当前位置:首页 » 基础知识 » 高等数学必备知识点清单
扩展阅读
送同学小礼物送什么 2025-02-02 09:53:46
k线基础知识什么是k线 2025-02-02 09:48:57

高等数学必备知识点清单

发布时间: 2024-12-06 11:19:12

㈠ 高等数学积分知识点总结

高等数学积分知识点总结1

一、 不定积分计算方法

1. 凑微分法

2. 裂项法

3. 变量代换法

1) 三角代换

2) 根幂代换

3) 倒代换

4. 配方后积分

5. 有理化

6. 和差化积法

7. 分部积分法(反、对、幂、指、三)

8. 降幂法

二、 定积分的计算方法

1. 利用函数奇偶性

2. 利用函数周期性

3.参考不定积分计算方法

三、 定积分与极限

1. 积和式极限

2. 利用积分中值定理或微分中值定理求极限

3. 洛必达法则

4. 等价无穷小

四、 定积分的估值及其不等式的应用

1. 不计算积分,比较积分值的大小

1) 比较定理:若在同一区间[a,b]上,总有

f(x)>=g(x),则 >=()dx

2) 利用被积函数所满足的不等式比较之 a)

b) 当0<x<兀 2时,2="" 兀<<1<="" p="">

2. 估计具体函数定积分的值

积分估值定理:设f(x)在[a,b]上连续,且其最大值为M,最小值为m则

M(b-a)<= <=M(b-a)

3. 具体函数的定积分不等式证法

1) 积分估值定理

2) 放缩法

3) 柯西积分不等式

≤ %

4. 抽象函数的定积分不等式的证法

1) 拉格朗日中值定理和导数的有界性

2) 积分中值定理

3) 常数变易法

4) 利用泰勒公式展开法

五、 变限积分的导数方法

高等数学积分知识点总结2

A.Function函数

(1)函数的定义和性质(定义域值域、单调性、奇偶性和周期性等)

(2)幂函数(一次函数、二次函数,多项式函数和有理函数)

(3)指数和对数(指数和对数的公式运算以及函数性质)

(4)三角函数和反三角函数(运算公式和函数性质)

(5)复合函数,反函数

*(6)参数函数,极坐标函数,分段函数

(7)函数图像平移和变换

B.Limit and Continuity极限和连续

(1)极限的定义和左右极限

(2)极限的运算法则和有理函数求极限

(3)两个重要的极限

(4)极限的应用-求渐近线

(5)连续的定义

(6)三类不连续点(移点、跳点和无穷点)

(7)最值定理、介值定理和零值定理

C.Derivative导数

(1)导数的定义、几何意义和单侧导数

(2)极限、连续和可导的关系

(3)导数的求导法则(共21个)

(4)复合函数求导

(5)高阶导数

(6)隐函数求导数和高阶导数

(7)反函数求导数

*(8)参数函数求导数和极坐标求导数

D.Application of Derivative导数的应用

(1)微分中值定理(D-MVT)

(2)几何应用-切线和法线和相对变化率

(3)物理应用-求速度和加速度(一维和二维运动)

(4)求极值、最值,函数的增减性和凹凸性

*(5)洛比达法则求极限

(6)微分和线性估计,四种估计求近似值

(7)欧拉法则求近似值

E.Indefinite Integral不定积分

(1)不定积分和导数的关系

(2)不定积分的公式(18个)

(3)U换元法求不定积分

*(4)分部积分法求不定积分

*(5)待定系数法求不定积分

F.Definite Integral 定积分

(1)Riemann Sum(左、右、中和梯形)和定积分的定义和几何意义

(2)牛顿-莱布尼茨公式和定积分的性质

*(3)Accumulation function求导数

*(4)反常函数求积分

H.Application of Integral定积分的应用

(1)积分中值定理(I-MVT)

(2)定积分求面积、极坐标求面积

(3)定积分求体积,横截面体积

(4)求弧长

(5)定积分的物理应用

I.Differential Equation微分方程

(1)可分离变量的微分方程和逻辑斯特微分方程

(2)斜率场

*J.Infinite Series无穷级数

(1)无穷级数的定义和数列的级数

(2)三个审敛法-比值、积分、比较审敛法

(3)四种级数-调和级数、几何级数、P级数和交错级数

(4)函数的级数-幂级数(收敛半径)、泰勒级数和麦克劳林级数

(5)级数的运算和拉格朗日余项、拉格朗日误差

注意:

