Ⅰ 初一数学单元知识点归纳5篇(精选)
每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要讲练的。下面是我给大家整理的一些初一数学的知识点,希望对大家有所帮助。
初一数学第一单元知识点
1.有理数:
(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)相反数的和为0a+b=0a、b互为相反数.
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2)绝对值可表示为:或;绝对值的问题经常分类讨论;
5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.
6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.
7.有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
8.有理数加法的运算律:
(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).
9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).
10.有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.
11.有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac.
12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.
13.有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.
14.乘方的定义:
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.
16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.
17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。
18.混合运算法则:先乘方,后乘除,最后加减。
2数学常用计算公式表(1)长方形面积=长×宽,计算公式s=a b
(2)正方形面积=边长×边长,计算公式s=a × a
(3)长方形周长:(长+宽)× 2,计算公式s=(a+b)× 2
(4)正方形周长=边长× 4,计算公式s= 4a i
(5)平形四边形面积=底×高,计算公式s=a h.
(6)三角形面积=底×高÷2,计算公式s=a×h÷2
(7)梯形面积=(上底+下底)×高÷2,计算公式s=(a+b)×h÷2
(8)长方体体积=长×宽×高,计算公式v=a bh
(9)圆的面积=圆周率×半径平方,计算公式s=лr2
(10)正方体体积=棱长×棱长×棱长,计算公式v=a3
初一下册数学知识点 总结
1.1正数与负数
在以前学过的0以外的数前面加上负号“-”的数叫负数(negativenumber)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positivenumber)(根据需要,有时在正数前面也加上“+”)。
1.2有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rationalnumber)。
通常用一条直线上的点表示数,这条直线叫数轴(numberaxis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(oppositenumber)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
1.3有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。
1.4有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(basenumber),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significantdigit)。
初中 一年级数学 上册知识
整式的加减
一、代数式
1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。
2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。
二、整式
1、单项式:
(1)由数和字母的乘积组成的代数式叫做单项式。
(2)单项式中的数字因数叫做这个单项式的系数。
(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2、多项式
(1)几个单项式的和,叫做多项式。
(2)每个单项式叫做多项式的项。
(3)不含字母的项叫做常数项。
3、升幂排列与降幂排列
(1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。
(2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。
三、整式的加减
1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。
2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
合并同类项:
(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。
(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
(3)合并同类项步骤:
a.准确的找出同类项。
b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
c.写出合并后的结果。
(4)在掌握合并同类项时注意:
a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.
b.不要漏掉不能合并的项。
c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
说明:合并同类项的关键是正确判断同类项。
3、几个整式相加减的一般步骤:
(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
初一数学上册知识点归纳
代数初步知识
1. 代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)
2.列代数式的几个注意事项:
(1)数与字母相乘,或字母与字母相乘通常使用“? ” 乘,或省略不写;
(2)数与数相乘,仍应使用“×”乘,不用“? ”乘,也不能省略乘号;
(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;
(4)带分数与字母相乘时,要把带分数改成假分数形式,如a× 应写成 a;
(5)在代数式中出现除法运算时,一般用 分数线 将被除式和除式联系,如3÷a写成 的形式;
(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .
3.几个重要的代数式:(m、n表示整数)
(1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ;
(2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c;
(3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ;
(4)若b>0,则正数是:a2+b ,负数是: -a2-b ,非负数是: a2 ,非正数是:-a2 .
初一数学 复习方法
考试与作业逻辑不同:
我们的考试不同于作业,有些孩子作业写的还可以,准确率挺高的,但是考试成绩不理想。比如学校上完课,回家就写当天的作业,但是考试不一样,它是阶段性的、综合性的;再比如写作业,可以看资料,不会的可以请教同学,但是考试就得靠自己;还有写作业时格式不一定规范,不一定符合标准,但是考试老师会要求很严格;另外有些孩子考试比较焦虑,考试之前,爸爸妈妈给孩子加油鼓劲,反倒孩子考不好,有些孩子甚至在考试前后一定要上厕所,排解压力,甚至影响到考试成绩。
那具体涉及到数学的复习,我以北师大版为例,可以分4个步骤:
复习方法总结
1回归书本,梳理章节概念公式、性质定理等
就像盖房子,房子的地基是否扎实稳固。比如我们在复习课中,要求孩子们默写公式等,记忆单项式、多项式、整式的概念,以及幂的运算、整式乘除的法则,而且一定要记住平方差和完全平方公式以及变形。有些孩子能够背下完全平方公式,但是一旦用的时候,就偏偏不用,因为不够熟练,怕出错,所以就用最复杂的公式推导一遍,费时费力,还总错,而且重要的公式更加生疏。
比如知识点填空:
知识点填空
我们的孩子在学校大题普遍做的多,考试也能拿到一些分数,但是选择填空老错,考完试下来一看,错就错在概念不清。
比如平行线是怎么定义,性质定理有几条,判定定理有几条?他们之间有什么联系和区别?在这一章中,哪些地方一定要加“同一平面内”这5个字?家长们可以让孩子找找看,捋一捋。
再比如说,三角形一章,涉及到三边关系,角的关系,以及三角形的重要线段和它们的性质,等腰等边三角形的性质,这些一定是期末选择题的备选项。
还有全等的几种证明方法,常见的辅助线做法这是几何证明题的思路。
2题型突破,对各章节常见的 热点 问题归纳练习。
我们的数学、物理这些理科都是要做题型的,而不仅仅是做题,一定要明白思路。
大多数孩子要考的题型和难度,学校每天的作业以及每周的考试卷,你都必须分析一下,对题型归类,你可以用不同的笔标记一下,比如第2题和第8题是一类题,是化简求值还是公式的变形应用?通过这样一遍的分析,孩子们都会发现,其实考来考去,就是那几种题型反复的出,反复的练。这是非常高效的学习方法。
3、熟悉套路、模型
平行线常见的模型:铅笔模型、猪蹄模型,比如我经常和大家说的,遇见拐点,就做平行线。
三角形倒角常见模型:8字型、飞镖型、折角型。
三角形全等模型:角平分线的性质模型,等腰直角三角形模型,三垂直模型,翻折(对称)。
学好这些模型相等于我们是拿着工具箱考试,效率很高,比起其他同学,省去了推导的过程,速度又快,又准确。当然前提要掌握好基础内容,不要本末倒置。
如果孩子们能把前面的步骤都做好了,基本知识点,题型都掌握了,计算也不会出错,那你们考试一定没有问题,除了有些学校本来要求考很难,比如压轴题,不在于做的多,而是在精练,你做完之后不断的复盘,用自己的语言说出思路来,找找看里面的逻辑关系。
4、坚持改错题
把整个学期的试卷装订在一起,每周花半天的时间,订正错题,不会的标记星号,问老师问同学,直到会了为止,下周继续改,看自己是否真的懂了,对于错题,就像骆驼吃草一样,不停地咀嚼,错题也需要孩子们不断反复的看思路,才能在考试的时候避免在同类型的题上反复错。
初一数学单元知识点归纳相关 文章 :
★ 初一数学上册知识点归纳
★ 初一数学第一单元知识点归纳
★ 初一上册数学知识点归纳整理
★ 初一数学上册知识点汇总归纳
★ 初一数学知识点小归纳
★ 初中七年级数学知识点归纳整理
★ 初一数学知识点梳理归纳
★ 初一数学的知识点归纳
★ 初一数学知识点归纳
★ 初一数学知识点归纳与学习方法
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();Ⅱ 七年级数学单元知识点
各个科目都有自己的 学习 方法 ,但其实都是万变不离其中的,基本离不开背、记,练,数学作为最烧脑的科目之一,也是一样的。下面是我给大家整理的一些 七年级数学 的知识点,希望对大家有所帮助。
初一下册数学知识点 总结
相交线
有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。
两条直线相交有4对邻补角。
有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。
两条直线相交,有2对对顶角。
对顶角相等。
两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的.垂线,它们的交点叫做垂足。
平行线及其判定
性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
