的弧长=
所以
=
= (答案保留π)
(2)扇形的面积:
例6:①若扇形的圆心角为60°,半径为3,则这个扇形的面积为多少?
解:因为扇形的面积S=
所以S=
= (答案保留π)
②若扇形的弧长为12πcm,半径为6㎝,则这个扇形的面积是多少?
解:因为扇形的面积S=
所以S= =
( 3)圆锥:
例7:圆锥的母线长为5cm,半径为4cm,则圆锥的侧面积是多少?
解:∵圆锥的侧面展开图是 形,展开图的弧长等于
∴圆锥的侧面积=
概率初步
【知识梳理】
1.生活中的随机事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件,其中,
① 必然事件发生的概率为1,即P(必然事件)=1;
② 不可能事件发生的概率为0,即P(不可能事件)=0;
③ 如果A为不确定事件,那么0<P(A)<1
2.随机事件发生的可能性(概率)的计算方法:
① 理论计算又分为如下两种情况:
第一种:只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进行的计算;
第二种:通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:对游戏是否公平的计算。
② 实验估算又分为如下两种情况:
第一种:利用实验的方法进行概率估算。要知道当实验次数非常大时,实验频率可作为事件发生的概率的估计值,即大量实验频率稳定于理论概率。
第二种:利用模拟实验的方法进行概率估算。如,利用计算器产生随机数来模拟实验。
综上所述,目前掌握的有关于概率模型大致分为三类;第一类问题没有理论概率,只能借助实验模拟获得其估计值;第二类问题虽然存在理论概率但目前尚不可求,只能借助实验模拟获得其估计值;第三类问题则是简单的古典概型,理论上容易求出其概率。
❸ 初三的数学知识点
一、相似三角形(7个考点)
考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小
考核要求:
(1)理解相似形的概念;
(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。
考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理
考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。
注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。
考点3:相似三角形的概念
考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。
考点4:相似三角形的判定和性质及其应用
考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。
考点5:三角形的重心
考核要求:知道重心的定义并初步应用。
二、锐角函数值(2个考点)
考点7:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。
考点8:解直角三角形及其应用
考核要求:
(1)理解解直角三角形的意义;
(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。
三、二次函数(4个考点)
考点9:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数
考核要求:
(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;
(2)知道常值函数;
(3)知道函数的表示方法,知道符号的意义。
考点10:用待定系数法求二次函数的解析式
考核要求:
(1)掌握求函数解析式的方法;
(2)在求函数解析式中熟练运用待定系数法。
注意求函数解析式的步骤:一设、二代、三列、四还原。
考点11:画二次函数的图像
考核要求:
(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像
(2)理解二次函数的图像,体会数形结合思想;
(3)会画二次函数的大致图像。
考点12:二次函数的图像及其基本性质
考核要求:
(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;
(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质。
注意:
(1)解题时要
❹ 初三数学知识点归纳 中考必背数学重点知识总结
很多人想知道初戚清三数学的学习上需要掌握哪些重点知识,下面我为大家整理了一些中考必背的数学重点知识,供参考!
中考数学重要知识点归纳
一、基本知识
一、数与代数
A、数与式:
1、有理数
有理数:
①整数→正整数/0/负整数
②分数→正分数/负分数
数轴:
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
绝对值:
①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的运算:
加法:
①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:
①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:
①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数
无理数:无限不循环小数叫无理数
平方根:
①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:
①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
初三数学知识点整理
1、 实数的分类
有理数:整数汪正(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373...,,.
无理数:无限不环循小数叫做无理数如:π,-,0.1010010001...(两个1之间依次多1个0).
实数:有理数和无理数统称为实数.
2、无理数
在理解无理数时,要抓住"无限不循环"这一时之,它包含两层意思:一是无限小数;二是不循环.二者缺一不可.归纳起来有四类:
(1)开方开不尽的数,如等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;
(3)有特定结构的数,如0.1010010001...等;
(4)某些三角函数,如sin60o等
注意:判断一个实数的属性(如有理数、无理数),应遵循:一化简,二辨析,三判断.要注意:"神似"或"形似"都不能作为判断的标准.
