当前位置:首页 » 基础知识 » 小升初数学考点知识总结
扩展阅读
如何找到知道名字的同学 2024-12-14 17:42:18
然而你又怎么回头歌词 2024-12-14 17:31:24

小升初数学考点知识总结

发布时间: 2024-12-14 15:43:07

Ⅰ 小升初一至六年级数学知识点整理

水滴石穿,绳锯木断。备考小升初考试 ,也需要一点点积累才能到达好的效果,下面是我为大家带来的有关小升初一至 六年级数学 知识点整理,希望大家喜欢。

▼▼目录▼▼

1-6年级数学知识体系

必背定义、定理公式

小升初算术知识点

数量关系计算公式方面

一般运算规则

小升初数学知识点: 1-6年级知识体系

小学一年级九九乘法口诀表。学会基础加减乘。

小学二年级完善乘法口诀表,学会除混合运算,基础几何图形。

小学三年级学会乘法交换律,几何面积周长等,时间量及单位。路程计算,分配律,分数小数。

小学四年级线角自然数整数,素因数梯形对称,分数小数计算。

小学五年级分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。

小学六年级比例百分比概率,圆扇圆柱及圆锥。

>>>

小升初数学知识点: 必背定义、定理公式

三角形的面积=底×高÷2。公式S=a×h÷2

正方形的面积=边长×边长公式S=a×a

长方形的面积=长×宽公式S=a×b

平行四边形的面积=底×高公式S=a×h

梯形的面积=(上底+下底)×高÷2公式S=(a+b)h÷2

内角和:三角形的内角和=180度。

长方体的体积=长×宽×高公式:V=abh

长方体(或正方体)的体积=底面积×高公式:V=abh

正方体的体积=棱长×棱长×棱长公式:V=aaa

圆的周长=直径×π公式:L=πd=2πr

圆的面积=半径×半径×π公式:S=πr2

圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh

圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2

圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh

圆锥的体积=1/3底面×积高。公式:V=1/3Sh

分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

分数的乘法则:用分子的积做分子,用分母的积做分母。

分数的除法则:除以一个数等于乘以这个数的倒数。

>>>

小升初数学知识点: 算术方面

1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3、乘法交换律:两数相乘,交换因数的位置,积不变。

4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5

6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。O除以任何不是O的数都得O。

简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。

等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

8、什么叫方程式?答:含有未知数的等式叫方程式。

9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。

学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。

10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。

11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

15、分数除以整数(0除外),等于分数乘以这个整数的倒数。

16、真分数:分子比分母小的分数叫做真分数。

17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

18、带分数:把假分数写成整数和真分数的形式,叫做带分数。

19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

20、一个数除以分数,等于这个数乘以分数的倒数。

21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。

>>>

小升初数学知识点: 数量关系计算公式方面

1、单价×数量=总价

2、单产量×数量=总产量

3、速度×时间=路程

4、工效×时间=工作总量

5、加数+加数=和

一个加数=和+另一个加数

被减数-减数=差

减数=被减数-差

被减数=减数+差

因数×因数=积

一个因数=积÷另一个因数

被除数÷除数=商

除数=被除数÷商

被除数=商×除数

有余数的除法:被除数=商×除数+余数

一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)

6、1公里=1千米1千米=1000米

1米=10分米

1分米=10厘米

1厘米=10毫米

1平方米=100平方分米

1平方分米=100平方厘米

1平方厘米=100平方毫米

1立方米=1000立方分米

1立方分米=1000立方厘米

1立方厘米=1000立方毫米

1吨=1000千克

1千克=1000克=

1公斤=1市斤

1公顷=10000平方米。

1亩=666.666平方米。

1升=1立方分米=1000毫升1毫升=1立方厘米

7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3

比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18

9、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18

11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k(k一定)或kx=y

12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y=k(k一定)或k/x=y

百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。

把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。

把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

15、要学会把小数化成分数和把分数化成小数的化发。

16、公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的公约数。(或几个数公有的约数,叫做这几个数的公约数。其中的一个,叫做公约数。)

17、互质数:公约数只有1的两个数,叫做互质数。

18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)

20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用公约数)

21、最简分数:分子、分母是互质数的分数,叫做最简分数。

分数计算到最后,得数必须化成最简分数。

个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。

22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。

23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。

28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)

29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。

30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。

31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3.141414

32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。

如3.141592654

33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3.141592654……

34、什么叫代数?代数就是用字母代替数。

35、什么叫代数式?用字母表示的式子叫做代数式。如:3x=ab+c

>>>

小升初数学知识点: 一般运算规则

1每份数×份数=总数

总数÷每份数=份数

总数÷份数=每份数

21倍数×倍数=几倍数

几倍数÷1倍数=倍数

几倍数÷倍数=1倍数

3速度×时间=路程

路程÷速度=时间

路程÷时间=速度

4单价×数量=总价

总价÷单价=数量

总价÷数量=单价

5工作效率×工作时间=工作总量

工作总量÷工作效率=工作时间

工作总量÷工作时间=工作效率

6加数+加数=和

和-一个加数=另一个加数

7被减数-减数=差

被减数-差=减数差+减数=被减数

8因数×因数=积

积÷一个因数=另一个因数

9被除数÷除数=商

被除数÷商=除数商×除数=被除数

四、小学数学图形计算公式

1正方形

C周长S面积a边长

周长=边长×4C=4a

面积=边长×边长S=a×a

2正方体

V:体积a:棱长

表面积=棱长×棱长×6S表=a×a×6

体积=棱长×棱长×棱长V=a×a×a

3长方形

C周长S面积a边长

周长=(长+宽)×2C=2(a+b)