平行线的性质
性质1两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。
性质2两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。
性质3两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。
平移
向左平移a个单位长度,可以得到对应点(x-a,y)
向上平移b个单位长度,可以得到对应点(x,y+b)
向下平移b个单位长度,可以得到对应点(x,y-b)
初一下册数学知识点
多项式除以单项式
一、单项式
1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式
1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数的项的次数,叫做这个多项式的次数。
三、整式
1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减
1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3、几个整式相加减的一般步骤:
(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤:
(1)代数式化简。
(2)代入计算
(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
七年级 数学学习方法 技巧
1、做好预习:
单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。
2、认真听课:
听课应包括听、思、记三个方面。听,听知识形成的来龙去脉,听重点和难点,听例题的解法和要求。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题。记,指课堂笔记——记方法,记疑点,记要求,记注意点。
3、认真解题:
课堂练习是最及时最直接的反馈,一定不能错过。不要急于完成作业,要先看看你的 笔记本 ,回顾学习内容,加深理解,强化记忆。
4、及时纠错:
课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。
5、学会总结:
冯老师说:“数学一环扣一环,知识间的联系非常紧密,阶段性总结,不仅能够起到复习巩固的作用,还能找到知识间的联系,做到了然于心,融会贯通。
6、学会管理:
管理好自己的笔记本,作业本,纠错本,还有做过的所有练习卷和测试卷。冯老师称,这可是大考复习时最有用的资料,千万不可疏忽。
七年级数学单元知识点相关 文章 :
★ 初一数学上册知识点归纳
★ 初一数学第一单元知识点归纳
★ 初中七年级数学知识点归纳整理
★ 初一上册数学第一单元知识点
★ 七年级数学知识点整理大全
★ 初一上册数学知识点归纳整理
★ 七年级数学上册知识点汇总
★ 七年级数学知识点归纳
★ 七年级上册数学知识点总结三篇
★ 七年级数学知识点整理
Ⅲ 初一第一单元数学知识总结归纳
对于初一的学生来说,数学是很重要的一门学科,我整理了数学第一单元的知识点。
正数和负数
1、以前学过的0以外的数前面加上负号“-”的书叫做负数。
2、以前学过的0以外的数叫做正数。
3、数0既不是正数也不是负数,0是正数与负数的分界。
4、在同一个问题中,分别用正数和负数表示的量具有相反的意义
有理数
正整数、0、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
数轴
1、规定了原点、正方向、单位长度的直线叫做数轴。
2、数轴的作用:所有的有理数都可以用数轴上的点来表达。
注意事项:(1)数轴的原点、正方向、单位长度三要素,缺一不可。
(2)同一根数轴,单位长度不能改变。
一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。
相反数
1、只有符号不同的两个数叫做互为相反数。
2、数轴上表示相反数的两个点关于原点对称。
3、在任意一个数前面添上“-”号,新的数就表示原数的相反数。
绝对值
1、一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
2、一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。
3、比较有理数的大小
(1)正数大于0,0大于负数,正数大于负数。
(2)两个负数,绝对值大的反而小。
有理数的运算
1、有理数的加法:
(1)有理数加法法则:
①同号两数相加,去相同的符号,并把绝对值相加;
②绝对值不相等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;
③互为相反数的两个数相加结果为0;
④一个数同0相加,仍得这个数。
(2)有理数加法的运算律:
加法的交换律:a+b+c=a+(b+c);
加法的结合律:(a+b)+c=a+(b+c)
用加法的运算路进行简便运算的基本思路是:先把互为相反数得数相加;把同分母的分数先相加;把相加得整数的数先相加。
2、有理数的减法:
(1)有理数减法法则:减去一个数等于加上这个数的相反数。
(2)有理数减法常见错误:顾此失彼,没有顾到结果的符号;仍用小学计算的习惯不把减法变加法;只改变运算符号,不改变减数的符号,没有把减数变成相反数。
(3)有理数加法混合运算步骤:先把减法变成加法,再按有理数加法法则进行运算。
3、有理数的乘法
(1)有理数乘法的法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
(2)有理数乘法的运算律:交换律:ab=ba;结合律:(ab)c=a(bc);交换律:a(b+c)=ab+ac
(3)倒数的定义:乘积是1的两个有理数互为倒数,即ab=1,那么a和b互为倒数;倒数也可以看成是把分子分母的位置颠倒过来。
4、有理数的除法
有理数除法法则:除以一个数,等于乘上这个数的倒数,0不能做除数。这个法则可以把除法转化为乘法;除法法则也可以看成是:两个数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数都等于0.5。
以上是我整理的数学的知识点,希望能帮到你。
Ⅳ 七年级上册数学知识点归纳
很多同学都需要及时整理自己学过的知识点,我整理了一些七年级的数学知识点,大家一起来看看吧。
七年级数学知识点
第一章:有理数的运算:本章节主要介绍概念性知识,通过图形或符号来区分数之间的关系。定义如下:
1、有理数的概念:正整数、0、负整数、正分数、负分数统称为有理数;数轴与原点:用一条直线上的点表示数,这条直线就叫做数轴,在这条直线上任取一个点表示0,这个点叫做原点,在原点的左边或原点下边的点到原点的距离用负数表示,在原点的右边或上边的数到原点的距离用正数表示,在数轴上与原点距离相反相等的两个点代表的两个数为相反数,在数轴上表示的点a到原点的距离叫这个数的绝对值。
2、有理数的加减法:同号的两个数相加,符号不变,绝对值相加;绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,并用较大的数的绝对值减较小的数的绝对值,互为相反数的两个数相加得0;一个有理数减去另一个有理数,相当于加这个数的相反数;
3、有理数的乘除法:同号两个数相乘,同号得正,异号得负,乘法的积为他们的绝对值相乘,除法为被除数乘以除数的倒数,除数不能为0;乘积是1的两个数互为倒数,0没有倒数;整数的乘法交换率和结合率同样适用于有理数;求n个相同因数的积的运算叫乘方,乘方的结果叫做幂,在a的n次方中a叫做底数,n叫做指数,写作a∧n;
4、有理数的混合运算:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
5、科学记数法:把一个大于10的数表示成a×10∧n的形式叫做科学计数法,其中a大于或等于1且小于10,n为正整数。
第二章:整式的加减:整式的加减即是合并同类项的计算;在一个式子中,所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项;把多项式中的同类项合并成一项叫做合并同类项,合并同类项后,所得项的系数是合并前各同类项的系数和,且字母连同他的指数不变;一般几个整数相加,如果有括号先去括号,然后在合并同类项,如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同,如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
第三章:一元一次方程:一个方程中,只含有一个未知数,且未知数的次数都是1,等号两边都是整数,这样的方程叫做一元一次方程;方程的两边同时加上或减去同一个数或式子结果仍相等,方程两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。
第四章:本章主要介绍立体图形及几何图形的认识;点、线、面、体的关系的认识;直线、射线、线段的认识;不同角的概念及大小的比较。
1、平面图形和立体图形:各部分都在同一个平面内的几何图形叫做平面图形;有些几何图形的各部分不在同一个平面上,它们被称为立体图形,如长方体、圆柱、圆锥等;有些立体图形是由一些平面图形围成的,将它们展开成平面图形,展开的平面图形就叫做这个立体图形的展开图;
2、点、线、面、体的认识:几何体叫做体,包围着体的叫做面,面和面相交的地方叫作线,线和线相交的地方叫做点,线由无数个点构成;
3、直线、射线、线段的认识:经过两个点由且只有一条直线,两点确定一条直线,两个点之间的连线,最短的叫做线段,线段的长度叫做这两点的距离,由线段向一端无限延长,叫射线;
4、角:如果两个角的和等于90°,那么这两个角互为余角;如果两个角的和等于180°,那么这两个角互为补角;从一个角的顶点出发。把这个角分成两个相等的角的射线叫做这个角的平分线,把这3个相等角的两条射线叫这个角的三分线。
七年级数学考点归纳
1.大于0的数叫做正数。
2.在正数前面加上负号“-”的数叫做负数。
3.整数和分数统称为有理数。
4.人们通常用一条直线上的点表示数,这条直线叫做数轴。
5.在直线上任取一个点表示数0,这个点叫做原点。
6.一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。
7.由绝对值的定义可知:
一个正数的绝对值是它本身;
一个负数的绝对值是它的相反数;
0的绝对值是0。
8.正数大于0,0大于负数,正数大于负数。
9.两个负数,绝对值大的反而小。
10.有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
11.有理数的加法中,两个数相加,交换交换加数的位置,和不变。
12.有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
13.有理数减法法则:减去一个数,等于加上这个数的相反数。
14.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。
15.有理数中仍然有:乘积是1的两个数互为倒数。
16.一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
17.三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
18.一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
19.有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
20.两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
21.求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
初一数学上册知识点
1、几个重要的代数式(m、n表示整数)。
(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;
(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;
(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;
(4)若b>0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2.