3、非负数:正实数与零的统称。(表为:x≥0)
常见的非负数有:
性质:若干个非负数的和为0,则每个非负担数均为0。
4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度困仔悔作为单位长度,规定直线上向右的方向为正方向,就得到数轴("三要素")
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
5、相反数
实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。即:(1)实数的相反数是.(2)和互为相反数.
6、绝对值
一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
(1)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即:﹝另有两种写法﹞
(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值就是数轴上表示这个数的点到原点的距离.
(3)几个非负数的和等于零则每个非负数都等于零,例如:若,则,,.
注意:│a│≥0,符号"││"是"非负数"的标志;数a的绝对值只有一个;处理任何类型的题目,只要其中有"││"出现,其关键一步是去掉"││"符号。
初三数学必背公式大全
1.过两点有且只有一条直线
2.两点之间线段最短
3.同角或等角的补角相等
4.同角或等角的余角相等
5.过一点有且只有一条直线和已知直线垂直
6.直线外一点与直线上各点连接的所有线段中,垂线段最短
7.平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8.如果两条直线都和第三条直线平行,这两条直线也互相平行
9.同位角相等,两直线平行
10.内错角相等,两直线平行
11.同旁内角互补,两直线平行
12.两直线平行,同位角相等
13.两直线平行,内错角相等
14.两直线平行,同旁内角互补
15.定理 三角形两边的和大于第三边
16.推论 三角形两边的差小于第三边
17.三角形内角和定理 三角形三个内角的和等于180°
18.推论1 直角三角形的两个锐角互余
19.推论2 三角形的一个外角等于和它不相邻的两个内角的和
20.推论3 三角形的一个外角大于任何一个和它不相邻的内角
21.全等三角形的对应边、对应角相等