面积=长×宽S=ab

4长方体

V:体积s:面积a:长b:宽h:高

表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)

体积=长×宽×高V=abh

5三角形

s面积a底h高

面积=底×高÷2s=ah÷2

三角形高=面积×2÷底三角形底=面积×2÷高

6平行四边形

s面积a底h高

面积=底×高s=ah

7梯形

s面积a上底b下底h高

面积=(上底+下底)×高÷2s=(a+b)×h÷2

8圆形

S面积C周长∏d=直径r=半径

周长=直径×∏=2×∏×半径C=∏d=2∏r

面积=半径×半径×∏

9圆柱体

v:体积h:高s;底面积r:底面半径c:底面周长

侧面积=底面周长×高表面积=侧面积+底面积×2

体积=底面积×高体积=侧面积÷2×半径

10圆锥体

v:体积h:高s;底面积r:底面半径

体积=底面积×高÷3

>>>


小升初一至六年级数学知识点整理相关 文章 :

★ 小升初一至六年级数学知识点整理

★ 小升初考试必备数学一到六年级的知识点

★ 六年级数学知识点梳理

★ 小升初数学考试知识点整理

★ 小升初数学知识考点归纳

★ 小升初数学知识点总结

★ 六年级数学知识点整理

★ 小升初数学考试必备知识点与易错点

★ 小升初数学知识点讲解:数量关系计算公式+数学知识点整理

★ 攻克小升初数学必考的知识点

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

Ⅱ 如何高效复习小升初数学

小升初数学重点知识的复习方法一:
小学数学的应用题往往是概念、公式的应用,正方形、平行四边形、三角形的、梯形的面积计算方法等等。
(一)分数、百分数的应用题
分率的概念是解题的关键,其中标准量“1”的选取是解题突破口。
(二)工程问题
工程问题要弄清工作量、工作效率、工作时间三者之间的关系。
(三)行程问题
从表层意义上是考查学生对路程、时间、速度三者关系的认识,从深层次的角度分析,实际上是检查学生的变通能力,因为需要考虑的不仅仅是路程=时间×速度等,往往还涉及到时间、地点和方向等诸多要素。
(四)浓度问题
这类题目要求了解的关系式:溶液=溶质+溶剂;浓度=溶质/溶液;溶液=溶质/浓度等等。小升初常考的几何问题
面积、体积问题,主要考虑以下内容:平行四边形面积计算公式怎样得到的?三角形和梯形面积计算公式怎样得到的?圆的面积计算公式呢?思索正方形面积是怎样计算的?为什么?求表面积就是求立体图形的什么?长方体表面积是怎样算的?这类题还有什么简便的方法?圆柱体表面积是怎样算的?求长方体和圆柱的体积有什么相同的地方?
圆柱(锥)问题:要认识圆柱的底面、侧面和高;认识圆锥的底面和高。要知道圆柱侧面展开的图形,理解求圆柱的侧面积、表面积的计算方法,会计算圆柱体的侧面积和表面积,能根据实际情况灵活应用计算方法,并认识近似数的进一法。小升初常考的统计题
简单的统计表、统计图、还学过求平均数和求百分数等都是统计初步知识。
在统计工作中除了对数据进行分类整理用统计表来表示以外,有时还可以用统计图来表示。常见统计图有以下三类:条形统计图;折线统计图;扇形统计图。
要认识统计图,并明确统计图的特点和作用,经历收集、整理数据和用统计图表示数据、整理结果过程。能根据绘制出的统计图,分析数据所反映的一些简单事实,能做出一些简单的推理与判断,进一步认识统计是解决实际问题的一种策略和方法。
小升初(xiaoxue.chazidian.com)数学重点知识的复习方法二:
抓住课堂
理科学习重在平日功夫,不适于突击复习。平日学习最重要的是课堂上课,听讲要聚精会神,思维紧跟老师。同时要说明一点,许多同学容易忽略老师所讲的数学思想、数学方法,而注重题目的解答,其实诸如“化归”、“数形结合”等思想方法远远重要于某道题目的解答。
高质量完成作业
所谓高质量是指高正确率和高速度。写作业时,有时同一类型的题重复练习,这时就要有意识的考查速度和准确率,并且在每做完一次时能够对此类题目有更深层的思考,诸如它考查的内容,运用的数学思想方法,解题的规律、技巧等。另外对于老师布置的思考题,也要认真完成。如果不会决不能轻易放弃,要发扬“钉子”精神,一有空就静心思考,灵感总是突然来到你身边的。最重要的是,这是一次挑战自我的机会。成功会带来自信,而自信对于学习理科十分重要;即使失败,这道题也会给你留下深刻的印象。
勤思考,多提问
首先对于老师给出的规律、定理,不仅要知“其然”还要“知其所以然”,做到刨根问底,这便是理解的最佳途径。其次,学习任何学科都应抱着怀疑的态度,尤其是理科。对于老师的讲解,课本的内容,有疑问应尽管提出,与老师讨论。总之,思考、提问是清除学习隐患的最佳途径。
总结比较,理清思绪