2、列代数式的几个注意事项:
(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;
(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;
(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;
(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;
(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;
(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.
3、有理数比大小:
(1)正数的绝对值越大,这个数越大;
(2)正数永远比0大,负数永远比0小;
(3)正数大于一切负数;
(4)两个负数比大小,绝对值大的反而小;
(5)数轴上的两个数,右边的数总比左边的数大;
(6)大数-小数>0,小数-大数<0.
以上就是一些七年级数学的知识点整理,希望对大家有所帮助。
Ⅳ 七年级数学上册知识点总结第一章
学习是一架保持平衡的.天平,一边是付出,一边是收获,少付出少收获,多付出多收获,不劳必定无获!要想取得理想的成绩,下面给大家分享一些关于 七年级数学 上册知识点 总结 第一章,希望对大家有所帮助。
第一章有理数
一.正数和负数
⒈正数和负数的概念
负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数
注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)
②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。
2.具有相反意义的量
若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:
零上8℃表示为:+8℃;零下8℃表示为:-8℃
支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数:
比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。
3.0表示的意义
⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;
⑵0是正数和负数的分界线,0既不是正数,也不是负数。
二.有理数
1.有理数的概念
⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)
⑵正分数和负分数统称为分数
⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2. (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;
(2)有理数的分类: ①按正、负分类:
②按有理数的意义来分:
总结:①正整数、0统称为非负整数(也叫自然数)
②负整数、0统称为非正整数
③正有理数、0统称为非负有理数
④负有理数、0统称为非正有理数
(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
(4)自然数? 0和正整数;a>0 ? a是正数;a<0 ? a是负数;
a≥0 ? a是正数或0 ? a是非负数;a≤ 0 ? a是负数或0 ? a是非正数.
三.数轴
⒈数轴的概念
规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
2.数轴上的点与有理数的关系
⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)
3.利用数轴表示两数大小
⑴在数轴上数的大小比较,右边的数总比左边的数大;
⑵正数都大于0,负数都小于0,正数大于负数;
⑶两个负数比较,距离原点远的数比距离原点近的数小。
4.数轴上特殊的最大(小)数
⑴最小的自然数是0,无最大的自然数;
⑵最小的正整数是1,无最大的正整数;
⑶最大的负整数是-1,无最小的负整数
5.a可以表示什么数
⑴a>0表示a是正数;反之,a是正数,则a>0;
⑵a<0表示a是负数;反之,a是负数,则a<0
⑶a=0表示a是0;反之,a是0,,则a=0
6.数轴上点的移动规律
根据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得到所需的点的位置。
四.相反数
⒈相反数
只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。
注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负;
⑶0的相反数是它本身;相反数为本身的数是0。
2.相反数的性质与判定
⑴任何数都有相反数,且只有一个;
⑵0的相反数是0;
⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0
3.相反数的几何意义
在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。0的相反数对应原点;原点表示0的相反数。
说明:在数轴上,表示互为相反数的两个点关于原点对称。
4.相反数的求法
⑴求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5);0的相反数还是0;
⑵求多个数的和或差的相反数是,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。化简得-5a-b);注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
⑶求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化简得5);)相反数的和为0 ? a+b=0 ? a、b互为相反数
5.相反数的表示 方法
⑴一般地,数a 的相反数是-a ,其中a是任意有理数,可以是正数、负数或0。
当a>0时,-a<0(正数的相反数是负数)
当a<0时,-a>0(负数的相反数是正数)
当a=0时,-a=0,(0的相反数是0)
6.多重符号的化简
多重符号的化简规律:“+”号的个数不影响化简的结果,可以直接省略;“-”号的个数决定最后化简结果;即:“-”的个数是奇数时,结果为负,“-”的个数是偶数时,结果为正。
五.绝对值
⒈绝对值的几何定义
一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。
2.绝对值的代数定义
⑴一个正数的绝对值是它本身; ⑵一个负数的绝对值是它的相反数; ⑶0的绝对值是0.
可用字母表示为:
①如果a>0,那么|a|=a; ②如果a<0,那么|a|=-a; ③如果a=0,那么|a|=0。
可归纳为①:a≥0,<═> |a|=a (非负数的绝对值等于本身;绝对值等于本身的数是非负数。)
②a≤0,<═> |a|=-a (非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。)
3.绝对值的性质
任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。所以,a取任何有理数,都有|a|≥0。即 (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;绝对值是0的数是0.即:a=0 <═> |a|=0;
⑵一个数的绝对值是非负数,绝对值最小的数是0.绝对值可表示为:或 ;即:|a|≥0;绝对值的问题经常分类讨论;
⑶任何数的绝对值都不小于原数。即:|a|≥a; ; ;
⑷绝对值是相同正数的数有两个,它们互为相反数。即:若|x|=a(a>0),则x=±a;
⑸互为相反数的两数的绝对值相等。即:|-a|=|a|或若a+b=0,则|a|=|b|;|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,
⑹绝对值相等的两数相等或互为相反数。即:|a|=|b|,则a=b或a=-b;
⑺若几个数的绝对值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。
(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)
4.有理数大小的比较
⑴利用数轴比较两个数的大小:数轴上的两个数相比较,左边的数总比右边的数小,或者右边的数总比左边的数大
⑵利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数大于负数。
(3)正数的绝对值越大,这个数越大;
(4)正数永远比0大,负数永远比0小;
(5)正数大于一切负数;
(6)大数-小数 > 0,小数-大数 < 0.
5.绝对值的化简
①当a≥0时, |a|=a ; ②当a≤0时, |a|=-a
6.已知一个数的绝对值,求这个数
一个数a的绝对值就是数轴上表示数a的点到原点的距离,一般地,绝对值为同一个正数的有理数有两个,它们互为相反数,绝对值为0的数是0,没有绝对值为负数的数。
六.有理数的加减法.
1.有理数的加法法则
⑴同号两数相加,取相同的符号,并把绝对值相加;
⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
⑶互为相反数的两数相加,和为零;
⑷一个数与0相加,仍得这个数。
2.有理数加法的运算律
⑴加法交换律:a+b=b+a
⑵加法结合律:(a+b)+c=a+(b+c)
在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:
①互为相反数的两个数先相加——“相反数结合法”;
②符号相同的两个数先相加——“同号结合法”;
③分母相同的数先相加——“同分母结合法”;
④几个数相加得到整数,先相加——“凑整法”;
⑤整数与整数、小数与小数相加——“同形结合法”。
3.加法性质
一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。即:
⑴当b>0时,a+b>a ⑵当b<0时,a+b
4.有理数减法法则
减去一个数,等于加上这个数的相反数。用字母表示为:a-b=a+(-b)。
5.有理数加减法统一成加法的意义
在有理数加减法混合运算中,根据有理数减法法则,可以将减法转化成加法后,再按照加法法则进行计算。
在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。如:
(-8)+(-7)+(-6)+(+5)=-8-7-6+5.