22.边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23.角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24.推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25.边边边公理(SSS) 有三边对应相等的两个三角形全等
26.斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27.定理1 在角的平分线上的点到这个角的两边的距离相等
28.定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29.角的平分线是到角的两边距离相等的所有点的集合
30.等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31.推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33.推论3 等边三角形的各角都相等,并且每一个角都等于60°
34.等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35.推论1 三个角都相等的三角形是等边三角形
36.推论 2 有一个角等于60°的等腰三角形是等边三角形
37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38.直角三角形斜边上的中线等于斜边上的一半
39.定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40.逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42.定理1 关于某条直线对称的两个图形是全等形
43.定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44.定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45.逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46.勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47.勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48.定理 四边形的内角和等于360°
49.四边形的外角和等于360°
50.多边形内角和定理 n边形的内角的和等于(n-2)×180°
❺ 鍒濅笁鏁板︿笂鍐岀煡璇嗙偣褰掔撼
銆銆鏁板︽槸璁稿氩悓瀛︾殑鐭𨱒匡纴闾d箞鍒濅笁鏁板︿笂鍐岀殑鐭ヨ瘑镣规湁鍝浜涘憿?蹇𨱒ヤ竴璧蜂简瑙d竴涓嫔惂銆备笅闱㈡槸鐢辨垜涓哄ぇ瀹舵暣鐞嗙殑钬滃埯涓夋暟瀛︿笂鍐岀煡璇嗙偣褰掔撼钬濓纴浠呬緵鍙傝冿纴娆㈣繋澶у堕槄璇汇
銆銆鍒濅笁鏁板︿笂鍐岀煡璇嗙偣褰掔撼
銆銆浜屾℃牴寮
銆銆1銆佷簩娆℃牴寮
銆銆寮忓瓙鍙锅氢簩娆℃牴寮忥纴浜屾℃牴寮忓繀椤绘弧瓒筹细钖链変簩娆℃牴鍙封溾;琚寮鏂规暟a蹇呴’鏄闱炶礋鏁般
銆銆2銆佹渶绠浜屾℃牴寮
銆銆鑻ヤ簩娆℃牴寮忔弧瓒筹细琚寮鏂规暟镄勫洜鏁版槸鏁存暟锛屽洜寮忔槸鏁村纺;琚寮鏂规暟涓涓嶅惈鑳藉紑寰楀敖鏂圭殑锲犳暟鎴栧洜寮忥纴杩欐牱镄勪簩娆℃牴寮忓彨锅氭渶绠浜屾℃牴寮忋
銆銆鍖栦簩娆℃牴寮忎负链绠浜屾℃牴寮忕殑鏂规硶鍜屾ラわ细
銆銆(1)濡傛灉琚寮鏂规暟鏄鍒嗘暟(鍖呮嫭灏忔暟)鎴栧垎寮忥纴鍏埚埄鐢ㄥ晢镄勭畻鏁板钩鏂规牴镄勬ц川鎶婂畠鍐欐垚鍒嗗纺镄勫舰寮忥纴铹跺悗鍒╃敤鍒嗘瘝链夌悊鍖栬繘琛屽寲绠銆
銆銆(2)濡傛灉琚寮鏂规暟鏄鏁存暟鎴栨暣寮忥纴鍏埚皢浠栦滑鍒呜В锲犳暟鎴栧洜寮忥纴铹跺悗鎶婅兘寮寰楀敖鏂圭殑锲犳暟鎴栧洜寮忓紑鍑烘潵銆
銆銆3銆佸悓绫讳簩娆℃牴寮
銆銆鍑犱釜浜屾℃牴寮忓寲鎴愭渶绠浜屾℃牴寮忎互钖庯纴濡傛灉琚寮鏂规暟鐩稿悓锛岃繖鍑犱釜浜屾℃牴寮忓彨锅氩悓绫讳簩娆℃牴寮忋
銆銆4銆佷簩娆℃牴寮忕殑镐ц川
銆銆5銆佷簩娆℃牴寮忔贩钖堣繍绠
銆銆浜屾℃牴寮忕殑娣峰悎杩愮畻涓庡疄鏁颁腑镄勮繍绠楅‘搴忎竴镙凤纴鍏堜箻鏂癸纴鍐崭箻闄わ纴链钖庡姞鍑忥纴链夋嫭鍙风殑鍏堢畻𨰾鍙烽噷镄(鎴栧厛铡绘嫭鍙)銆
銆銆涓鍏冧簩娆℃柟绋
銆銆涓銆佷竴鍏冧簩娆℃柟绋
銆銆1銆佷竴鍏冧簩娆℃柟绋
銆銆钖链変竴涓链鐭ユ暟锛屽苟涓旀湭鐭ユ暟镄勬渶楂樻℃暟鏄2镄勬暣寮忔柟绋嫔彨锅氢竴鍏冧簩娆℃柟绋嬨
銆銆2銆佷竴鍏冧簩娆℃柟绋嬬殑涓鑸褰㈠纺
銆銆锛屽畠镄勭壒寰佹槸锛氱瓑寮忓乏杈瑰崄涓涓鍏充簬链鐭ユ暟x镄勪簩娆″氶”寮忥纴绛夊纺鍙宠竟鏄闆讹纴鍏朵腑鍙锅氢簩娆¢”锛宎鍙锅氢簩娆¢”绯绘暟;bx鍙锅氢竴娆¢”锛宐鍙锅氢竴娆¢”绯绘暟;c鍙锅氩父鏁伴”銆
銆銆浜屻佷竴鍏冧簩娆℃柟绋嬬殑瑙f硶
銆銆1銆佺洿鎺ュ紑骞虫柟娉
銆銆2銆侀厤鏂规硶
銆銆閰嶆柟娉曟槸涓绉嶉吨瑕佺殑鏁板︽柟娉曪纴瀹冧笉浠呭湪瑙d竴鍏冧簩娆℃柟绋嬩笂链夋墍搴旂敤锛岃屼笖鍦ㄦ暟瀛︾殑鍏
銆銆3銆佸叕寮忔硶
銆銆4銆佸洜寮忓垎瑙f硶
銆銆锲犲纺鍒呜В娉曞氨鏄鍒╃敤锲犲纺鍒呜В镄勬坠娈碉纴姹傚嚭鏂圭▼镄勮В镄勬柟娉曪纴杩欑嶆柟娉旷亩鍗曟槗琛岋纴鏄瑙d竴鍏冧簩娆℃柟绋嬫渶甯哥敤镄勬柟娉曘