(1)知识点的总结比较。每学完一章都应将本章内容做一个框架图或在脑中过一遍,整理出它们的关系。对于相似易混淆的知识点应分项归纳比较,有时可用联想法将其区分开。
(2)题目的总结比较。同学们可以建立自己的题库。我就有两本题集。一本是错题,一本是精题。对于平时作业,考试出现的错题,有选择地记下来,并用红笔在一侧批注注意事项,考试前只需翻看红笔写的内容即可。我还把见到的一些极其巧妙或难度高的题记下来,也用红笔批注此题所用方法和思想。时间长了,自己就可总结出一些类型的解题规律,也用红笔记下这些规律。最终它们会成为你宝贵的财富,对你的数学学习有极大的帮助。
有选择地做课外练习
课余时间对我们中学生来说是十分珍贵的,所以在做课外练习时要少而精,只要每天做两三道题,天长日久,你的思路就会开阔许多。
小升初数学重点知识的复习方法三:
第一,考生要学会构建知识脉络
这样一方面便于对整个数学的知识节点梳理,另一方面有利于加深对重点知识的印象。对于小升初数学来讲,数学概念十分重要,它是构建知识网络的出发点,也是数学中考考查的重点。因此,一对一辅导学思堂教育强调,各位小升初的考生在开学期间一定要确保自己掌握好代数和几何中各种概念、分类,定义、性质和判定,并会应用这些概念去解决问题。
第二,是时刻立足于课本,夯实基础知识
对于任何一门科目的复习来说,立足于课本基础知识都是最基本也是最重要的一个环节。一对一辅导学思堂教育在小升初数学方面有丰富教研经验的杨老师称,在小升初复习数学的过程中,不但要夯实基础,还要注意知识的不断深化,注意知识之间的内在联系,将新知识及时纳入已有知识体系,逐步形成和扩充知识结构系统,这样在解题时就能由题目所提供的信息,从记忆系统中检索出有关信息,寻找最佳解题途径。
第三,要善于建立错题集
对于数学来讲,重点就是对平时错题一个反复整理研究。想要吃透每个知识点,这就要求大家一定要把平时犯的错误记下来,揭示出错误的原因,强化知识点的同时,还能拓宽个人的解题思维。尤其是在开学这个能够集中进行自我复习的阶段,经常地把错题集拿出来看看,想想错在哪里、怎么改正等等,能够有效帮助自己积累解题经验、总结解题思路,掌握学习方法。 第四,加强对数学常用公式的记忆与巧用
曾有一篇报道揭示称:小升初数学考试,有将近百分之七十的题都是立足于数学常用公式,即使是剩下的百分之三十也是公式的不规则运用而已。所以,加强对常用数学公式的运用,对于解题来说是事半功倍的,再加上巧妙的运用,复习效果一定高品质。
第四,是适当有效的多做题
多做题不仅可以拓宽学生的解题思维,还能潜移默化的提高解题速度。一对一辅导学思堂教育揭示,小升初学生在做题时应该注意以下几点:除了做基础训练题、平面几何每日一题外,还可以做一些综合题,并且养成解题后反思的习惯;反思自己的思维过程,反思知识点和解题技巧,反思多种解法的优劣和纵横联系;总结所用到的数学思想方法,并把思想方法相近的题目编成一组,不断提炼深化,做到举一反三、触类旁通;逐步学会观察、试验、分析、猜想、归纳、类比、联想等思想方法,主动地发现问题和提出问题。
由于篇幅所限,家长可以到我朋友圈去看更多教育文章,我是中学老师,致力于学习法和记忆法教学,开设免费课程。
小升初数学重点知识的复习方法四:
一、注重指导学生复习方法,提高复习效率
1、指导学生巧复习
数学学习中概念,公式,计算等等是很枯燥的。俗话说:“熟能生巧。”良好的复习方法是提高复习效率的重要途径。利用一切有效手段充分调动学生复习的主动性,创造性知识和技能。教师指导复习时要做到四点:第一是定调。给出复习“导引单”,学生依“纲”复习,掌握基本的知识和技能。第二是给法。对复习方法给予具体指导。善于抓住重点组织复习。第三是树靶。对复习中的疑难问题展开辨论,审视真伪。第四是立样。对辨论的结果给出是与否的肯定回答,澄清模糊认识,树立正确观点。
2、指导学生定好学习计划
复习前,教师应当认真钻研新《课程标准》和小学数学复习指导说明,让学生明确毕业考试的方向、内容和题形,明确复习内容,指导学生合理分配复习时间,根据每个学生的实际情况,确定复习进度。这样让学生心中有谱,克服盲目性,积极的投入到复习中去。
首先我们用一半的时间指导学生复习课本的内容,重在复习教材中的重点、难点、考点和疑点。方法是教师指导与学生自主复习相结合。学生在复习中注重查漏补缺,教师注重解疑和检查。在复习中注重发现学生在综合练习中出现的问题、及时检查学生知识掌握情况及对知识的运用的能力。并要做到及时反馈、及时补缺补差,把遗漏点降到最低。然后用四分之一的时间进行阶段复习,把内容相关的单元内容分项复习。比如:数的复习,几何知识的复习等等。结合不同的复习内容。确定不同的复习重点难点 分类整理、梳理,强化复习的系统性。这样有利于知识的系统化和对其内在联系的把握,便于融合贯通。做到梳理--训练--拓展,有序发展,真正提高复习的效果。最后用四分之一的时间进行综合复习,各种题型,等等全面开展训练。在每一次综合复习中学生的能力呈现螺旋上升状态。