和式的读法:①按这个式子表示的意义读作“负8、负7、负6、正5的和”
②按运算意义读作“负8减7减6加5”
6.有理数加减混合运算中运用结合律时的一些技巧:
七.有理数的乘除法
1.有理数的乘法法则
法则一:两数相乘,同号得正,异号得负,并把绝对值相乘;(“同号得正,异号得负”专指“两数相乘”的情况,如果因数超过两个,就必须运用法则三)
法则二:任何数同0相乘,都得0;
法则三:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数;
法则四:几个数相乘,如果其中有因数为0,则积等于0.
2.倒数
乘积是1的两个数互为倒数,其中一个数叫做另一个数的倒数,用式子表示为a·=1(a≠0),就是说a和互为倒数,即a是的倒数,是a的倒数。
互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么的倒数是;倒数是本身的数是±1;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数.
注意:①0没有倒数;
②求假分数或真分数的倒数,只要把这个分数的分子、分母点颠倒位置即可;求带分数的倒数时,先把带分数化为假分数,再把分子、分母颠倒位置;
③正数的倒数是正数,负数的倒数是负数。(求一个数的倒数,不改变这个数的性质);
④倒数等于它本身的数是1或-1,不包括0。
3.有理数的乘法运算律
⑴乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。即ab=ba
⑵乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。即(ab)c=a(bc).
⑶乘法分配律:一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,在把积相加。即a(b+c)=ab+ac
4.有理数的除法法则
(1)除以一个不等0的数,等于乘以这个数的倒数;注意:零不能做除数,
(2)两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0
5.有理数的乘除混合运算
(1)乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。
(2)有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除,后加减’的顺序进行。
八.有理数的乘方
1.乘方的概念
求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在 中,a 叫做底数,n 叫做指数。
(1)a2是重要的非负数,即a2≥0;若a2+|b|=0 ? a=0,b=0;
(2)据规律 底数的小数点移动一位,平方数的小数点移动二位
2.乘方的性质
(1)负数的奇次幂是负数,负数的偶次幂的正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .
(2)正数的任何次幂都是正数,0的任何正整数次幂都是0。
九.有理数的混合运算
做有理数的混合运算时,应注意以下运算顺序:
1.先乘方,再乘除,最后加减;
2.同级运算,从左到右进行;
3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。
十.科学记数法
把一个大于10的数表示成 的形式(其中, n是正整数),这种记数法是科学记数法
近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.
有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.
混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.
特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.
等于本身的数汇总:
相反数等于本身的数:0
倒数等于本身的数:1,-1
绝对值等于本身的数:正数和0
平方等于本身的数:0,1
立方等于本身的数:0,1,-1.
七年级数学上册知识点总结第一章相关 文章 :
★ 高一数学必修三第一章复习题
★ 高一数学必修1第一章测试题含答案
★ 7年级下册生物思维导图
★ 八年级上册数学手抄报内容
Ⅵ 鍒濅竴鏁板
銆銆鍒濅竴鏄镓扑笅鐭ヨ瘑锘虹镄勫ソ镞舵満锛屼负浜嗗府锷╁悓瀛︿滑镟村ソ镓扑笅鐗㈠浐镄勫︿範锘虹銆备笅闱㈡槸鐢辨垜涓哄ぇ瀹舵暣鐞嗙殑钬滃埯涓鏁板︾煡璇嗙偣褰掔撼镐荤粨钬濓纴浠呬緵鍙傝冿纴娆㈣繋澶у堕槄璇汇 銆銆 鍒濅竴鏁板︾煡璇嗙偣褰掔撼镐荤粨 銆銆 鍒濅竴鏁板︾煡璇嗙偣镐荤粨1-3绔 銆銆绗涓绔 链夌悊鏁 銆銆1.1 姝f暟涓庤礋鏁 銆銆鍦ㄤ互鍓嶅﹁繃镄0浠ュ栫殑鏁板墠闱㈠姞涓婅礋鍙封溾斺濈殑鏁板彨璐熸暟(negative number)銆 銆銆涓庤礋鏁板叿链夌浉鍙嶆剰涔夛纴鍗充互鍓嶅﹁繃镄0浠ュ栫殑鏁板彨锅氭f暟(positive number)(镙规嵁闇瑕侊纴链夋椂鍦ㄦf暟鍓嶉溃涔熷姞涓娾+钬)銆 銆銆1.2 链夌悊鏁 銆銆姝f暣鏁般0銆佽礋鏁存暟缁熺О鏁存暟(integer)锛屾e垎鏁板拰璐熷垎鏁扮粺绉板垎鏁(fraction)銆 銆銆鏁存暟鍜屽垎鏁扮粺绉版湁鐞嗘暟(rational number)銆 銆銆阃氩父鐢ㄤ竴𨱒$洿绾夸笂镄勭偣琛ㄧず鏁帮纴杩欐浔鐩寸嚎鍙鏁拌酱(number axis)銆 銆銆鏁拌酱涓夎佺礌锛氩师镣广佹f柟钖戙佸崟浣嶉暱搴︺ 銆銆鍦ㄧ洿绾夸笂浠诲彇涓涓镣硅〃绀烘暟0锛岃繖涓镣瑰彨锅氩师镣(origin)銆 銆銆鍙链夌﹀彿涓嶅悓镄勪袱涓鏁板彨锅氢簰涓虹浉鍙嶆暟(opposite number)銆(渚嬶细2镄勭浉鍙嶆暟鏄-2;0镄勭浉鍙嶆暟鏄0) 銆銆鏁拌酱涓婅〃绀烘暟a镄勭偣涓庡师镣圭殑璺濈诲彨锅氭暟a镄勭粷瀵瑰(absolute value),璁颁綔|a|銆 銆銆涓涓姝f暟镄勭粷瀵瑰兼槸瀹冩湰韬;涓涓璐熸暟镄勭粷瀵瑰兼槸瀹幂殑鐩稿弽鏁;0镄勭粷瀵瑰兼槸0銆备袱涓璐熸暟锛岀粷瀵瑰煎ぇ镄勫弽钥屽皬銆 銆銆1.3 链夌悊鏁扮殑锷犲噺娉 銆銆链夌悊鏁板姞娉曟硶鍒欙细 銆銆1.