㈠ 数学中考知识点归纳有哪些
数学中考知识点如下:
1、绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
2、求n个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂。其中,a叫做底数,n叫做指数。当a看作a的n次乘方的结果时,也可读作“a的n次幂”或“a的n次方”。
3、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
4、在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
5、除法的估算方法是多样的,通常我们将被除数(三位数)看成一个接近它的整百整十数,除数(一位数)不变,然后计算。或者按照乘法口诀把被除数估成一个合适的数,再计算。
㈡ 中考数学必考知识点归纳
初中数学知识点归纳
1、同一平面内过两点的直线有且只有一条。
2、两点之间线段最短。
3、过一点有且只有一条直线和已知直线垂直。
4、直线外一点与直线上各点的连接的线段中垂线段最短。
5、经过直线外一点,有且只有一条直线与这条直线平行。
6、如果两条直线与第三条直线平行,那么这两条直线平行。
7、同位角相等,两直线平行。
8、内错角相等,两直线平行。
9、同旁内角互补,两直线平行。
10、三角形的任意两边和大于第三边。
中考重点知识点
11、边角边定理(SAS):有两边和他们的夹角对应相等的三角形是全等三角形。
12、角边角定理(ASA):有两角和他们的夹边相等的三角形是全等三角形。
13、(AAS)有两角和其中一角的对边相等的三角形是全等三角形。
14、边边边定理(SSS):三边对应相等的三角形是全等的。
15、角平分线上的点到这个角两边的距离相等。
16、等腰三角形的两个底角相等。
17、等腰三角形的顶角角平分线平分且垂直底线。
18、等腰三角形的角平分线与底边上的中线与高相同。
19、三个角都相等的三角形是等边三角形。
20、有一个角是60°的三角形是等边三角形。
初中数学重点考点
21、直角三角形中,如果一个角是30°,那他所对应的边是斜边的一半。
22、线段垂直平分线上的点到线段两端的距离相同。
23、直角三角形的两直角边的平方和等于斜边的平方和。
24、平行四边形的对边与对角相同。
25、对角线互相平分的四边形是平行四边形。
26、对边平行相等的四边形是平行四边形。
27、对角线垂直的四边形是菱形。
28、正方形的四个角是直角,四条边相等。
29、等腰梯形的两条对角线相同。
30、同一底上的两个角相等的梯形是等腰梯形。
以上就是我为大家总结的中考 数学 必考知识点归纳,仅供参考,希望对大家有所帮助。
㈢ 中考数学必考知识点有哪些
中考数学必考知识点如下:
1、三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
2、圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
3、平行四边形的定义和相关概念,平行四边形的性质,平行四边形的对角线的性质,两条平行线距离。
4、平行四边形的判定定理,平行四边形的性质与判定的综合运用,三角形的中位线定理。
5、矩形的性质和判定,直角三角形斜边上中线,菱形的性质和判定定理,正方形的性质和判定。
㈣ 中考数学必考知识点有哪些
中考数学必考知识点如下:
1、三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
2、圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
3、若一个三角形30°内角所对的边是某一边的一半,那么这个三角形是以这条长边为斜边的直角三角形。
4、圆锥底面半径 r=n°/360°L(L为母线长)(r为底面半径)。
5、直线和圆有两个公共点,称相交,这条直线叫做圆的割线,AB与⊙O相交,d<r。
㈤ 初中数学中考复习知识点
中考数学高频考点汇总
二次函数(4个考点)
考点1:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数。
考核要求:
(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;
(2)知道常值函数;
(3)知道函数的表示方法,知道符号的意义。
考点2:用待定系数法求二次函数的解析式
考核要求:
(1)掌握求函数解析式的方法;
(2)在求函数解析式中熟练运用待定系数法。
注意求函数解析式的步骤:一设、二代、三列、四还原。
考点3:画二次函数的图像
考核要求:
(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像
(2)理解二次函数的图像,体会数形结合思想;
(3)会画二次函数的大致图像。
考点4:二次函数的图像及其基本性质
考核要求:
(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;
(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质。
注意:
(1)解题时要数形结合;
(2)二次函数的平移要化成顶点式。
相似三角形(7个考点)
考点5:相似三角形的概念、相似比的意义、画图形的放大和缩小
考核要求:
(1)理解相似形的概念;
(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。
考点6:平行线分线段成比例定理、三角形一边的平行线的有关定理
考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。
注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。
考点7:相似三角形的概念
考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。
考点8:相似三角形的判定和性质及其应用
考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。
考点9:三角形的重心
考核要求:知道重心的定义并初步应用。
考点10:向量的有关概念
考点11:向量的加法、减法、实数与向量相乘、向量的线性运算
考核要求:掌握实数与向量相乘、向量的线性运算
锐角三角比(2个考点)
考点12:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30°、45°、60°角的三角比值。
考点13:解直角三角形及其应用
考核要求:
(1)理解解直角三角形的意义;
(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。
圆的相关概念(6个考点)
考点14:圆心角、弦、弦心距的概念