3. 指导学生摸索技巧与规律,提高能力
能力测试是现代数学测试的主要方面,如实践能力。创新能力。等。因此在复习过程中,要指导学生定期做一些计算练习及创新练习。知道学生抓住解题的关键条件及应用题中的数学关系,归纳出规律和方法;指导学生排除障碍;对一些看似复杂的难题,引导学生斩枝去叶,找出其核心部分,更快,更准地对题意进行理解,从而有效地完成规定的答题。在这一过程中,提醒学生切勿死记硬背,重在开阔视野,培养实践能力,摸索技巧与规律。
二、 注重研究教法,让复习省时、高效
1 . 准确处理好集中教学与精讲的关系
“集中教学是强化教学,它集中思想、集中时间、集中一切手段与方法,创造环境与条件,突破难点,带动全面”。根据这一原则,我觉得应该摆脱原有知识体系的束缚,打破原有知识结构,重新调整、编辑知识体系,将那些基础知识重新编排、重新组合。通过超前集中、随机集中、综合集中,以及启发、引导、讨论、归纳、综合等一系列双边活动使知识点、热点、重点具体化。这即夯实了基础,突出了重点,又给了学生新的感受。
精讲是指对学生自主学习的积极引导,尤其是针对前面的自主复习活动和讨论过程中思而不解或有误的问题进行讲解,目的在于扫除学生的学习障碍,指引学习的途径,培养正确的学习方法。复习中选择一些恰当、新视觉、最能体现复习内容本质特征、唤起学生思维灵感而引起思维共鸣的例题而施教,达到温故而知新。择例时要做到“三性”。一是准确性;符合新课程标准和教材要求,谨防过深或过偏而加重学生过重的课业负担;二是典范性:体现重要知识点,其有“范例”作用;三是综合性:体现各类知识的横向联系,培养学生综合解题能力。一般而言,复习时应精选学生平时漏缺的知识,精选学生易混淆的知识,精选带有关键性、规律性的知识。
2.教师要准备好每一堂课
不管是复习基础知识,还是复习重点,难点及要点;也不管是专题训练,还是试卷评讲,教师都要对所授内容认真分析, 精心准备。教师要在课下仔细钻研教材与新《课程标准》,要把握教材内容,善于提炼和归纳教材的知识要点和训练重点,要把握准知识的广度与深度。在复习过程中,我们应重视对教材的使用,切不可抛开教材,大搞所谓的“标准化训练”,盲目追求学生能力的提高,轻视对基础知识的复习。
3. 精心编排练习题
我们应该把这一点作为重要的一点提出来,我觉得精心编排练习题是实施教学论断和反馈的好办法。要坚持每天布置适量的习题作业,从作业中发现问题,并且引导学生集体讨论,利用课余时间针对问题进行个别纠正,这一方法行之有效。较好地贯彻了“因才施教”,易于操作,效果明显,复习中配以灵活多变的训练,能达到巩固知识、理解规律、强化记忆、灵活应用知识的目的。首先在训练的内容上要活。要选择内容新颖、规律隐藏、思路灵活的习题训练,创造新的思维意境。其次,在训练层次上要活。采取巩固训练、模仿训练、变式训练和综合训练等灵活方式。再次在训练形式上要活。加强“一题多变”的训练。尽可能覆盖知识点、网络知识线、扩大知识面,增强应变能力。加强“一题多解”的训练,寻找多种解题途径,择其精要解题方法,逐步提离学生的创新能力。练习题不在于多,一道好的题目,往往能“牵一发而动全身”,起到事半功倍的作用。这里指的练习题也不仅仅指动笔的书面作业题,还包括动口的讨论题和动手的实践操作题等。要在众多的复习资料中挑选和重心组织质量高、针对性较强的题目(题组),要重视根据教学实际和当前的教改形势创造设计一些新颖的题目。
4.充分相信学生,放手让学生自主整理复习,及时评价
复习课必须针对知识的重点、学习的难点、学生的弱点,引导学生按一定的标准把有关知识进行整理、分类、综合,这样才能搞清楚来龙去脉。教学时应放手让学生整理知识,形成各异、互助评价,开展争辨。这样有利于主体性的发挥,学生主动参与,体验成功,同时也可以培养他们的概括能力。在进行阶段性复习时,结合每一单元的内容进行专项训练,采用自主复习的形式,反复巩固基础知识,强化运用能力,提高解题技巧和解题速度。学生不但可以自己查阅资料,收集信息,独立式学习,还可以自由选择学习内容与方式,自己控制学习进度和方向。自始至终积极参与活动,成为真正意义上学习的主人。
另外,总复习期间,六年级数学组教师在每一节课之前互相研究每节课怎样上,如何组织,采用何种方法,在上完每节课后,要用较少的时间及时交流课堂中的疑难点,处理方法,让教师迅速成长。在学生方面,值得一提的是通过开展“四自”活动:自订一本数学改错本,自制一本数学笔记,自办一期数学小报,自出一份期末试卷,并进行交流、评比,让学生充分享受成功的喜悦,以不断的成功提高复习效果。
总而言之, 采用自主复习的形式,可以让“能飞的飞起来”,“能跑的跑起来”,“能走的走起来”,使不同层次的学生都有所提高。小学毕业的最后阶段,就象长跑运动员最后的冲刺阶段,教师要及早精心安排,使学生的能量充分的发挥出来,才能得到最满意的结果。