钖屽彿涓ゆ暟鐩稿姞锛屽彇鐩稿悓镄勭﹀彿锛屽苟鎶婄粷瀵瑰肩浉锷犮 銆銆2.缁濆瑰间笉鐩哥瓑镄勫纾鍙蜂袱鏁扮浉锷狅纴鍙栫粷瀵瑰艰缉澶х殑锷犳暟镄勭﹀彿锛屽苟鐢ㄨ缉澶х殑缁濆瑰煎噺铡昏缉灏忕殑缁濆瑰笺备簰涓虹浉鍙嶆暟镄勪袱涓鏁扮浉锷犲缑0銆 銆銆3.涓涓鏁板悓0鐩稿姞锛屼粛寰楄繖涓鏁般 銆銆链夌悊鏁板噺娉曟硶鍒欙细鍑忓幓涓涓鏁帮纴绛変簬锷犺繖涓鏁扮殑鐩稿弽鏁般 銆銆1.4 链夌悊鏁扮殑涔橀櫎娉 銆銆链夌悊鏁颁箻娉曟硶鍒欙细涓ゆ暟鐩镐箻锛屽悓鍙峰缑姝o纴寮傚彿寰楄礋锛屽苟鎶婄粷瀵瑰肩浉涔樸备换浣曟暟钖0鐩镐箻锛岄兘寰0銆 銆銆涔樼Н鏄1镄勪袱涓鏁颁簰涓哄掓暟銆 銆銆链夌悊鏁伴櫎娉曟硶鍒欙细闄や互涓涓涓岖瓑浜0镄勬暟锛岀瓑浜庝箻杩欎釜鏁扮殑鍊掓暟銆 銆銆涓ゆ暟鐩搁櫎锛屽悓鍙峰缑姝o纴寮傚彿寰楄礋锛屽苟鎶婄粷瀵瑰肩浉闄ゃ0闄や互浠讳綍涓涓涓岖瓑浜0镄勬暟锛岄兘寰0銆 m矛 銆銆姹俷涓鐩稿悓锲犳暟镄勭Н镄勮繍绠楋纴鍙涔樻柟锛屼箻鏂圭殑缁撴灉鍙骞(power)銆傚湪a镄刵娆℃柟涓锛宎鍙锅氩簳鏁(base number)锛宯鍙锅氭寚鏁(exponent)銆 銆銆璐熸暟镄勫囨″箓鏄璐熸暟锛岃礋鏁扮殑锅舵″箓鏄姝f暟銆傛f暟镄勪换浣曟″箓閮芥槸姝f暟锛0镄勪换浣曟″箓閮芥槸0銆 銆銆鎶娄竴涓澶т簬10镄勬暟琛ㄧず鎴恒脳10镄刵娆℃柟镄勫舰寮忥纴鐢ㄧ殑灏辨槸绉戝﹁℃暟娉曘 銆銆浠庝竴涓鏁扮殑宸﹁竟绗涓涓闱0鏁板瓧璧凤纴鍒版汤浣嶆暟瀛楁锛屾墍链夋暟瀛楅兘鏄杩欎釜鏁扮殑链夋晥鏁板瓧(significant digit)銆 銆銆绗浜岀珷 涓鍏冧竴娆℃柟绋 銆銆2.1 浠庣畻寮忓埌鏂圭▼ 銆銆鏂圭▼鏄钖链夋湭鐭ユ暟镄勭瓑寮忋 銆銆鏂圭▼閮藉彧钖链変竴涓链鐭ユ暟(鍏)x锛屾湭鐭ユ暟x镄勬寚鏁伴兘鏄1(娆)锛岃繖镙风殑鏂圭▼鍙锅氢竴鍏冧竴娆℃柟绋(linear equation with one unknown)銆 銆銆瑙f柟绋嫔氨鏄姹傚嚭浣挎柟绋嬩腑绛夊彿宸﹀彸涓よ竟鐩哥瓑镄勬湭鐭ユ暟镄勫硷纴杩欎釜鍊煎氨鏄鏂圭▼镄勮В(solution)銆 銆銆绛夊纺镄勬ц川锛 銆銆1.绛夊纺涓よ竟锷(鎴栧噺)钖屼竴涓鏁(鎴栧纺瀛)锛岀粨鏋滀粛鐩哥瓑銆 銆銆2.绛夊纺涓よ竟涔桦悓涓涓鏁帮纴鎴栭櫎浠ュ悓涓涓涓崭负0镄勬暟锛岀粨鏋滀粛鐩哥瓑銆 銆銆2.2 浠庡彜钥佺殑浠f暟涔﹁磋捣钬斺斾竴鍏冧竴娆℃柟绋嬬殑璁ㄨ(1) 銆銆鎶婄瓑寮忎竴杈圭殑镆愰”鍙桦彿钖庣Щ鍒板彟涓杈癸纴鍙锅氱Щ椤广 銆銆绗涓夌珷 锲惧舰璁よ瘑鍒濇 銆銆3.1 澶氩Э澶氩僵镄勫浘褰 銆銆鍑犱綍浣扑篃绠绉颁綋(solid)銆傚寘锲寸潃浣撶殑鏄闱(surface)銆 銆銆3.2 鐩寸嚎銆佸皠绾裤佺嚎娈 銆銆绾挎靛叕鐞嗭细涓ょ偣镄勬墍链夎繛绾夸腑锛岀嚎娈靛仛鐭(涓ょ偣涔嬮棿锛岀嚎娈垫渶鐭)銆 銆銆杩炴帴涓ょ偣闂寸殑绾挎电殑闀垮害锛屽彨锅氲繖涓ょ偣镄勮窛绂汇 銆銆3.3 瑙掔殑搴﹂噺 銆銆1搴=60鍒 1鍒=60绉 1锻ㄨ=360搴 1骞宠=180搴 銆銆3.4 瑙掔殑姣旇缉涓庤繍绠 銆銆濡傛灉涓や釜瑙掔殑鍜岀瓑浜90搴(鐩磋)锛屽氨璇磋繖涓や釜鍙浜掍负浣栾(compiementary angle)锛屽嵆鍏朵腑姣忎竴涓瑙掓槸鍙︿竴涓瑙掔殑浣栾掋 銆銆濡傛灉涓や釜瑙掔殑鍜岀瓑浜180搴(骞宠)锛屽氨璇磋繖涓や釜鍙浜掍负琛ヨ(supplementary angle)锛屽嵆鍏朵腑姣忎竴涓瑙掓槸鍙︿竴涓瑙掔殑琛ヨ掋 銆銆绛夎(钖岃)镄勮ˉ瑙掔浉绛夈 銆銆绛夎(钖岃)镄勪綑瑙掔浉绛夈 銆銆 鍒濅竴鏁板︾煡璇嗙偣镐荤粨4-6绔 銆銆绗锲涚珷 鏁版嵁镄勬敹闆嗕笌鏁寸悊 銆銆鏀堕泦銆佹暣鐞嗐佹弿杩板拰鍒嗘瀽鏁版嵁鏄鏁版嵁澶勭悊镄勫熀链杩囩▼銆 銆銆绗浜旂珷 鐩镐氦绾夸笌骞宠岀嚎 銆銆5.1 鐩镐氦绾 銆銆瀵归《瑙(vertical angles)鐩哥瓑銆 銆銆杩囦竴镣规湁涓斿彧链変竴𨱒$洿绾夸笌宸茬煡鐩寸嚎鍨傜洿(perpendicular)銆 銆銆杩炴帴鐩寸嚎澶栦竴镣逛笌鐩寸嚎涓婂悇镣圭殑镓链夌嚎娈典腑锛屽瀭绾挎垫渶鐭(绠鍗曡存垚锛氩瀭绾挎垫渶鐭)銆 銆銆5.2 骞宠岀嚎 銆銆缁忚繃鐩寸嚎澶栦竴镣癸纴链変笖鍙链変竴𨱒$洿绾夸笌杩欐浔鐩寸嚎骞宠(parallel)銆 銆銆濡傛灉涓ゆ浔鐩寸嚎閮戒笌绗涓夋浔鐩寸嚎骞宠岋纴闾d箞杩欎袱𨱒$洿绾夸篃浜掔浉骞宠屻 銆銆鐩寸嚎骞宠岀殑𨱒′欢锛 銆銆涓ゆ浔鐩寸嚎琚绗涓夋浔鐩寸嚎镓鎴锛屽傛灉钖屼綅瑙掔浉绛夛纴闾d箞涓ょ洿绾垮钩琛屻 銆銆涓ゆ浔鐩寸嚎琚绗涓夋浔鐩寸嚎镓鎴锛屽傛灉鍐呴敊瑙掔浉绛夛纴闾d箞涓ょ洿绾垮钩琛屻 銆銆涓ゆ浔鐩寸嚎琚绗涓夋浔鐩寸嚎镓鎴锛屽傛灉钖屾梺鍐呰掍簰琛ワ纴闾d箞涓ょ洿绾垮钩琛屻 銆銆5.3 骞宠岀嚎镄勬ц川 銆銆涓ゆ浔骞宠岀嚎琚绗涓夋浔鐩寸嚎镓鎴锛屽悓浣嶈掔浉绛夈 銆銆涓ゆ浔骞宠岀嚎琚绗涓夋浔鐩寸嚎镓鎴锛屽唴阌栾掔浉绛夈 銆銆涓ゆ浔骞宠岀嚎琚绗涓夋浔鐩寸嚎镓鎴锛屽悓镞佸唴瑙掍簰琛ャ 銆銆鍒ゆ柇涓浠朵簨𨱍呯殑璇鍙ワ纴鍙锅氩懡棰(proposition)銆 銆銆绗鍏绔 骞抽溃鐩磋掑潗镙囩郴 銆銆6.1 骞抽溃鐩磋掑潗镙囩郴 銆銆钖链変袱涓鏁扮殑璇嶆潵琛ㄧず涓涓纭瀹氱殑浣岖疆锛屽叾涓涓や釜鏁板悇镊琛ㄧず涓嶅悓镄勫惈涔夛纴鎴戜滑鎶婅繖绉嶆湁椤哄簭镄勪袱涓鏁瘾鍜宐缁勬垚镄勬暟瀵癸纴鍙锅氭湁搴忔暟瀵(ordered pair)銆 銆 銆鍒濅竴鏁板︾煡璇嗙偣镐荤粨7-10绔 