‘壹’ 初中数学知识点总结 高频考点概括!
总结数学知识点对学习数学非常有帮助,下面我为大家总结了初中数学 知识点 ,仅供大家参考。
数学有理数知识点
1、有理数的分类:有理数包括整数和分数,整数又包括正整数,0和负整数,分数包括正分数和负分数。“分类”的原则:(1)相称(不重、不漏);(2)有标准。
2、非负数:正数与零的统称。
3、相反数:
(1)定义:如果两个数的和为0,那么这两个数互为相反数。
(2)求相反数的公式:a的相反数为-a。
(3)性质:①a≠0时,a≠-a;
②a与-a在数轴上的位置关于原点对称;
③两个相反数的和为0,商为-1。
初中相似三角形考点
考点:相似三角形的概念、相似比的意义、画图形的放大和缩小
考核要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小.
考点:平行线分线段成比例定理、三角形一边的平行线的有关定理
考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算.
注意:被判定平行的一边不可以作为条件中的对应线段成比例使用.
考点:相似三角形的概念
考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义.
数学对称图形知识点
轴对称图形:线段、角、等腰三角形、等边三角形、菱形、矩形、正方形、等腰梯形、圆
对称轴的条数:角有一条对称轴,即该角的角平分线;等腰三角形有一条对称轴,是底边的垂直平分线;等边三角形有三条对称轴,分别是三边上的垂直平分线;菱形有两条对称轴,分别是两条对角线所在的直线,矩形有两条对称轴分别是两组对边中点的直线;
中心对称图形:线段 、平行四边形、菱形、矩形、正方形、圆
对称中心:线段的对称中心是线段的中点;平行四边形、菱形、矩形、正方形的对称中心是对角线的交点,圆的对称中心是圆心。
说明:线段、菱形、矩形、正方形以及圆它们即是轴对称图形又是中心对称图形。
以上就是我为大家总结的初中 数学 知识点,仅供参考,希望对大家有所帮助。
‘贰’ 初中数学中考复习知识点
中考数学高频考点汇总
二次函数(4个考点)
考点1:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数。
考核要求:
(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;
(2)知道常值函数;
(3)知道函数的表示方法,知道符号的意义。
考点2:用待定系数法求二次函数的解析式
考核要求:
(1)掌握求函数解析式的方法;
(2)在求函数解析式中熟练运用待定系数法。
注意求函数解析式的步骤:一设、二代、三列、四还原。
考点3:画二次函数的图像
考核要求:
(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像
(2)理解二次函数的图像,体会数形结合思想;
(3)会画二次函数的大致图像。
考点4:二次函数的图像及其基本性质
考核要求:
(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;
(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质。
注意:
(1)解题时要数形结合;
(2)二次函数的平移要化成顶点式。
相似三角形(7个考点)
考点5:相似三角形的概念、相似比的意义、画图形的放大和缩小
考核要求:
(1)理解相似形的概念;
(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。
考点6:平行线分线段成比例定理、三角形一边的平行线的有关定理
考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。
注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。
考点7:相似三角形的概念
考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。
考点8:相似三角形的判定和性质及其应用
考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。
考点9:三角形的重心
考核要求:知道重心的定义并初步应用。
考点10:向量的有关概念
考点11:向量的加法、减法、实数与向量相乘、向量的线性运算
考核要求:掌握实数与向量相乘、向量的线性运算
锐角三角比(2个考点)
考点12:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30°、45°、60°角的三角比值。
考点13:解直角三角形及其应用
考核要求:
(1)理解解直角三角形的意义;
(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。
圆的相关概念(6个考点)
考点14:圆心角、弦、弦心距的概念
考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断。