Ⅲ 北师大版小升初数学知识点

考点1 简易方程
一. 用字母表示数
1. 含有字母的式子不仅可以表示数量关系,也可以表示数量。
2. 含有字母的式子还可以简明、概括地表达运算定律和计算公式,方便研究和解决实际问题。
3. 如果知道给出的式子中每个字母表示的数是多少,就可以算出这个这个式子表示的数值是多少。
注意:
1.含有字母的式子中,数字和字母、字母和字母相乘时,乘号也可以记作“•”,也可以省略不写。在省略乘号的时候,应把数字写在字母的前面。例如:a×4可以写成“a•4”或“4a”。
2.当“1”和任何字母相乘时,“1”可以省略不写。例如:a×1都写成“a”而不写成“1a”。
3.由于字母可以表示任意数,在一些式子中,对字母表示数的要进行说明。例如:7/a(a≠0)。
4.因为字母表示的是数,所以在式子中每一个字母都不注明单位名称,计算结果也不注明单位名称,只在答句中写上单位名称。
二. 简易方程
1. 表示相等关系的式子叫做等式。
2. 含有未知数的等式叫方程
3.一个等式由“等式的左边”、“等式的右边”、“等号”三部分组成。例如:23+30=53,x+6=12都是等式。7+8、4x-2、x-7﹥9等都不是等式。在x+6=12这个等式中,因为含有未知数,所以它是方程。等式不一定是方程,但方程一定是等式。它们的关系如下图所示:

4.使方程左右两边相等的未知数的值叫做方程的解。如:x=10,使方程4x-10=30左右两边相等,所以x=10就是方程4x-10=30的解。
5.求方程的解的过程叫做解方程。
6.方程的解是一个值,解方程是求方程的解的演算过程。
7.在小学阶段解简易方程主要运算用加、减、乘、除法互逆的关系。
关系如下:
(1) 一个加数=和-另一个加数
(2) 被减数=差+减数
(3) 减数=被减数-差
(4) 一个因数=积÷另一个因数
(5) 被除数=商×除数
(6) 除数=被除数÷商
8.求出未知数的值分别代入原方程的两边(即求含有字母的式子的值),如果原方程等号左右两边相等,则所求得的未知数的值是原方程的解。

考点二 比和比例
知识要点
一.比和比例的意义和性质
1.比和比例的意义:
(1)两个数相除又叫做这两个数相比。
(2)这里的两个数,可以是同类量,也可以是不同类量。
(3)表示两个比相等的式子叫做比例.
2.基本性质:
(1)比的前项和后项同时乘或除以相同的数(零除外),比值不变。在比例里,两个内项的积等于两个外项的积。
3.比和比例的联系和区别:
(1)联系:
比和比例有密切的联系,比例由两个相等的比组成。
(2)区别:
比表示两个数相处,表述的是两个数(量)关系的一种形式。有两项(前项和后项)。
比例是一个等式,表示两个比相等。有四项(两个内项、两个外项)。
二.比、分数和除法的关系
名 称 意 义 各部分名称(相互关系)
比a :b或
a
b 表示两个数相除 前 项 比 号 后 项 比 值
a
b 表示一个数 分 子 分数线 分 母 分数值
除法
a÷b 表示一种运算 被除数 除 号 除 数 商
1. 比的后项、分母、除数都不能为0.
2. 比和平常比赛中的“几比几”的意义不同。
3. 求比值和化简比的区别与联系
意 义 方 法 结 果
求比值 前项除以后项所得的商 用前项除以后项 一个数,可以是整数、分数或小数

化简比 把两个数的比化成最简单的整数比。 1. 前项和后项同时乘或除以同一个数(零除外)
2. 也可以先求出比值,再将比值写成最简比
一个比
三. 组比例和解比例
根据比例的基本性质,可以判断两个比能不能组成比例,还可以求比例中的未知数,即解比例。
1.组比例:判断两个比能否组成比例,一种方法是求两个比的比值,若比值相等,就可以组成比例;另一种方法是先假设两个比已经组成比例,求出外项的积和内项的积,如果相等,则能组成比例。
2.解比例:求比值中的未知数,叫做解比例。
四. 正比例和反比例的区别和联系
名 称 正 比 例 反 比 例
意 义 相 同 点 两种相关联的量,一个量变化,另一个量也随着变化
不 同 点 两种量中相对应的两个数的比值(也就是商)一定 两种量中相对应的两个数的积一定
关 系 式 x/y=k(一定) x•y=k(一定)
1. 判断两种量是正比例、反比例或不成比例的方法:
(1) 找出两种相关联的量。
(2) 根据两种相关联的量之间的关系列出数量关系式。
(3) 如果两种量中相对应的两个数的比值(也就是商)一定,就是成正比例的量;若是积一定,就是成反比例的量。
五. 比例尺
1. 图上距离和实际距离的比,叫做这幅图的比例尺。
即:图上距离﹕实际距离=比例尺
图上距离/实际距离=比例尺