銆銆绗涓幂珷 涓夎掑舰 銆銆7.1 涓庝笁瑙掑舰链夊叧镄勭嚎娈 銆銆涓夎掑舰(triangle)鍏锋湁绋冲畾镐с 銆銆7.2 涓庝笁瑙掑舰链夊叧镄勮 銆銆涓夎掑舰镄勫唴瑙掑拰绛変簬180搴︺ 銆銆涓夎掑舰镄勪竴涓澶栬掔瓑浜庝笌瀹冧笉鐩搁偦镄勪袱涓鍐呰掔殑鍜屻 銆銆涓夎掑舰镄勪竴涓澶栬掑ぇ浜庝笌瀹冧笉鐩搁偦镄勪换浣曚竴涓鍐呰 銆銆7.3 澶氲竟褰㈠强鍏跺唴瑙掑拰 銆銆n杈瑰舰鍐呰掑拰绛変簬锛(n-2)?180搴 銆銆澶氲竟褰(polygon)镄勫栬掑拰绛変簬360搴︺ 銆銆绗鍏绔 浜屽厓涓娆℃柟绋嬬粍 銆銆8.1 浜屽厓涓娆℃柟绋嬬粍 銆銆鏂圭▼涓钖链変袱涓链鐭ユ暟(x鍜寉)锛屽苟涓旀湭鐭ユ暟镄勬寚鏁伴兘鏄1锛屽儚杩欐牱镄勬柟绋嫔彨锅氢簩鍏冧竴娆℃柟绋(linear equations of two unknowns) 銆 銆銆鎶娄袱涓浜屽厓涓娆℃柟绋嫔悎鍦ㄤ竴璧凤纴灏辩粍鎴愪简涓涓浜屽厓涓娆℃柟绋嬬粍(system of linear equations of two unknowns)銆 銆銆浣夸簩鍏冧竴娆℃柟绋嬩袱杈圭殑鍊肩浉绛夌殑涓や釜链鐭ユ暟镄勫硷纴鍙锅氢簩鍏冧竴娆℃柟绋嬬殑瑙c 銆銆浜屽厓涓娆℃柟绋嬬粍镄勪袱涓鏂圭▼镄勫叕鍏辫В锛屽彨锅氢簩鍏冧竴娆℃柟绋嬬粍镄勮В銆 銆銆8.2 娑埚厓 銆銆灏嗘湭鐭ユ暟镄勪釜鏁扮敱澶氩寲灏戙侀愪竴瑙e喅镄勬兂娉曪纴鍙锅氭秷鍏冩濇兂銆 銆銆绗涔濈珷 涓岖瓑寮忎笌涓岖瓑寮忕粍 銆銆9.1 涓岖瓑寮 銆銆鐢ㄥ皬浜庡彿鎴栧ぇ浜庡彿琛ㄧず澶у皬鍏崇郴镄勫纺瀛愶纴鍙锅氢笉绛夊纺(inequality)銆 銆銆浣夸笉绛夊纺鎴愮珛镄勬湭鐭ユ暟镄勫煎彨锅氢笉绛夊纺镄勮В銆 銆銆鑳戒娇涓岖瓑寮忔垚绔嬬殑x镄勫彇鍊艰寖锲达纴鍙锅氢笉绛夊纺镄勮В镄勯泦钖堬纴绠绉拌В闆(solution set)銆 銆銆钖链変竴涓链鐭ユ暟锛屾湭鐭ユ暟镄勬℃暟鏄1镄勪笉绛夊纺锛屽彨锅氢竴鍏冧竴娆′笉绛夊纺(linear inequality of one unknown)銆 銆銆涓岖瓑寮忕殑镐ц川锛 銆銆涓岖瓑寮忎袱杈瑰姞(鎴栧噺)钖屼竴涓鏁(鎴栧纺瀛)锛屼笉绛夊彿镄勬柟钖戜笉鍙樸 銆銆涓岖瓑寮忎袱杈逛箻(鎴栭櫎浠)钖屼竴涓姝f暟锛屼笉绛夊彿镄勬柟钖戜笉鍙樸 銆銆涓岖瓑寮忎袱杈逛箻(鎴栭櫎浠)钖屼竴涓璐熸暟锛屼笉绛夊彿镄勬柟钖戞敼鍙樸 銆銆涓夎掑舰涓浠绘剰涓よ竟涔嫔樊灏忎簬绗涓夎竟銆 銆銆涓夎掑舰涓浠绘剰涓よ竟涔嫔拰澶т簬绗涓夎竟銆 銆銆9.3 涓鍏冧竴娆′笉绛夊纺缁 銆銆鎶娄袱涓涓鍏冧竴娆′笉绛夊纺钖埚湪璧锋潵锛屽氨缁勬垚浜嗕竴涓涓鍏冧竴娆′笉绛夊纺缁(linear inequalities of one unknown)銆 銆銆绗鍗佺珷 瀹炴暟 銆銆10.1 骞虫柟镙 銆銆濡傛灉涓涓姝f暟x镄勫钩鏂圭瓑浜巃锛岄偅涔堣繖涓姝f暟x鍙锅歛镄勭畻链骞虫柟镙(arithmetic square root)锛2鏄镙规寚鏁般 銆銆a镄勭畻链骞虫柟镙硅讳綔钬沧牴鍙穉钬濓纴a鍙锅氲寮鏂规暟(radicand)銆 銆銆0镄勭畻链骞虫柟镙规槸0銆 銆銆濡傛灉涓涓鏁扮殑骞虫柟绛変簬a锛岄偅涔堣繖涓鏁板彨锅歛镄勫钩鏂规牴鎴栦簩娆℃柟镙(square root) 銆 銆銆姹备竴涓鏁瘾镄勫钩鏂规牴镄勮繍绠楋纴鍙锅氩紑骞虫柟(extraction of square root)銆 銆銆10.2 绔嬫柟镙 銆銆濡傛灉涓涓鏁扮殑绔嬫柟绛変簬a,闾d箞杩欎釜鏁板彨锅歛镄勭珛鏂规牴鎴栦笁娆℃柟镙(cube root)銆 銆銆姹备竴涓鏁扮殑绔嬫柟镙圭殑杩愮畻锛屽彨锅氩紑绔嬫柟(extraction of cube root)銆 銆銆10.3 瀹炴暟 銆銆镞犻檺涓嶅惊鐜灏忔暟鍙埚彨锅氭棤鐞嗘暟(irrational number)銆 銆銆链夌悊鏁板拰镞犵悊鏁扮粺绉板疄鏁(real number)銆 銆銆 𨰾揿𪾢阒呰伙细镐庢牱镓揿ソ鍒濅竴鏁板﹀熀纭? 銆銆 涓銆佺粏蹇冨彂鎺樻傚康鍜屽叕寮 銆銆寰埚氩悓瀛﹀规傚康鍜屽叕寮忎笉澶熼吨瑙嗭纴瀵规傚康镄勭悊瑙e彧鏄锅灭暀鍦ㄦ枃瀛楄〃闱銆备緥濡傦纴鍦ㄤ唬鏁板纺镄勬傚康涓锛屽緢澶氩悓瀛﹀拷鐣ヤ简钬滃崟涓瀛楁瘝鎴栨暟瀛椾篃鏄浠f暟寮忊;骞朵笖瀵规傚康鍜屽叕寮忎竴锻崇殑姝昏扮‖鑳岋纴缂轰箯涓庡疄闄呴樼洰镄勮仈绯汇傝佸笀镄勫缓璁鏄锛氭洿缁嗗绩涓镣(瑙傚疗鐗逛緥)锛屾洿娣卞叆涓镣(浜呜В瀹冨湪棰樼洰涓镄勫父瑙佽幂偣)锛屾洿镡熺粌涓镣(镞犺哄畠浠ヤ粈涔堥溃鐩鍑虹幇锛屾垜浠閮借兘澶熷簲鐢ㄨ嚜濡)銆 銆銆 浜屻佹荤粨鐩镐技绫诲瀷棰樼洰 銆銆褰扑綘浼氭荤粨棰樼洰锛屽规墍锅氱殑棰樼洰浼氩垎绫伙纴鐭ラ亾镊宸辫兘澶熻В鍐冲摢浜涢桦瀷锛屾帉鎻′简鍝浜涘父瑙佺殑瑙i樻柟娉曪纴杩樻湁鍝浜涚被鍨嬮树笉浼氩仛镞讹纴浣犳墠鐪熸g殑鎺屾彙浜呜繖闂ㄥ︾戠殑绐嶉棬锛屾墠鑳界湡姝g殑锅氩埌钬滀换瀹冨崈鍙树竾鍖栵纴鎴戣嚜宀跨劧涓嶅姩钬濄傝繖涓闂棰桦傛灉瑙e喅涓嶅ソ锛屽湪杩涘叆鍒濅簩銆佸埯涓変互钖庯纴钖屽︿滑浼氩彂鐜帮纴链変竴閮ㄥ垎钖屽﹀ぉ澶╁仛棰桡纴鍙鎴愮哗涓嶅崌鍙嶉檷銆傝佸笀镄勫缓璁鏄锛气沧荤粨褰掔撼钬濇槸灏嗛樼洰瓒婂仛瓒婂皯镄勬渶濂藉姙娉曘 銆 銆涓夈佹敹闆呜嚜宸辩殑鍏稿瀷阌栾鍜屼笉浼氱殑棰樼洰 銆銆钖屽︿滑链闅鹃溃瀵圭殑锛屽氨鏄镊宸辩殑阌栾鍜屽汹闅俱备絾杩欐伆鎭板张鏄链闇瑕佽В鍐崇殑闂棰樸傚悓瀛︿滑锅氶樼洰锛屾湁涓や釜閲嶈佺殑鐩镄勶细涓鏄锛屽皢镓瀛︾殑鐭ヨ瘑镣瑰拰鎶宸э纴鍦ㄥ疄闄呯殑棰樼洰涓婕旂粌銆傚彟澶栦竴涓灏辨槸锛屾垒鍑鸿嚜宸辩殑涓嶈冻锛岀劧钖庡讥琛ュ畠銆傝佸笀镄勫缓璁鏄锛氩仛棰桦氨镀忔寲閲戠熆锛屾疮涓阆挞敊棰橀兘鏄涓鍧楅噾鐭匡纴鍙链夊彂鎺樸佸喍镣硷纴镓崭细链夋敹銮枫 銆 銆锲涖佸氨涓嶆哕镄勯梾棰桡纴绉鏋佹彁闂銆佽ㄨ 銆銆鍙戠幇浜嗕笉镍傜殑闂棰桡纴绉鏋佸悜浠栦汉璇锋暀銆傝繖鏄寰埚钩甯哥殑阆撶悊銆备絾灏辨槸杩欎竴镣癸纴寰埚氩悓瀛﹂兘锅氢笉鍒般傚师锲犲彲鑳芥湁涓や釜鏂归溃锛氢竴鏄锛屽硅ラ梾棰樼殑閲嶈嗕笉澶燂纴涓嶆眰鐢氲В;浜屾槸锛屼笉濂芥剰镐濓纴镐曢梾钥佸笀琚璁锛岄梾钖屽﹁钖屽︾灖涓嶈捣銆傝佸笀镄勫缓璁鏄锛气滃嫟瀛︹濇槸锘虹锛屸滃ソ闂钬濇槸鍏抽敭銆 銆 銆浜斻佹敞閲嶅疄鎴(钥冭瘯)缁忛獙镄勫煿鍏 銆銆钥冭瘯链韬灏辨槸涓闂ㄥ﹂梾銆傛湁浜涘悓瀛﹀钩镞舵垚缁╁緢濂斤纴涓婅捐佸笀涓鎻愰梾锛屼粈涔堥兘浼氥傝句笅锅氶树篃閮戒细銆傚彲涓鍒拌冭瘯锛屾垚缁╁氨涓岖悊𨱍炽傚嚭鐜拌繖绉嶆儏鍐碉纴链変袱涓涓昏佸师锲狅细涓鏄锛岃冭瘯蹇冩佷笉涓嶅ソ锛屽规槗绱у紶;浜屾槸锛岃冭瘯镞堕棿绱э纴镐绘槸涓嶈兘鍦ㄨ勫畾镄勬椂闂村唴瀹屾垚銆傝佸笀镄勫缓璁鏄锛氭妸钬滃仛浣滀笟钬濆綋鎴愯冭瘯锛屾妸钬滆冭瘯钬濆綋鎴愬仛浣滀笟銆