考点15:圆心角、弧、弦、弦心距之间的关系
考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明。
考点16:垂径定理及其推论
垂径定理及其推论是圆这一板块中最重要的知识点之一。
考点17:直线与圆、圆与圆的位置关系及其相应的数量关系
直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映。在圆与圆的位置关系中,常需要分类讨论求解。
考点18:正多边形的有关概念和基本性质
考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题。
考点19:画正三、四、六边形。
考核要求:能用基本作图工具,正确作出正三、四、六边形。
数据整理和概率统计(9个考点)
考点20:确定事件和随机事件
考核要求:
(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;
(2)能区分简单生活事件中的必然事件、不可能事件、随机事件。
考点21:事件发生的可能性大小,事件的概率
考核要求:
(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;
(2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;
(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。
注意:
(1)在给可能性的大小排序前可先用“一定发生”、“很有可能发生”、“可能发生”、“不太可能发生”、“一定不会发生”等词语来表述事件发生的可能性的大小;
(2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。
考点22:等可能试验中事件的概率问题及概率计算
考核要求
(1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;
(2)会用枚举法或画“树形图”方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;
(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。
注意:
(1)计算前要先确定是否为可能事件;
(2)用枚举法或画“树形图”方法求等可能事件的概率过程中要将所有等可能情况考虑完整。
考点23:数据整理与统计图表
考核要求:
(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;
(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。
考点24:统计的含义
考核要求:
(1)知道统计的意义和一般研究过程;
(2)认识个体、总体和样本的区别,了解样本估计总体的思想方法。
考点25:平均数、加权平均数的概念和计算
考核要求:
(1)理解平均数、加权平均数的概念;
(2)掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。
考点26:中位数、众数、方差、标准差的概念和计算
考核要求:
(1)知道中位数、众数、方差、标准差的概念;
(2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。
注意:
(1)当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;
(2)求中位数之前必须先将数据排序。
考点27:频数、频率的意义,画频数分布直方图和频率分布直方图
考核要求:
(1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;
(2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1.
考点28:中位数、众数、方差、标准差、频数、频率的应用
考核要求:
(1)了解基本统计量(平均数、众数、中位数、方差、标准差、频数、频率)的意计算及其应用,并掌握其概念和计算方法;
(2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;
(3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题,然后作出合理的解决。
更多文档资料可以联系我~
‘叁’ 教资初中数学考点
.函数的性质
这一知识点考察的难度不大,但是函数是数学学科的基础知识,建议考生打好基础。主要会考察函数的奇偶性。
2.导数
对于这一知识点,一般考导数的应用,要求求出导函数,并根据导函数的符号判断函数在某个区间上的单调性,进而求极值和较值。 根据导函数的图像,来判断某点是不是极值点或根据导函数的符号判断单调性。
3.概率与统计
考察的是高中的知识,题目难度较小,但是考察的频率非常高。考察在区间上均匀分布的两个独立事件的概率;在放回的条件下,分别求两次摸出的球颜色相同和颜色不同的概率;分别考察的是样本容量对平均数的影响以及求简单随机事件的概率。