(1)问答题主要考察知识点的综合运用,一般每道问答题都有3-4问,可能同时涵盖导数、积分或者微分方程的内容,解出的答案一般都是保留3位小数。

(2)微积分BC课程比AB课程考察内容更多,题目更难,AB的内容和难度大概相当于BC的1/2,多出的内容部分已经在上面用*号标出。

高等数学积分知识点总结3

微积分定理:———

若函数f(x)在[a,b]上连续,且存在原函数F(x),则f(x)在[a,b]上可积,且

b(上限)∫a(下限)f(x)dx=F(b)—F(a)

这即为牛顿—莱布尼茨公式。

牛顿—莱布尼茨公式的意义就在于把不定积分与定积分联系了起来,也让定积分的运算有了一个完善、令人满意的方法。

微积分常用公式:———

熟练的运用积分公式,就要熟练运用导数,这是互逆的运算,下满提供给大家一些可能用到的'三角公式。

微积分基本定理:———

(1)微积分基本定理揭示了导数与定积分之间的联系,同时它也提供了计算定积分的一种有效方法.

(2)根据定积分的定义求定积分往往比较困难,而利用微积分基本定理求定积分比较方便.

题型:

已知f(x)为二次函数,且f(—1)=2,f′(0)=0,f(x)dx=—2,

(1)求f(x)的解析式;

(2)求f(x)在[—1,1]上的最大值与最小值.

解:

(1)设f(x)=ax2+bx+c(a≠0),

则f′(x)=2ax+b

高等数学积分知识点总结4

《复变函数与积分变换》是电气技术、自动化及信号处理等工科专业的重要基础课,也是重要的工具性课程。本课程包括两部分内容:复变函数和积分变换。复变函数与积分变换的学习是为以后学习工程力学、电工学、电磁学、振动力学及无线电技术等奠定基础。

二、教学过程、方法及教学效果

1、命题分析

命题符合教学大纲基本要求,知识点覆盖面广,难易适中。重点考查了学生的基本概念、基本理论和技能的掌握程度以及综合运用能力。命题表述简明、准确,题量适中。

2、答题分析

绝大多数同学学习态度较好、学习积极性较高,能认真备考,掌握了相关的基本知识点,和相关题目的运算。从学生的考试情况来看,总体来说效果是比较好的。

3、成绩分析

学生总数104平均分

4、教学效果

总体情况比较理想,同学们普遍感觉对该课程的相关理论有了一定的了解,基本掌握了本课程的相关知识。

三、存在的不足及改进措施

在今后的教学中,尤其要加强教学内容与专业相结合,使学生更有兴趣学习这门课程,对教材进行适当的处理,调整讲解顺序,抓住关键知识点,在课堂上加大对学生训练的力度。课后及时批改学生作业,及时讲评并解答学生的各种疑难问题。

四、教改建议

学时相对较少,概念和理论不能深入展开讲解;应适当增加学时,以增加习题课的教学,使学生能够更牢固掌握该门课程。

90~100分(优)80~89分(良)167226优秀率70~79分(中)1315%60~69分(及)0~59分(不及)35及格率1487%

㈡ [易学网]考研数学高数重要知识点,你知道吗

对于理工类方向考研的考生来说,数学是必考的,并且数学还是拉开总分差距的一门,考研数学分为数学一、数学二、数学三,其高等数学分值分别为数一85分、数二116分、数三82分,高等数学占比最高的,那高数的重要知识点,你知道有哪些?易学网专业指导老师认为高等数学分值最高,所以同学们一定要重视。

重要知识点一:函数极限连续

重点是数列极限与函数极限的概念,两个重要的极限:lim(sinx/x)=1,lim(1+1/x)=e,连续函数的概念及闭区间上连续函数的性质。

重要知识点二:一元函数微分学

重点是罗必塔法则函数的极值和最大值、最小值的概念及其求法,函数的凹凸性判别和拐点的求法。

一元函数积分学

重点是原函数与不定积分的概念及性质,基本积分公式及积分的换元法和分部积分法,定积分的性质、计算及应用。

重要知识点四:多元函数微分学

重点是二元函数的极限和连续的概念,偏导数与全重点是二元函数的极限和连续的概念,偏导数与全微分的概念及计算复合函数、隐函数的求导法,二阶偏导数,方向导数和梯度的概念及其计算。空间曲线的切线和法平面,曲面的切平面和法线,二元函数极值。