Ⅶ 七年级数学上册、下册重要知识点总结
初一数学上册主要包括四个章节的内容;下册主要包括相六章内容。为帮助大家更好地掌握 七年级数学 每个章节的重要内容,我整理了一些知识点以供学习复习参考!
七年级数学上册知识点:第一章 有理数一、知识框架
二.知识概念
1.有理数:
(1)凡能写成 形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;
(2)有理数的分类: ① ②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)相反数的和为0 ? a+b=0 ? a、b互为相反数.
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2) 绝对值可表示为: 或 ;绝对值的问题经常分类讨论;
5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.
6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么 的倒数是 ;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数.
7. 有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
8.有理数加法的运算律:
(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).
9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).
10 有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.
11 有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .
12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, .
13.有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .
14.乘方的定义:
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.
16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.
17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.
18.混合运算法则:先乘方,后乘除,最后加减.
本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。重点利用有理数的运算法则解决实际问题.
体验数学发展的一个重要原因是生活实际的需要.激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。
七年级数学上册知识点:第二章 整式的加减一.知识框架二.知识概念
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.
2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.
3.多项式:几个单项式的和叫多项式.
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
通过本章学习,应使学生达到以下学习目标:
1. 理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。
2. 理解同类项概念,掌握合并同类项的 方法 ,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。在准确判断、正确合并同类项的基础上,进行整式的加减运算。
3. 理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。
4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。
在本章学习中,教师可以通过让学生小组讨论、合作学习等方式,经历概念的形成过程,初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
七年级数学上册知识点:第三章 一元一次方程本章内容是代数学的核心,也是所有代数方程的基础。丰富多彩的问题情境和解决问题的快乐很容易激起学生对数学的乐趣,所以要注意引导学生从身边的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力,体会数学思想方法。
一.知识框架
二.知识概念
1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.