4.直线与平面的位置关系
这一知识点,考生不仅需要掌握平面中的直线方程以及图形之间的位置关系,还需要掌握空间中的各种位置关系。考察的是在平面直角坐标系下,考察的是在空间直角坐标系下,根据参数方程求曲线方程以及求直线与平面的夹角的正弦值。
5.向量
考察的是两个向量和的模长小于向量差的模长的充要条件;考察的是向量的运算性质。
6.数列
特殊数列考的比较多,比如求满足一定条件的数列的通项公式以及前n项和。要掌握恰当的方法,如错位相减、裂项相消等。
7.圆锥曲线
圆锥曲线包括椭圆、双曲线以及抛物线,希望考试要学会类比,掌握其标准方程,离心率以及准线等概念。这一块考解答题的时候,计算量往往会比较大,需要联立方程,并结合韦达定理去计算。
8.曲面方程
这一知识点,对于绝大多数考生来说,还是比较困难的,因为我们习惯在平面中理解线和面。此知识点是将二维平面拓展到三维的空间,在空间中求曲面的方程。在一定条件下,求曲面方程。 要掌握求曲面方程的基本方法,如代入法和参数法。
9.求极限
对于极限,通常就是考计算,考上要掌握求极限的几种常用方法,比如定义法、通分法、代入法、等价无穷小代换法等。
10.数列极限
常考的知识点有数列极限的性质和极限的四则运算。对于数列的有界性、保号性、保不等式性、夹逼准则以及单调有界性是常考的性质。考察数列极限的保不等式性。
11.函数极限与函数连续(一致连续)
常考的知识点有级数的收敛性和函数列的一致收敛性。考察的是函数列收敛于函数的充要条件,是幂级数的收敛区间。对于正项级数的收敛性,要掌握的方法有比式判别法、根式判别法、积分判别法和拉贝判别法。
12.微分中值定理及其应用(泰勒公式及拉格朗日中值定理)
通常以解答题的形式出现,考察频率比较高的是泰勒公式和拉格朗日中值定理的应用。用泰勒公式估算e的近似值;是叙述并证明拉格朗日中值定理,并简述与中学数学内容的联系。
13.积分(求积分,积分的应用)
包括积分的计算和积分的相关应用两个方面。首先, 掌握积分计算的两种方法,换元积分法和分部积分法,然后再多做练习。求定积分的值。其次,在应用方面,要掌握定积分的几何意义,能根据定积分来求面积、用二重积分求体积。
14.行列式和逆矩阵
这一知识点考察的难度不大,要求会根据行列式的性质求行列式,以及初等变换求逆矩阵即可。
15.线性变换微信NTCECN
要求考生掌握线性变换的定义以及矩阵表示。考察的是线性变化和旋转变化的区别以及求曲线在矩阵所对应的线性变化下所得到的曲线方程。
16.整除性理论
教师资格证笔试考察的不再是简单的数的除法,而是考察多项式除法,建议考生掌握方法即可。
17.特征值和特征向量
要求考生理解通过求解多项式方程以及齐次线性方程组的通解进而求出矩阵的特征值及特征向量。2
18.数学课程标准
考的比较多的有课程内容、课程目标、课程基本理念。
课程内容包括数与代数、图形与几何、概率与统计、综合与实践四个方面,这是需要大家去识记的,这一知识点基本上每年都以解答题的形式出现,所以是非常重要的。
19.数学史
在数学史方面,数学家是常考的内容。需要考生去识记,在平常看书的过程中,留意有哪些数学家,都做了哪些贡献。、
20.教学设计
教学设计通常不是直接地让我们去写一篇教案,考察的知识点包括教学目标、教学重难点、对教学片断做出评价、教学流程、数学思想和方法等等。
‘肆’ 人教版初中数学中考考点
★重点★一元一次、一元二次方程,二元一次方程组的解法;方程的有关应用题(特别是行程、工程问题)
☆ 内容提要☆
一、 基本概念
1.方程、方程的解(根)、方程组的解、解方程(组)
2. 分类:
二、 解方程的依据—等式性质
1.a=b←→a+c=b+c
2.a=b←→ac=bc (c≠0)
三、 解法
1。一元一次方程的解法:去分母→去括号→移项→合并同类项→
系数化成1→解。
2. 元一次方程组的解法:⑴基本思想:“消元”⑵方法:①代入法
②加减法
四、 一元二次方程
1。定义及一般形式:
2。解法:⑴直接开平方法(注意特征)
⑵配方法(注意步骤—推倒求根公式)
⑶公式法:
⑷因式分解法(特征:左边=0)
3。根的判别式:
4。根与系数顶的关系:
逆定理:若,则以 为根的一元二次方程是: 。
5。常用等式:
五、 可化为一元二次方程的方程
1。分式方程
⑴定义
⑵基本思想:
⑶基本解法:①去分母法②换元法(如, )
⑷验根及方法
2。无理方程
⑴定义
⑵基本思想:
⑶基本解法:①乘方法(注意技巧!!)②换元法(例, )⑷验根及方法
3。简单的二元二次方程组
由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。
六、 列方程(组)解应用题
一概述
列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:
⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。
⑶用含未知数的代数式表示相关的量。
⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。
⑸解方程及检验。