銆銆涓夈佷竴鍏冧簩娆℃柟绋嬫牴镄勫垽鍒寮
銆銆镙圭殑鍒ゅ埆寮
銆銆锲涖佷竴鍏冧簩娆℃柟绋嬫牴涓庣郴鏁扮殑鍏崇郴
銆銆镞嬭浆
銆銆涓銆佹棆杞
銆銆1銆佸畾涔
銆銆鎶娄竴涓锲惧舰缁曟煇涓镣筄杞锷ㄤ竴涓瑙掑害镄勫浘褰㈠彉鎹㈠彨锅氭棆杞锛屽叾涓璒鍙锅氭棆杞涓蹇冿纴杞锷ㄧ殑瑙掑彨锅氭棆杞瑙掋
銆銆2銆佹ц川
銆銆(1)瀵瑰簲镣瑰埌镞嬭浆涓蹇幂殑璺濈荤浉绛夈
銆銆(2)瀵瑰簲镣逛笌镞嬭浆涓蹇冩墍杩炵嚎娈电殑澶硅掔瓑浜庢棆杞瑙掋
銆銆浜屻佷腑蹇冨圭О
銆銆1銆佸畾涔
銆銆鎶娄竴涓锲惧舰缁旷潃镆愪竴涓镣规棆杞180掳锛屽傛灉镞嬭浆钖庣殑锲惧舰鑳藉熷拰铡熸潵镄勫浘褰浜掔浉閲嶅悎锛岄偅涔堣繖涓锲惧舰鍙锅氢腑蹇冨圭О锲惧舰锛岃繖涓镣瑰氨鏄瀹幂殑瀵圭О涓蹇冦
銆銆2銆佹ц川
銆銆(1)鍏充簬涓蹇冨圭О镄勪袱涓锲惧舰鏄鍏ㄧ瓑褰銆
銆銆(2)鍏充簬涓蹇冨圭О镄勪袱涓锲惧舰锛屽圭О镣硅繛绾块兘缁忚繃瀵圭О涓蹇冿纴骞朵笖琚瀵圭О涓蹇冨钩鍒嗐
銆銆(3)鍏充簬涓蹇冨圭О镄勪袱涓锲惧舰锛屽瑰簲绾挎靛钩琛(鎴栧湪钖屼竴鐩寸嚎涓)涓旂浉绛夈
銆銆3銆佸垽瀹
銆銆濡傛灉涓や釜锲惧舰镄勫瑰簲镣硅繛绾块兘缁忚繃镆愪竴镣癸纴骞朵笖琚杩欎竴镣瑰钩鍒嗭纴闾d箞杩欎袱涓锲惧舰鍏充簬杩欎竴镣瑰圭О銆
銆銆4銆佷腑蹇冨圭О锲惧舰
銆銆鎶娄竴涓锲惧舰缁曟煇涓涓镣规棆杞180掳锛屽傛灉镞嬭浆钖庣殑锲惧舰鑳藉熷拰铡熸潵镄勫浘褰浜掔浉閲嶅悎锛岄偅涔堣繖涓锲惧舰鍙锅氢腑蹇冨圭О锲惧舰锛岃繖涓搴楀氨鏄瀹幂殑瀵圭О涓蹇冦
銆銆鍧愭爣绯讳腑瀵圭О镣圭殑鐗瑰緛锛
銆銆1銆佸叧浜庡师镣瑰圭О镄勭偣镄勭壒寰
銆銆涓や釜镣瑰叧浜庡师镣瑰圭О镞讹纴瀹冧滑镄勫潗镙囩殑绗﹀彿鐩稿弽锛屽嵆镣笔(x锛寉)鍏充簬铡熺偣镄勫圭О镣逛负P钬(-x锛-y)銆
銆銆2銆佸叧浜巟杞村圭О镄勭偣镄勭壒寰
銆銆涓や釜镣瑰叧浜巟杞村圭О镞讹纴瀹冧滑镄勫潗镙囦腑锛寈鐩哥瓑锛寉镄勭﹀彿鐩稿弽锛屽嵆镣笔(x锛寉)鍏充簬x杞寸殑瀵圭О镣逛负P钬(x锛-y)銆
銆銆3銆佸叧浜巠杞村圭О镄勭偣镄勭壒寰
銆銆涓や釜镣瑰叧浜巠杞村圭О镞讹纴瀹冧滑镄勫潗镙囦腑锛寉鐩哥瓑锛寈镄勭﹀彿鐩稿弽锛屽嵆镣笔(x锛寉)鍏充簬y杞寸殑瀵圭О镣逛负P钬(-x锛寉)銆
銆銆𨰾揿𪾢阒呰伙细鍒濅笁鏁板︽庝箞蹇阃熸彁楂
銆銆镞堕棿鍒嗛厤绮剧粏鍖