Ⅳ 小升初数学整数和小数的应用知识点

小升初数学整数和小数的应用知识点

在我们平凡的学生生涯里,很多人都经常追着老师们要知识点吧,知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。掌握知识点是我们提高成绩的关键!下面是我为大家收集的小升初数学整数和小数的应用知识点,供大家参考借鉴,希望可以帮助到有需要的朋友。

1 简单应用题

(1) 简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。

(2) 解题步骤:

a 审题理解题意:了解应用题的内容,知道应用题的条件和问题。读题时,不丢字不添字边读边思考,弄明白题中每句话的意思。也可以复述条件和问题,帮助理解题意。

b选择算法和列式计算:这是解答应用题的中心工作。从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。

C检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。如果发现错误,马上改正。

2 复合应用题

(1)有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。

(2)含有三个已知条件的两步计算的应用题。

求比两个数的和多(少)几个数的应用题。

比较两数差与倍数关系的应用题。

(3)含有两个已知条件的两步计算的应用题。

已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差)。

已知两数之和与其中一个数,求两个数相差多少(或倍数关系)。

(4)解答连乘连除应用题。

(5)解答三步计算的应用题。

(6)解答小数计算的应用题:小数计算的加法、减法、乘法和除法的应用题,他们的数量关系、结构、和解题方式都与正式应用题基本相同,只是在已知数或未知数中间含有小数。

d答案:根据计算的结果,先口答,逐步过渡到笔答。

( 3 ) 解答加法应用题:

a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。

b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。

(4 ) 解答减法应用题:

a求剩余的应用题:从已知数中去掉一部分,求剩下的部分。

-b求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。

c求比一个数少几的数的应用题:已知甲数是多少,,乙数比甲数少多少,求乙数是多少。

(5 ) 解答乘法应用题:

a求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数。

b求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另一个数是多少。

( 6) 解答除法应用题:

a把一个数平均分成几份,求每一份是多少的应用题:已知一个数和把这个数平均分成几份的,求每一份是多少。

b求一个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几份。

C 求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较大数是较小数的几倍。

d已知一个数的几倍是多少,求这个数的应用题。

(7)常见的数量关系:

总价= 单价×数量

路程= 速度×时间

工作总量=工作时间×工效

总产量=单产量×数量

3典型应用题

具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。

(1)平均数问题:平均数是等分除法的发展。

解题关键:在于确定总数量和与之相对应的总份数。

算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和÷数量的个数=算术平均数。

加权平均数:已知两个以上若干份的平均数,求总平均数是多少。

数量关系式 (部分平均数×权数)的总和÷(权数的和)=加权平均数。

差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。

数量关系式:(大数-小数)÷2=小数应得数最大数与各数之差的和÷总份数=最大数应给数 最大数与个数之差的和÷总份数=最小数应得数。

例:一辆汽车以每小时 100 千米 的速度从甲地开往乙地,又以每小时 60 千米的速度从乙地开往甲地。求这辆车的平均速度。

分析:求汽车的平均速度同样可以利用公式。此题可以把甲地到乙地的'路程设为“ 1 ”,则汽车行驶的总路程为“ 2 ”,从甲地到乙地的速度为 100 ,所用的时间为 ,汽车从乙地到甲地速度为 60 千米 ,所用的时间是 ,汽车共行的时间为 + = , 汽车的平均速度为 2 ÷ =75 (千米)

(2) 归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。

根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。

根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。

一次归一问题,用一步运算就能求出“单一量”的归一问题。又称“单归一。”

两次归一问题,用两步运算就能求出“单一量”的归一问题。又称“双归一。”

正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。

反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。

解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。

数量关系式:单一量×份数=总数量(正归一)

总数量÷单一量=份数(反归一)

例 一个织布工人,在七月份织布 4774 米 , 照这样计算,织布 6930 米 ,需要多少天?

分析:必须先求出平均每天织布多少米,就是单一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天)

(3)归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。

特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。

数量关系式:单位数量×单位个数÷另一个单位数量 = 另一个单位数量单位数量×单位个数÷另一个单位数量= 另一个单位数量。

例 修一条水渠,原计划每天修 800 米 , 6 天修完。实际 4 天修完,每天修了多少米?

分析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题”。不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。 80 0 × 6 ÷ 4=1200 (米)

(4) 和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。

解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。

解题规律:(和+差)÷2 = 大数大数-差=小数

(和-差)÷2=小数和-小数= 大数

例 某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人,求原来甲班和乙班各有多少人?

分析:从乙班调 46 人到甲班,对于总数没有变化,现在把乙数转化成 2 个乙班,即 9 4 - 12 ,由此得到现在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在调出 46 人之前应该为 41+46=87 (人),甲班为 9 4 - 87=7 (人)

(5)和倍问题:已知两个数的和及它们之间的倍数 关系,求两个数各是多少的应用题,叫做和倍问题。

解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。求出倍数和之后,再求出标准的数量是多少。根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。

解题规律:和÷倍数和=标准数标准数×倍数=另一个数

例:汽车运输场有大小货车 115 辆,大货车比小货车的 5 倍多 7 辆,运输场有大货车和小汽车各有多少辆?