2.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0).
3.一元一次方程解法的一般步骤: 整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… (检验方程的解).
4.列一元一次方程解应用题:
(1)读题分析法:………… 多用于“和,差,倍,分问题”
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.
(2)画图分析法: ………… 多用于“行程问题”
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.
11.列方程解应用题的常用公式:
(1)行程问题: 距离=速度·时间 ;
(2)工程问题: 工作量=工效·工时 ;
(3)比率问题: 部分=全体·比率 ;
(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;
(5)商品价格问题: 售价=定价·折· ,利润=售价-成本, ;
(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab, C正方形=4a,
S正方形=a2,S环形=π(R2-r2),V长方体=abc ,V正方体=a3,V圆柱=πR2h ,V圆锥= πR2h.
七年级数学上册知识点:第四章 图形的认识初步一、知识框架
本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形.通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系.在此基础上,认识一些简单的平面图形——直线、射线、线段和角.
二、本章书涉及的数学思想:
1.分类讨论思想。在过平面上若干个点画直线时,应注意对这些点分情况讨论;在画图形时,应注意图形的各种可能性。
2.方程思想。在处理有关角的大小,线段大小的计算时,常需要通过列方程来解决。
3.图形变换思想。在研究角的概念时,要充分体会对射线旋转的认识。在处理图形时应注意转化思想的应用,如立体图形与平面图形的互相转化。
4.化归思想。在进行直线、线段、角以及相关图形的计数时,总要划归到公式n(n-1)/2的具体运用上来。
>>>下一页更多精彩“七年级数学下册知识点”
Ⅷ 七年级上册数学第三单元归纳知识点
七年级数学(上)第三单元测试卷
(时间90分钟满分100分)
班级学号 姓名得分
一、填空题(每题2分,共32分)
1.在① ;② ;③ ;④ 中,等式有_______,方程有_______.(填入式子的序号)
2.如果 ,那么a=,其根据是.
3.方程 的解是 _______.
4.当x=时,代数式 的值是 .
5.已知等式 是关于x的一元一次方程,则m=____________.
6.当x=时,代数式 与代数式 的值相等.
7.根据“ 的 倍与 的和比 的 小 ”,可列方程为______ _.
8.若 与 有相同的解,那么 _______.
9.关于方程 的解为___________________________.
10.若关于x的方程 的解是 ,则代数式 的值是_________.
11.代数式 与 互为相反数,则 .
12.已知三个连续奇数的和是 ,则中间的那个数是_______.
13.某工厂引进了一批设备,使今年单位成品的成本较去年降低了 .已知今年单位成品的成本为 元,则去年单位成品的成本为_______元.
14.小李在解方程 (x为未知数)时,误将 看作 ,解得方程的解 ,则原方程的解为___________________________.
15.假定每人的工作效率都相同,如果 个人 天做 个玩具熊,那么 个人做 个玩具熊需要______天.
16.轮船沿江从A港顺 流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/小时,水速为2千米/时,则A港和B港相距______千米.
二、解答 题(共68分)
17.解下列方程(每题2分, 共8分)
(1) ;
Com]
(2)
(3)
(4)
18.(6分)老师在黑板上出了一道解方程的题 ,小明马上举手,要求到黑板上做,他是这样做的:
…………………①
………………………②
………………………③
…………………………………④
…………………………………⑤
老师说:小明解一元一次方程的一般步骤都知道却没有掌握好,因此解题时有一步出现了错误,请你指出他错在_________(填编号);
然后,你自己细心地解下面的方程:
(1) (2)
19.(3分)如果方程 的解是 , 求 的值.
20. (3分)已知等式 是关于 的一元一次方程(即 未知),求这个方程的解.
21.(4分)初一学生王马虎同学在做作业时,不慎将墨水瓶打翻,使一道作业只能看到:甲、乙两地相距160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,_________________________________?请你将这道作业题补充完整并列出方程解答.
22.( 4分)某人共收集邮票若干张,其中 是2000年以前的国内外发行的邮票, 是2001年国内发行的, 是2002年国内发行的,此外尚有不足100张的国外邮票.求该人共有多少张邮票.
23.(4分)某商场在元旦期间,开展商品促销活动.将某型号的电视机按进价提高 后,打 折另送 元路费的方式销售,结果每台电视机仍获利 元,问每台电视机的进价是多少元?
24.(6分)某文艺团体为“希望工程”募捐组织了一场义演,共售出1000张票,筹出票款6920元,且每张成人票8元,学生票5元.
(1)问成人票与学生票各售出多少张?
(2)若票价不变,仍售出1000张票,所得的票款可能是7290元吗?为什么?
25.(6分)你坐过出租车吗?请你帮小明算一算.杭州市出租车收费标准是:起步价( 千米以内) 元,超过 千米的部分每千米 元,小明乘坐了 千米的路程.
(1)请写出他应该去付费用的表达式;
(2)若他支付的费用是 元,你能算出他乘坐的路程吗?
26.(6分)公园门票价格规定如下表:
购票张数 1~50张 51~100张 100张以上
每张票的价格 13元 11元 9元
某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足5 0人.]
经估算,如果两个班都以班为单位购票,则一共应付1240元,问:
(1)两班各有多少学生?
(2)如果两班联合起来,作为一个团体购票,可省多少钱?
(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?
27.(9分)有一些相同的房间需要粉刷,一天3名师傅去粉刷8个房间,结果其中有40m2墙面未来得及刷;同样的时间内5名徒弟粉刷了9个房间的墙面.每名师傅比徒弟一天多刷30m2的墙面.
(1)求每个房间需要粉刷的墙面面积;
(2)张老板现有36个这样 的房间需要粉刷,若请1名师傅带2名徒弟去,需要几天完成?
(3)已知每名师傅,徒弟每天的工资分别是85元,65元,张老板要求在3天内完成,问如何在这8个人中雇用人员,才合算呢?
28.(9分)某原料供应商对购买其原料的顾客实行如下优惠办法:
(1)一次购买金额不超过1万元,不予优惠;
(2)一次购买金额超过1万元,但不超过3万元,全部9折优 惠;
(3)一次购买的超过3万元,其中3万元9折优惠,超过3万元的部分8折优惠.
某人因库容原因,第一次在供应商处购买原料付7800元,第二次购买付款26100元,如果他是一次购买同样数量的原料,则应付款多少元?可少付款多少元?
七年级数学(上)一元一次方程测试
一、填空题
1.②③④,②④2.,等号两边同时加3,等式仍然成立3.4.25.6.7.8.9.或10.11.12.1713.9.614.15.16.21
二、解 答题
17.(1);(2);(3);(4)18.①,(1);(2)19.720.21.略22.152张23.1200元24.(1)成人票640张,学生票360张;(2)不可能25.(1);(2)13千米26:(1):初一(1)班48人,初一(2)班56人;(2):304元;(3):多买3张27.(1)50平方米;(2)5天;(3)师傅2人 ,徒弟6人28.应 付32440元,少付1460元。
Ⅸ 七年级上册数学1到3单元总结
第一章 有理数
1.1 正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。
1.2 有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rational number)。
通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
1.3 有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。
1.4 有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。
第二章 一元一次方程
2.1 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
等式的性质:
1.等式两边加(或减)同一个数(或式子),结果仍相等。
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
2.2 从古老的代数书说起——一元一次方程的讨论(1)
把等式一边的某项变号后移到另一边,叫做移项。
第三章 图形认识初步
3.1 多姿多彩的图形
几何体也简称体(solid)。包围着体的是面(surface)。
3.2 直线、射线、线段
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。
3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度
3.4 角的比较与运算
如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。
如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。
等角(同角)的补角相等。
等角(同角)的余角相等。
满意望采纳