銆銆鏁板︿腑钥冨崭範搴旀棭浣沧墦绠楀拰瀹夋帓锛屾巿璇炬暀甯埚簲阍埚瑰︽牎鏁椤﹀疄闄呭拰瀛︾敓鐗圭偣锛屽埗璁㈣﹀疄鍒囧疄鍙琛岀殑璁″垝銆备竴鑸鍦3链埚簳瀹屾垚鏂版巿璇句换锷★纴4链堜笂镞钖锷ㄤ腑钥冨崭範銆4链埚簳瀹屾垚绗涓杞钬滃く瀹炲熀纭钬濆崭範锛屽叏闱㈢郴缁熷崭範锛屼互璇炬湰涓烘湰锛屽垎鍗曞厓銆佺珷鑺傦纴渚濇嵁璇剧▼镙囧嗳銆佷腑钥冭存槑瑕佹眰澶崭範锛屽己鍖栫煡璇嗙偣銆佸崟鍏幂珷鑺伞佽幂偣杩囧叧璁缁冿纴澶瀹炲熀纭锛屽煿鍏诲熀链鎶鑳;5链埚簳瀹屾垚绗浜岃疆钬滀笓棰樿缁冣濆崭範锛屽珐锲哄熀纭锛屾瀯寤虹煡璇嗙绣缁滐纴浣夸箣𨱒$悊鍖栥佺郴缁熷寲锛屽己鍖栧垎鍧楃患钖埚拰涓挞”鐭ヨ瘑璁缁冿纴绐佺牬閲岖偣銆侀毦镣癸纴绐佸嚭璁缁幂伒娲昏繍鐢ㄧ煡璇嗭纴锘瑰吇瑙e喅瀹为檯闂棰樼殑鑳藉姏锛屽悓镞讹纴镆ヨˉ鐭ヨ瘑鐩茬偣锛屽姞寮鸿缁;6链堜笂镞镊充腑钥冨墠瀹屾垚绗涓夎疆钬灭患钖堟娴嬧濆崭範锛屽洖镓e弻锘猴纴鎺掓煡钥幂偣锛屾煡婕忚ˉ缂猴纴娉ㄩ吨缁煎悎妯℃嫙,锷犲己瀛︾敓搴旇瘯鎶宸у拰瑙i樻柟娉曟寚瀵硷纴鍑忓皯闱炴櫤锷涘洜绱犲け鍒嗐
銆銆涓钥冭存槑鐗㈣板寲
銆銆浣滀负钥佸笀瑕佹繁鍏ョ爷绌朵腑钥冭存槑锛屾帉鎻$煡璇嗙偣鍜岃幂翰涓镄勯毦鏄揿害銆傚湪澶崭範镞惰佸笀瑕佷互銆婅冭瘯璇存槑銆嬩腑镄勮佹眰涓哄熀纭锛岄吨瑙嗗熀纭鐭ヨ瘑镄勫崭範锛屽苟涓崭竴锻冲己璋冮毦棰樻垨锅忛樼殑璁缁冿纴钥岃佹牴鎹锻介橀毦鏄撶▼搴︾瓑鐗圭偣锛屾湁阍埚规х殑杩涜屽崭範銆
銆銆澶崭範璧勬枡绮鹃夊寲
銆銆鍦ㄥ崭範镞剁簿阃夎祫鏂欍佺敤濂借祫鏂欍傚湪澶崭範涔嫔埯钥佸笀灏辫佷负瀛︾敓绮惧绩鎸戦変简鍑犱唤璧勬枡锛岃繘琛屾瘆杈冨悗纭瀹氢竴鍒颁袱浠界煡璇嗙偣鍏锛岄毦搴﹂备腑镄勮祫鏂欎綔涓鸿惧唴澶崭範鐢ㄤ功銆傚︾敓镓嫔ご澶崭範璧勬枡涓嶅疁杩囧氾纴澶氢简鍙嶈屼贡锛屽规槗浜х敓杩欐牱娌″畬鎴愶纴闾f牱镓嶅仛涓镣圭偣镄勬劅瑙夛纴杩欐牱瀹规槗阃犳垚鐭ヨ瘑镣圭殑阆楁纺锛屽悓镞朵篃浼氢娇瀛︾敓浜х敓鐑︾嚗镄勫绩鐞嗐傛墍浠ワ纴鏁椤笀瑕佹浛瀛︾敓缁嗗绩鎸戦夊崭範璧勬枡锛屽苟璁╁︾敓鏄庣槠鏁板﹀崭範璧勬枡搴旂簿钥屼笉搴斿氱殑阆撶悊銆
銆銆锘烘湰姒傚康涔犻桦寲
銆銆鏁板︽傚康镄勫崭範涓嶆槸绠鍗旷殑閲嶅嶏纴钥屾槸瑕佸缓绔嬫傚康涔嬮棿镄勬湁链鸿仈绯伙纴涓嶈兘姝昏扮‖鑳岋纴瑕佷细瑙e喅瀹为檯闂棰樸备緥濡傦纴鍒濅腑鏁板︿腑娑夊强鍒版湁鍏斥滃纺钬濈殑姒傚康姣旇缉澶氾纴链夆滀唬鏁板纺钬濄佲沧暣寮忊濄佲滃崟椤瑰纺钬濄佲滃氶”寮忊濄佲滃悓绫婚”钬濄佲滃垎寮忊濄佲沧湁鐞嗗纺钬濄佲沧渶绠鍒嗗纺钬濄佲滀簩娆℃牴寮忊濄佲沧渶绠浜屾℃牴寮忊濄佲滃悓绫讳簩娆℃牴寮忊濈瓑姒傚康锛屾暀甯堣侀拡瀵硅繖浜涙傚康缂栦竴鍒颁袱涓涔犻桦紩瀵煎︾敓寮勬竻杩欎簺姒傚康涔嬮棿镄勮仈绯讳笌鍖哄埆銆备絾链変竴镣瑰煎缑镶瀹氱殑鏄锛岃佹兂鐢ㄨ繖浜涙傚康铡昏В棰桡纴棣栧厛蹇呴’灏嗗畠浠镡熻颁簬蹇冦
❻ 初三数学知识点归纳 九年级数学重点知识总结
很多人想知道初三数学上有哪些重要知识点,初三必背重点知识有哪些呢?下面我为大家介绍一下!