分析:大货车比小货车的 5 倍还多 7 辆,这 7 辆也在总数 115 辆内,为了使总数与( 5+1 )倍对应,总车辆数应( 115-7 )辆 。

列式为( 115-7 )÷( 5+1 ) =18 (辆), 18 × 5+7=97 (辆)

(6)差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。

解题规律:两个数的差÷(倍数-1 )= 标准数 标准数×倍数=另一个数。

例 甲乙两根绳子,甲绳长 63 米 ,乙绳长 29 米 ,两根绳剪去同样的长度,结果甲所剩的长度是乙绳 长的 3 倍,甲乙两绳所剩长度各多少米? 各减去多少米?

分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的 3 倍,实比乙绳多( 3-1 )倍,以乙绳的长度为标准数。列式( 63-29 )÷( 3-1 ) =17 (米)…乙绳剩下的长度, 17 × 3=51 (米)…甲绳剩下的长度, 29-17=12 (米)…剪去的长度。

(7)行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。

解题关键及规律:

同时同地相背而行:路程=速度和×时间。

同时相向而行:相遇时间=速度和×时间

同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。

同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。

例 甲在乙的后面 28 千米 ,两人同时同向而行,甲每小时行 16 千米 ,乙每小时行 9 千米 ,甲几小时追上乙?

分析:甲每小时比乙多行( 16-9 )千米,也就是甲每小时可以追近乙( 16-9 )千米,这是速度差。

已知甲在乙的后面 28 千米 (追击路程), 28 千米 里包含着几个( 16-9 )千米,也就是追击所需要的时间。列式 2 8 ÷ ( 16-9 ) =4 (小时)

(8)流水问题:一般是研究船在“流水”中航行的问题。它是行程问题中比较特殊的一种类型,它也是一种和差问题。它的特点主要是考虑水速在逆行和顺行中的不同作用。

船速:船在静水中航行的速度。

水速:水流动的速度。

顺水速度:船顺流航行的速度。

逆水速度:船逆流航行的速度。

顺速=船速+水速

逆速=船速-水速

解题关键:因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答。 解题时要以水流为线索。

解题规律:船行速度=(顺水速度+ 逆流速度)÷2

流水速度=(顺流速度逆流速度)÷2

路程=顺流速度× 顺流航行所需时间

路程=逆流速度×逆流航行所需时间

例 一只轮船从甲地开往乙地顺水而行,每小时行 28 千米 ,到乙地后,又逆水 航行,回到甲地。逆水比顺水多行 2 小时,已知水速每小时 4 千米。求甲乙两地相距多少千米?

分析:此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间。已知顺水速度和水流 速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用 2 小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程。列式为 284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5 (小时) 28 × 5=140 (千米)。

(9) 还原问题:已知某未知数,经过一定的四则运算后所得的结果,求这个未知数的应用题,我们叫做还原问题。

解题关键:要弄清每一步变化与未知数的关系。

解题规律:从最后结果 出发,采用与原题中相反的运算(逆运算)方法,逐步推导出原数。

根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推导出原数。

解答还原问题时注意观察运算的顺序。若需要先算加减法,后算乘除法时别忘记写括号。

例 某小学三年级四个班共有学生 168 人,如果四班调 3 人到三班,三班调 6 人到二班,二班调 6 人到一班,一班调 2 人到四班,则四个班的人数相等,四个班原有学生多少人?

分析:当四个班人数相等时,应为 168 ÷ 4 ,以四班为例,它调给三班 3 人,又从一班调入 2 人,所以四班原有的人数减去 3 再加上 2 等于平均数。四班原有人数列式为 168 ÷ 4-2+3=43 (人)

一班原有人数列式为 168 ÷ 4-6+2=38 (人);二班原有人数列式为 168 ÷ 4-6+6=42 (人) 三班原有人数列式为 168 ÷ 4-3+6=45 (人)。

(10)植树问题:这类应用题是以“植树”为内容。凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。

解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。

解题规律:沿线段植树

棵树=段数+1棵树=总路程÷株距+1

株距=总路程÷(棵树-1) 总路程=株距×(棵树-1)

沿周长植树

棵树=总路程÷株距

株距=总路程÷棵树

总路程=株距×棵树

例 沿公路一旁埋电线杆 301 根,每相邻的两根的间距是 50 米 。后来全部改装,只埋了201 根。求改装后每相邻两根的间距。

分析:本题是沿线段埋电线杆,要把电线杆的根数减掉一。列式为 50 ×( 301-1 )÷( 201-1 ) =75 (米)

(11 )盈亏问题:是在等分除法的基础上发展起来的。 他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或两次都有余),或两次都不足),已知所余和不足的数量,求物品适量和参加分配人数的问题,叫做盈亏问题。

解题关键:盈亏问题的解法要点是先求两次分配中分配者没份所得物品数量的差,再求两次分配中各次共分物品的差(也称总差额),用前一个差去除后一个差,就得到分配者的数,进而再求得物品数。

解题规律:总差额÷每人差额=人数

总差额的求法可以分为以下四种情况:

第一次多余,第二次不足,总差额=多余+ 不足

第一次正好,第二次多余或不足 ,总差额=多余或不足

第一次多余,第二次也多余,总差额=大多余-小多余

第一次不足,第二次也不足, 总差额= 大不足-小不足

例 参加美术小组的同学,每个人分的相同的支数的色笔,如果小组 10 人,则多 25 支,如果小组有 12 人,色笔多余 5 支。求每人 分得几支?共有多少支色铅笔?