考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断。
考点15:圆心角、弧、弦、弦心距之间的关系
考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明。
考点16:垂径定理及其推论
垂径定理及其推论是圆这一板块中最重要的知识点之一。
考点17:直线与圆、圆与圆的位置关系及其相应的数量关系
直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映。在圆与圆的位置关系中,常需要分类讨论求解。
考点18:正多边形的有关概念和基本性质
考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题。
考点19:画正三、四、六边形。
考核要求:能用基本作图工具,正确作出正三、四、六边形。
数据整理和概率统计(9个考点)
考点20:确定事件和随机事件
考核要求:
(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;
(2)能区分简单生活事件中的必然事件、不可能事件、随机事件。
考点21:事件发生的可能性大小,事件的概率
考核要求:
(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;
(2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;
(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。
注意:
(1)在给可能性的大小排序前可先用“一定发生”、“很有可能发生”、“可能发生”、“不太可能发生”、“一定不会发生”等词语来表述事件发生的可能性的大小;
(2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。
考点22:等可能试验中事件的概率问题及概率计算
考核要求
(1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;
(2)会用枚举法或画“树形图”方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;
(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。
注意:
(1)计算前要先确定是否为可能事件;
(2)用枚举法或画“树形图”方法求等可能事件的概率过程中要将所有等可能情况考虑完整。
考点23:数据整理与统计图表
考核要求:
(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;
(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。
考点24:统计的含义
考核要求:
(1)知道统计的意义和一般研究过程;
(2)认识个体、总体和样本的区别,了解样本估计总体的思想方法。
考点25:平均数、加权平均数的概念和计算
考核要求:
(1)理解平均数、加权平均数的概念;
(2)掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。
考点26:中位数、众数、方差、标准差的概念和计算
考核要求:
(1)知道中位数、众数、方差、标准差的概念;
(2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。
注意:
(1)当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;
(2)求中位数之前必须先将数据排序。
考点27:频数、频率的意义,画频数分布直方图和频率分布直方图
考核要求:
(1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;
(2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1.
考点28:中位数、众数、方差、标准差、频数、频率的应用
考核要求:
(1)了解基本统计量(平均数、众数、中位数、方差、标准差、频数、频率)的意计算及其应用,并掌握其概念和计算方法;
(2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;
(3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题,然后作出合理的解决。
更多文档资料可以联系我~
㈥ 初三数学知识点归纳 中考必背数学重点知识总结
很多人想知道初戚清三数学的学习上需要掌握哪些重点知识,下面我为大家整理了一些中考必背的数学重点知识,供参考!
中考数学重要知识点归纳
一、基本知识
一、数与代数
A、数与式:
1、有理数
有理数:
①整数→正整数/0/负整数
②分数→正分数/负分数
数轴:
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
绝对值:
①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的运算:
加法:
①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:
①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:
①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数
无理数:无限不循环小数叫无理数
平方根:
①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:
①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
初三数学知识点整理
1、 实数的分类
有理数:整数汪正(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373...,,.
无理数:无限不环循小数叫做无理数如:π,-,0.1010010001...(两个1之间依次多1个0).
实数:有理数和无理数统称为实数.
2、无理数
在理解无理数时,要抓住"无限不循环"这一时之,它包含两层意思:一是无限小数;二是不循环.二者缺一不可.归纳起来有四类:
(1)开方开不尽的数,如等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;
(3)有特定结构的数,如0.1010010001...等;
(4)某些三角函数,如sin60o等
注意:判断一个实数的属性(如有理数、无理数),应遵循:一化简,二辨析,三判断.要注意:"神似"或"形似"都不能作为判断的标准.
