① 高中数学概率部分包括哪些知识点
(一)基础知识梳理:
1.事件的概念:
(1)事件:在一次试验中出现的试验结果,叫做事件。一般用大写字母A,B,C,„表示。
(2)必然事件:在一定条件下,一定会发生的事件。 (3)不可能事件:在一定条件下,一定不会发生的事件 (4)确定事件:必然事件和不可能事件统称为确定事件。
(5)随机事件:在一定条件下,可能发生也可能不发生的事件。 2.随机事件的概率:
(1)频数与频率:在相同的条件下重复n次试验,观察某一事件A是否出现,称n次试
验中事件A出现的次数An为事件A出现的频数,称事件A出现的比例n
n
AfAn)(为事件A
出现的频率。
(2)概率:在相同的条件下,大量重复进行同一试验时,事件A发生的频率会在某个常数附近摆动,即随机事件A发生的频率具有稳定性。我们把这个常数叫做随机事件A的概率,记作)(AP。
3.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为
0()1PA,必然事件和不可能事件看作随机事件的两个极端情形
4.事件的和的意义: 事件A、B的和记作A+B,表示事件A和事件B至少有一个发生。 5.互斥事件: 在随机试验中,把一次试验下不能同时发生的两个事件叫做互斥事件。 当A、B为互斥事件时,事件A+B是由“A发生而B不发生”以及“B发生而A不发生”构成的, 因此当A和B互斥时,事件A+B的概率满足加法公式:P(A+B)=P(A)+P(B)(A、B互斥). 一般地:如果事件12,,,nAAA中的任何两个都是互斥的,那么就说事件12,,,nAAA彼此互斥如果事件12,,,nAAA彼此互斥,那么12()nPAAA=
12()()()nPAPAPA。
6.对立事件: 事件A和事件B必有一个发生的互斥事件. A、B对立,即事件A、B不可能同时发生,但A、B中必然有一个发生 这时P(A+B)=P(A)+P(B)=1 即P(A+A)=P(A)+P(A)=1
当计算事件A的概率P(A)比较困难时,有时计算它的对立事件A的概率则要容易些,为此有P(A)=1-P(A)
7. 事件与集合:从集合角度来看,A、B两个事件互斥,则表示A、B这两个事件所含结果组成的集合的交集是空集. 事件A的对立事件A所含结果的集合正是全集U中由事件A所含结果组成集合的补集,即A∪A=U,A∩A=对立事件一定是互斥事件,但互斥事件不一定是对立事件
(二)典型例题分析:
例1.将一枚均匀的硬币向上抛掷10次,其中正面向上恰有5次是( ) A.必然事件 B.随机事件 C.不可能事件 D.无法确定
例2.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( )
A.至少有1个白球,都是白球 B.至少有1个白球,至少有1个红球 C.恰有1个白球,恰有2个白球 D.至少有1个白球,都是红球
例3.甲、乙两名围棋选手在一次比赛中对局,分析甲胜的概率比乙胜的概率高5%,和
2
棋的概率为59%,则乙胜的概率为_____________.
例4.如果从不包括大小王的52张扑克牌中随机抽取1张,那么抽到红心(事件A)的概率为________,取到方片(事件B)的概率是 _______.取到红色牌(事件C)的概率是_______,取到黑色牌(事件D)的概率是________.
② 高中数学概率计算法则
高中数学概率计算法则概率统计
【考点透视】
1.了解随机事件的发生存在着规律性和随机事件概率的意义.
2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率.
3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.
4.会计算事件在n次独立重复试验中恰好发生k次的概率. 5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归. 【例题解析】
考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识:
(1)等可能性事件(古典概型)的概率:P(A)=card(A)/card(I)=m/n;
等可能事件概率的计算步骤:
① 计算一次试验的基本事件总数n;
② 设所求事件A,并计算事件A包含的基本事件的个数m; ③ 依公式P(A)=m/n求值;
④ 答,即给问题一个明确的答复.
(2)互斥事件有一个发生的概率:P(A+B)=P(A)+P(B); 特例:对立事件的概率:P(A)+P(A̅)=P(A+A̅)=1. (3)相互独立事件同时发生的概率:P(A·B)=P(A)·P(B);
③ 高中数学概率知识点总结是什么
(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件。
(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件。
(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件。
(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件。
(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事。
相关介绍:
在一个特定的随机试验中,称每一可能出现的结果为一个基本事件,全体基本事件的集合称为基本空间。
随机事件(简称事件)是由某些基本事件组成的,例如,在连续掷两次骰子的随机试验中,用Z,Y分别表示第一次和第二次出现的点数,Z和Y可以取值1、2、3、4、5、6,每一点(Z,Y)表示一个基本事件,因而基本空间包含36个元素。
“点数之和为2”是一事件,它是由一个基本事件(1,1)组成,可用集合{(1,1)}表示,“点数之和为4”也是一事件,它由(1,3),(2,2),(3,1)3个基本事件组成,可用集合{(1,3),(3,1),(2,2)}表示。
如果把“点数之和为1”也看成事件,则它是一个不包含任何基本事件的事件,称为不可能事件。P(不可能事件)=0。在试验中此事件不可能发生。
如果把“点数之和小于40”看成一事件,它包含所有基本事件,在试验中此事件一定发生,称为必然事件。P(必然事件)=1。实际生活中需要对各种各样的事件及其相互关系、基本空间中元素所组成的各种子集及其相互关系等进行研究。