⑹答案。
综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。
二常用的相等关系
1. 行程问题(匀速运动)
基本关系:s=vt
⑴相遇问题(同时出发):
+ = ;
⑵追及问题(同时出发):
若甲出发t小时后,乙才出发,而后在B处追上甲,则
⑶水中航行: ;
2. 配料问题:溶质=溶液×浓度
溶液=溶质+溶剂
3。增长率问题:
4。工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位“1”)。
5。几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。
三注意语言与解析式的互化
如,“多”、“少”、“增加了”、“增加为(到)”、“同时”、“扩大为(到)”、“扩大了”、……
又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc。
四注意从语言叙述中写出相等关系。
如,x比y大3,则x-y=3或x=y+3或x-3=y。又如,x与y的差为3,则x-y=3。五注意单位换算
如,“小时”“分钟”的换算;s、v、t单位的一致等。
‘伍’ 中考数学必考知识点归纳
初中数学知识点归纳
1、同一平面内过两点的直线有且只有一条。
2、两点之间线段最短。
3、过一点有且只有一条直线和已知直线垂直。
4、直线外一点与直线上各点的连接的线段中垂线段最短。
5、经过直线外一点,有且只有一条直线与这条直线平行。
6、如果两条直线与第三条直线平行,那么这两条直线平行。
7、同位角相等,两直线平行。
8、内错角相等,两直线平行。
9、同旁内角互补,两直线平行。
10、三角形的任意两边和大于第三边。
中考重点知识点
11、边角边定理(SAS):有两边和他们的夹角对应相等的三角形是全等三角形。
12、角边角定理(ASA):有两角和他们的夹边相等的三角形是全等三角形。
13、(AAS)有两角和其中一角的对边相等的三角形是全等三角形。
14、边边边定理(SSS):三边对应相等的三角形是全等的。
15、角平分线上的点到这个角两边的距离相等。
16、等腰三角形的两个底角相等。
17、等腰三角形的顶角角平分线平分且垂直底线。
18、等腰三角形的角平分线与底边上的中线与高相同。
19、三个角都相等的三角形是等边三角形。
20、有一个角是60°的三角形是等边三角形。
初中数学重点考点
21、直角三角形中,如果一个角是30°,那他所对应的边是斜边的一半。
22、线段垂直平分线上的点到线段两端的距离相同。
23、直角三角形的两直角边的平方和等于斜边的平方和。
24、平行四边形的对边与对角相同。
25、对角线互相平分的四边形是平行四边形。
26、对边平行相等的四边形是平行四边形。
27、对角线垂直的四边形是菱形。
28、正方形的四个角是直角,四条边相等。
29、等腰梯形的两条对角线相同。
30、同一底上的两个角相等的梯形是等腰梯形。
以上就是我为大家总结的中考 数学 必考知识点归纳,仅供参考,希望对大家有所帮助。
‘陆’ 初中数学实数知识点总结
很多同学对于实数的知识掌握的不全面,我整理了一些数学实数知识点,大家一起来看看吧。
1.无理数
⑴无理数:无限不循环小数
⑵两个无理数的和还是无理数
2.平方根
⑴算术平方根、平方根
一个正数有两个平方根,0只有一个平方根,它是0本身;负数没有平方根。
⑵开平方:求一个数的平方根的运算叫开平方
被开方数
3.立方根
⑴立方根,如果一个数x的立方等于a,即,那么这个数x就叫a的立方根.
⑵正数的立方根是正数,负数的立方根是负数,0的立方根是0.
⑶开立方、被开方数
4.公园有多宽
求根式、估算根式、根据面积求边长
5.实数的运算
运算法则(加、减、乘、除、乘方、开方)
运算定律(五个-加法[乘法]交换律、结合律;[乘法对加法的]分配律)
运算顺序:A.高级运算到低级运算;B.(同级运算)从"左"
到"右"(如5÷×5);C.(有括号时)由"小"到"中"到"大"。
6.实数的概念是每年中考的必考知识点,尤其是相反数、倒数和绝对值都是高频考点。我们不仅需要会求一个数的相反数,求一个数的倒数,求一个数的绝对值;还要注意0是没有倒数的,倒数等于它本身的有±1,相反数等于它本身的只有0。
7.科学记数法可以说是是每年中考的必考题,在解决具体问题时,需要记清楚相关概念;另外注意单位换算。对于近似数和精确度需要注意的是带计算单位的数的精确度,需要统一为以“个”为计算单位的数,再来确定。
8.科学记数法可以说是是每年中考的必考题,在解决具体问题时,需要记清楚相关概念;另外注意单位换算。对于近似数和精确度需要注意的是带计算单位的数的精确度,需要统一为以“个”为计算单位的数,再来确定。
9.实数比较大小也是中考热点,主要方法可用数轴比较法、估算法和作差法。至于倒数法和平方法不是很常见,所以只需简单了解即可。
10.计算是数学的基础,也是我们解决问题的必要手段。提高实数的运算能力,先要审题,理解有关概念。要注意零指数、负整指数、乘法、特殊角三角函数值、二次根式化简和绝对值等知识点。在计算时需要先确定符号,再确定结果,把好符号关。
以上就是实数相关的信息,希望对大家有所帮助。