3、非负数:正实数与零的统称。(表为:x≥0)
常见的非负数有:
性质:若干个非负数的和为0,则每个非负担数均为0。
4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度困仔悔作为单位长度,规定直线上向右的方向为正方向,就得到数轴("三要素")
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
5、相反数
实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。即:(1)实数的相反数是.(2)和互为相反数.
6、绝对值
一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
(1)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即:﹝另有两种写法﹞
(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值就是数轴上表示这个数的点到原点的距离.
(3)几个非负数的和等于零则每个非负数都等于零,例如:若,则,,.
注意:│a│≥0,符号"││"是"非负数"的标志;数a的绝对值只有一个;处理任何类型的题目,只要其中有"││"出现,其关键一步是去掉"││"符号。
初三数学必背公式大全
1.过两点有且只有一条直线
2.两点之间线段最短
3.同角或等角的补角相等
4.同角或等角的余角相等
5.过一点有且只有一条直线和已知直线垂直
6.直线外一点与直线上各点连接的所有线段中,垂线段最短
7.平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8.如果两条直线都和第三条直线平行,这两条直线也互相平行
9.同位角相等,两直线平行
10.内错角相等,两直线平行
11.同旁内角互补,两直线平行
12.两直线平行,同位角相等
13.两直线平行,内错角相等
14.两直线平行,同旁内角互补
15.定理 三角形两边的和大于第三边
16.推论 三角形两边的差小于第三边
17.三角形内角和定理 三角形三个内角的和等于180°
18.推论1 直角三角形的两个锐角互余
19.推论2 三角形的一个外角等于和它不相邻的两个内角的和
20.推论3 三角形的一个外角大于任何一个和它不相邻的内角
21.全等三角形的对应边、对应角相等
22.边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23.角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24.推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25.边边边公理(SSS) 有三边对应相等的两个三角形全等
26.斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27.定理1 在角的平分线上的点到这个角的两边的距离相等
28.定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29.角的平分线是到角的两边距离相等的所有点的集合
30.等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31.推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33.推论3 等边三角形的各角都相等,并且每一个角都等于60°
34.等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35.推论1 三个角都相等的三角形是等边三角形
36.推论 2 有一个角等于60°的等腰三角形是等边三角形
37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38.直角三角形斜边上的中线等于斜边上的一半
39.定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40.逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42.定理1 关于某条直线对称的两个图形是全等形
43.定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44.定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45.逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46.勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47.勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48.定理 四边形的内角和等于360°
49.四边形的外角和等于360°
50.多边形内角和定理 n边形的内角的和等于(n-2)×180°
㈦ 中考数学必考知识点
中考数学必考知识点:
圆的定理:
1、不在同一直线上的三点确定一个圆。
2、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧。
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条。
9、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
10、在同圆或等圆中,相等的国心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
11、在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等,那么它们所对应的其余各组量都相等。
㈧ 中考数学有哪些知识点
中考数学知识点
一、数与代数
1. 数的认识。包括有理数、实数、代数式等知识点。其中有理数涉及正负数、整数、分数等概念及其运算。代数式涉及代数式的加减乘除等基本运算。
2. 方程与不等式。包括一元一次方程、二元一次方程、不等式等知识点及其解法。此部分需要掌握基本的方程求解技巧和不等式的性质。
3. 函数初步认识。主要涉及函数的基本定义和性质,如正比例函数、反比例函数等。
二、几何图形
1. 平面图形的认识。包括线段、角、三角形等基本概念及其性质。需要掌握角度计算、三角形全等判定等知识点。
2. 图形的变换。包括平移、旋转、轴对称等图形的变换性质及其在实际中的应用。此部分涉及图形的位置关系及其变化规律的把握。
3. 圆的性质与应用。圆的定义、弧长计算、角度计算等都是中考的常考内容,另外与圆相关的阴影部分的计算也是常见题型。
三、概率与统计
主要包括统计的基本知识和概率的基本应用。涉及数据的收集与整理、概率的计算以及概率在实际生活中的应用等知识点。这部分需要理解数据背后的规律以及概率事件的处理方法。
四、综合题型与实际应用题
中考数学中,综合题型和实际应用题也是重要的考察内容。这类题目通常涉及多个知识点的结合,需要综合运用所学知识解决实际问题。如几何与代数的结合题,以及与生活实际紧密相连的应用题等。
中考数学主要考察学生对基础知识的掌握程度以及综合运用知识解决问题的能力。以上知识点是中考数学的主要考察内容,考生需要针对这些知识点进行系统的复习和训练,以确保在考试中取得好成绩。