初三数学重要知识点归纳大全
一、 圆的对称性
1、圆的轴对称性
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2、圆的中心对称性
圆是以圆心为对称中心的中心对称图形。
二、 弧、弦、弦心距、圆心角之间的关系定理
1、圆心角
顶点在圆心的角叫做圆心角。
2、弦心距
从圆心到弦的距离叫做弦心距。
3、弧、弦、弦心距、圆心角之间的关系定理
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦型颤心距中有一组量相等,拿租和那么它们所对应的其余各组量都分别相等。
三、圆周角定理及其推论
1、圆周角
顶点在圆上,并且两边都和圆相交的角叫做圆周角。
2、圆周角定理
一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
四、点和圆的位置关系
设⊙O的半径是r,点P到圆心O的距离为d,则有:
d=r 点P在⊙O上;
d>r 点P在⊙O外。
过三点的圆
1、过三点的圆
不在同一直线上消盯的三个点确定一个圆。
2、三角形的外接圆
经过三角形的三个顶点的圆叫做三角形的外接圆。
3、三角形的外心
三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。
4、圆内接四边形性质(四点共圆的判定条件)
圆内接四边形对角互补。
五、一些基本公式
三倍角公式
三倍角的正弦、余弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]
三倍角公式推导
附推导:
tan3α=sin3α/cos3α
=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)
上下同除以cos^3(α),得:
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
=2sinαcos^2(α)+(1-2sin^2(α))sinα
=2sinα-2sin^3(α)+sinα-2sin^3(α)
=3sinα-4sin^3(α)
cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=(2cos^2(α)-1)cosα-2cosαsin^2(α)
=2cos^3(α)-cosα+(2cosα-2cos^3(α))
=4cos^3(α)-3cosα
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
六、一些重点知识
巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是三角形边的比值,可以把两个字用/隔开,再用下面的一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:正对鱼磷(余邻)直刀切。正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边。
三角函数的增减性:正增余减特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀"123,321,三九二十七"既可。
平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行。对角线,是个宝,互相平分"跑不了",对角相等也有用,"两组对角"才能成。
梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在"△"现;延长两腰交一点,"△"中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线。
添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形边两中点,连接则成中位线;三角形中有中线,延长中线翻一番。
圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系。
正多边形诀窍歌:份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前。
中考数学必考重要知识点大全
知识点1:一元二次方程的基本概念
1.一元二次方程3x2+5x-2=0的常数项是-2.
2.一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.
3.一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.
4.把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0.
知识点2:直角坐标系与点的位置
1.直角坐标系中,点A(3,0)在y轴上。
2.直角坐标系中,x轴上的任意点的横坐标为0.
3.直角坐标系中,点A(1,1)在第一象限。
4.直角坐标系中,点A(-2,3)在第四象限。
5.直角坐标系中,点A(-2,1)在第二象限。
知识点3:已知自变量的值求函数值
1.当x=2时,函数y=的值为1.
2.当x=3时,函数y=的值为1.
3.当x=-1时,函数y=的值为1.
知识点4:基本函数的概念及性质
1.函数y=-8x是一次函数。
2.函数y=4x+1是正比例函数。
3.函数是反比例函数。
4.抛物线y=-3(x-2)2-5的开口向下。
5.抛物线y=4(x-3)2-10的对称轴是x=3.
6.抛物线的顶点坐标是(1,2)。
7.反比例函数的图象在第一、三象限。
知识点5:数据的平均数中位数与众数
1.数据13,10,12,8,7的平均数是10.
2.数据3,4,2,4,4的众数是4.
3.数据1,2,3,4,5的中位数是3.
知识点6:特殊三角函数值
1.cos30°=根号3/2。
2.sin260°+cos260°=1.
3.2sin30°+tan45°=2.
4.tan45°=1.
5.cos60°+sin30°=1.
初三数学学习方法与技巧总结
1课前认真预习.预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十.带着预习中不明白的问题去听老师讲课,来解答这类的问题.预习还可以使听课的整体效率提高.具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟.在时间允许的情况下,还可以将练习册做完.
2让数学课学与练结合.在数学课上,光听是没用的.当老师让同学去黑板上演算时,自己也要在草稿纸上练.如果遇到不懂的难题,一定要提出来,不能不求甚解.否则考试遇到类似的题目就可能不会做.听老师讲课时一定要全神贯注,要注意细节问题,否则“千里之堤,毁于蚁穴”.
3课后及时复习.写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的课外题.可以根据自己的需要选择适合自己的课外书.其课外题内容大概就是今天上的课.
4单元测验是为了检测近期的学习情况.其实分数代表的是你的过去,关键的是对于每次考试的总结和吸取教训,是为了让你在期中、期末考得更好.老师经常会在没通知的情况下进行考试,所以要及时做到“课后复习”.