重要知识点五:无穷级数

重点是数项级数的概念与性质,正项级数的审敛法,交错级数及其审敛法,绝对收敛与条件收敛的概念。幂级数的收敛半径、收敛区间的求法,将函数展成傅立叶级数。重要知识点六:常微分方程

重点是微分方程的概念,变量可分离方程,一阶线性微分方程及二阶的常系数线性微分方程的解法。

㈢ 大一高等数学知识点总结 考试要点有哪些

我们当时考试的时候,基本上所有课后习题掌握成功就可以,他这个难度并不高,除非是那种什么物理系、数学系。

高等数学知识点总结

高数大一上期末复习要点

第一章:1、极限(夹逼准则)。2、连续(学会用定义证明一个函数连续,判断间断点类型)

第二章:1、导数(学会用定义证明一个函数是否可导) 注:连续不一定可导,可导一定连续。2、求导法则(背)3、求导公式 也可以是微分公式。

第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节)。2、洛必达法则 。3、泰勒公式 拉格朗日中值定理。4、曲线凹凸性、极值(高中学过,不需要过多复习)。5、曲率公式 曲率半径

第四章、第五章:积分,不定积分:1、两类换元法。2、分部积分法 (注意加C )定积分:1、定义。2、反常积分

第六章: 定积分的应用。主要有几类:极坐标、求做功、求面积、求体积、求弧长

第七章:向量问题不会有很难1、方向余弦。 2、向量积。 3、空间直线(两直线的夹角、线面夹角、求直线方程)。 4、空间平面 。5、空间旋转面(柱面)。

㈣ 高数一的主要考点有哪些

1、一元函数微分学:隐函数求导、曲率圆和曲率半径;

2、一元积分学:旋转体的侧面积、平面曲线的弧长、功、引力、压力、质心、形心等;

3、向量代数与空间解析几何:向量、直线与平面、旋转曲面、球面、柱面、常用的二次曲面方程及其图形、投影曲线方程;

4、多元函数微分学:方向导数和梯度、空间曲线的切线与法平面、曲面的切平面和法线;隐函数存在定理。


(4)高等数学必备知识点清单扩展阅读:

高等数学学习方法:

1、提前预习,做好笔记

学习高数需要,提前预习相关内容。把看不懂的地方用问号予以标注,自己独立思考,如果还是搞不清楚,就把疑问的知识点记下来,带着疑问去听课,这样就会使学习变得主动、深入,增强了听课的针对性和主动性,会起到事半功倍的效果。

2、课后及时复习并完成作业

复习包括课后复习和阶段性复习。课后复习的要点是再次阅读教材,回想当天所学的概念、定理、公式,把它们彻底弄清楚。对于不明白的地方,要及时向同学或老师请教,切忌不懂装懂。每章结束后,还要进行阶段性复习。对本章的概念、定理、性质、公式进行梳理、归纳、总结,对典型的例题、典型的解题方法和技巧进行小结。

㈤ 高等数学全册知识点分享-概念、定理及公式

以下是对高等数学全册知识点的详细梳理,涵盖了概念、定理和公式,极其全面,值得珍藏。内容分为以下九个核心模块:



  • 基础准备:为后续学习奠定坚实的基础,确保对数学环境有深入理解。

  • 函数、极限与连续:探索函数的性质,理解极限概念,掌握连续性的重要性。

  • 一元函数微分学:深入剖析函数变化率,学习导数及其应用。

  • 一元函数积分学:理解积分的实质,掌握基本积分方法和应用。

  • 向量代数与空间解析几何:研究向量运算,探索空间几何中的美妙关系。

  • 多元函数微分学:扩展到多变量的函数,学习偏导数和梯度等概念。

  • 多元函数积分学:进入多元积分的领域,了解二重积分和三重积分的计算方法。

  • 无穷级数:理解序列和函数之间的联系,探索无穷级数的性质与和的计算。

  • 常微分方程:掌握描述动态过程的工具,理解微分方程的解和应用。


每个部分都紧密相连,深入学习者可以通过逐个模块的探索,逐步掌握高等数学的精髓。希望这个全面的知识框架能对你的学习之路提供有力支持。