分析:每个同学分到的色笔相等。这个活动小组有 12 人,比 10 人多 2 人,而色笔多出了( 25-5 ) =20 支 , 2 个人多出 20 支,一个人分得 10 支。列式为( 25-5 )÷( 12-10 ) =10 (支) 10 × 12+5=125 (支)。

(12)年龄问题:将差为一定值的两个数作为题中的一个条件,这种应用题被称为“年龄问题”。

解题关键:年龄问题与和差、和倍、 差倍问题类似,主要特点是随着时间的变化,年岁不断增长,但大小两个不同年龄的差是不会改变的,因此,年龄问题是一种“差不变”的问题,解题时,要善于利用差不变的特点。

例 父亲 48 岁,儿子 21 岁。问几年前父亲的年龄是儿子的 4 倍?

分析:父子的年龄差为 48-21=27 (岁)。由于几年前父亲年龄是儿子的 4 倍,可知父子年龄的倍数差是( 4-1 )倍。这样可以算出几年前父子的年龄,从而可以求出几年前父亲的年龄是儿子的 4 倍。列式为: 21( 48-21 )÷( 4-1 ) =12 (年)

(13)鸡兔问题:已知“鸡兔”的总头数和总腿数。求“鸡”和“兔”各多少只的一类应用题。通常称为“鸡兔问题”又称鸡兔同笼问题

解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数。

解题规律:(总腿数-鸡腿数×总头数)÷一只鸡兔腿数的差=兔子只数

兔子只数=(总腿数-2×总头数)÷2

如果假设全是兔子,可以有下面的式子:

鸡的只数=(4×总头数-总腿数)÷2

兔的头数=总头数-鸡的只数

例 鸡兔同笼共 50 个头, 170 条腿。问鸡兔各有多少只?

兔子只数 ( 170-2 × 50 )÷ 2 =35 (只)

鸡的只数 50-35=15 (只)

(4)小升初数学考点知识总结扩展阅读:

计算法则【整数、小数、分数】:

一、计算整数加、减法要把相同数位对齐,从低位算起。

二、计算小数加、减法要把小数点对齐,从低位算起。

三、小数乘法:

1、先按整数乘法算出积是多少,看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

2、注意:在积里点小数点时,位数不够的,要在前面用0补足。

四、小数除法:

1、商的小数点要和被除数的小数点对齐。

2、有余数时,要在后面添0,继续往下除。

3、个位不够商1时,要在商的整数部分写0,点上小数点,再继续除。

4、把除数转化成整数时,除数的小数点向右移动几位,被除数的小数点也要向右移动几位。

5、当被除数的小数位数少于除数的小数位数时,要在被除数的末尾用0补足。

五、一个小数乘10、100、1000等只要把这个小数的小数点向右移动一位、两位、三位等。

六、一个小数除以10、100、1000等只要把这个小数的小数点向左移动一位、两位、三位。

;

Ⅳ 小升初考前三天数学知识点归纳

小升初考前三天数学知识点归纳

下面是各考点方法以及要点汇总

一、代数简单考点

1、大数的读写

先说“读”:可分为三读两不读

三读:①每级开头零要读例:80800------读“八万零八百”

②同级两非零数之间的零要读例8080------读“八千零八十”

③万级全为零要读例:800008000------读“八亿零八千”

两不读:①每级末尾零不读例:808000------读“八十万八千”

②末尾全是零不读例:80000-----读“八万”

我们接着看“写”:

在“写”当中需要注意两个点:一是“四舍五入”;二是“单位换算”

在题目中若提到“约、近似、精确、保留到”则必定考的是四舍五入

在题目中提到“改写”则必定考的.是单位换算

2、比例尺

比例尺的题目比较简单,考点往往在于单位换算

3、统计图

①条形统计图

②扇形统计图

统计图在526考试中的难度不会太大,只需要弄清楚每种统计图中各种图像的意义。希望大家及时结合平时的学习资料好好复习。

4、找规律

找规律的题型比较灵活,我们就不举实例。但本质都可以分为数字规律和图形规律。不管什么规律都是从简入手、化形为数…。

5、生活中的常识

在526中肯定会考察一些生活常识问题,但这都是和同学们的成长息息相关的,也没有突击口,做到相信自己的判断就行了。

二、几何考点

1、平面几何

①求数线段、求总长

以526工大附中冲刺班讲义中的一道题目为例:

`AKB4CIS26(95P7_[M[Z9CQ.jpg

②求面积

常见模型:

一半模型、共高模型、蝴蝶模型等

基本方法:

加减、切分、割补、平移、差不变等

下面是526工大冲刺班讲义中的几道典型例题,可供大家参考突击

更多具体复习题还需要大家多参照平时学习的例题和练习题。

③几何与运动:点的运动、图形的运动

2、立体几何

立体几何可分为一以下几种考点:

①求表面积

②求体积(具体分为:等体积变换、切分与拼合、堆积体)

③三视图

④正方体的折叠与展开

⑤最短路线问题(具体分为:长方体、正方体、圆柱)

三、应用题

1、分数应用题

主要方法:量率对应、转化单位1、抓不变量

2、经济利润应用题

主要方法:设数、列方程

3、经典应用题

主要题型:平均数、和差倍、鸡兔同笼、盈亏、年龄、植树、行程(行程问题考的可能性不大)

;