当前位置:首页 » 基础知识 » 数学106圆知识点
扩展阅读
经典实木沙发多少钱一套 2024-11-22 09:31:00
智能教育费用多少 2024-11-22 09:12:39
零基础怎么学摩托 2024-11-22 09:12:01

数学106圆知识点

发布时间: 2024-11-22 03:45:27

1. 数学初三中关于圆的公式

1.圆的周长C=2πr=πd
2.圆的面积S=πr²
3.扇形弧长l=nπr/180
4.扇形面积S=nπr²/360=rl/2
5.圆锥侧面积S=πrl

〖圆的定义〗
几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。
轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。
集合说:到定点的距离等于定长的点的集合叫做圆。

〖圆的相关量〗

圆周率:圆周长度与圆的直径长度的比叫做圆周率,
值是3....,
通常用π表示,计算中常取3.14为它的近似值(但奥数常取3或3.1416)。

圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。

圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。

〖圆和圆的相关量字母表示方法〗

圆—⊙ 半径—r 弧—⌒ 直径—d 扇形弧长/圆锥母线—l 周长—C 面积—S

〖圆和其他图形的位置关系〗

圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。

直线与圆有3种位置关系:
无公共点为相离;
有两个公共点为相交;
圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):

AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO<r。

两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r。

【圆的平面几何性质和定理】

[编辑本段]一有关圆的基本性质与定理

⑴圆的确定:不在同一直线上的三个点确定一个圆。 圆的对称性质:圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。
逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。

⑵有关圆周角和圆心角的性质和定理 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。 一条弧所对的圆周角等于它所对的圆心角的一半。 直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

⑶有关外接圆和内切圆的性质和定理

①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;
②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。
③S三角=1/2*△三角形周长*内切圆半径
④两相切圆的连心线过切点(连心线:两个圆心相连的线段)

〖有关切线的性质和定理〗

圆的切线垂直于过切点的半径;经过半径的一端,并且垂直于这条半径的直线,是这个圆的切线。
切线判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线。
切线的性质:
(1)经过切点垂直于这条半径的直线是圆的切线。
(2)经过切点垂直于切线的直线必经过圆心。
(3)圆的切线垂直于经过切点的半径。

切线长定理:从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角。

〖有关圆的计算公式〗

1.圆的周长C=2πr=πd
2.圆的面积S=πr^2;
3.扇形弧长l=nπr/180
4.扇形面积S=nπr^2;/360=rl/2
5.圆锥侧面积S=πrl

【圆的解析几何性质和定理】
[编辑本段]〖圆的解析几何方程〗

圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。

圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0。和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2。

圆的离心率e=0,在圆上任意一点的曲率半径都是r。

〖圆与直线的位置关系判断〗

平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。

利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。

2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么:当x=-C/A<x1或x=-C/A>x2时,直线与圆相离;当x1<x=-C/A<x2时,直线与圆相交;

半径r,直径d在直角坐标系中,圆的解析式为:(x-a)^2+(y-b)^2=r^2x^2+y^2+Dx+Ey+F=0 => (x+D/2)^2+(y+E/2)^2=D^2/4+E^2/4-F => 圆心坐标为(-D/2,-E/2) 其实不用这样算 太麻烦了 只要保证X方Y方前系数都是1 就可以直接判断出圆心坐标为(-D/2,-E/2) 这可以作为

2. 初中数学几何知识点

1.过两点有且只有一条直线
2.两点之间线段最短
3.同角或等角的补角相等
4.同角或等角的余角相等
5.过一点有且只有一条直线和已知直线垂直

3. 初二下期数学公式 一点点就行

22边角边公理(SAS)
有两边和它们的夹角对应相等的两个三角形全等
23
角边角公理(
ASA)有两角和它们的夹边对应相等的两个三角形全等
24
推论(AAS)
有两角和其中一角的对边对应相等的两个三角形全等
25
边边边公理(SSS)
有三边对应相等的两个三角形全等
26
斜边、直角边公理(HL)
有斜边和一条直角边对应相等的两个直角三角形全等
27
定理1
在角的平分线上的点到这个角的两边的距离相等
28
定理2
到一个角的两边的距离相同的点,在这个角的平分线上
29
角的平分线是到角的两边距离相等的所有点的集合
30
等腰三角形的性质定理
等腰三角形的两个底角相等
(即等边对等角)
31
推论1
等腰三角形顶角的平分线平分底边并且垂直于底边
32
等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33
推论3
等边三角形的各角都相等,并且每一个角都等于60°
34
等腰三角形的判定定理
如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35
推论1
三个角都相等的三角形是等边三角形
36
推论
2
有一个角等于60°的等腰三角形是等边三角形
37
在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38
直角三角形斜边上的中线等于斜边上的一半
39
定理
线段垂直平分线上的点和这条线段两个端点的距离相等
40
逆定理
和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41
线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42
定理1
关于某条直线对称的两个图形是全等形
43
定理
2
如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3
两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理
如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理
直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理
如果三角形的三边长a、b、c有关系a^2+b^2=c^2
,那么这个三角形是直角三角形
48定理
四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理
n边形的内角的和等于(n-2)×180°
51推论
任意多边的外角和等于360°
52平行四边形性质定理1
平行四边形的对角相等
53平行四边形性质定理2
平行四边形的对边相等
54推论
夹在两条平行线间的平行线段相等
55平行四边形性质定理3
平行四边形的对角线互相平分
56平行四边形判定定理1
两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2
两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3
对角线互相平分的四边形是平行四边形
59平行四边形判定定理4
一组对边平行相等的四边形是平行四边形
60矩形性质定理1
矩形的四个角都是直角
61矩形性质定理2
矩形的对角线相等
62矩形判定定理1
有三个角是直角的四边形是矩形
63矩形判定定理2
对角线相等的平行四边形是矩形
64菱形性质定理1
菱形的四条边都相等
65菱形性质定理2
菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×b)÷2
67菱形判定定理1
四边都相等的四边形是菱形
68菱形判定定理2
对角线互相垂直的平行四边形是菱形
69正方形性质定理1
正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1
关于中心对称的两个图形是全等的
72定理2
关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理
如果两个图形的对应点连线都经过某一点,并且被这一
点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理
等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理
在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理
如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
79
推论1
经过梯形一腰的中点与底平行的直线,必平分另一腰
80
推论2
经过三角形一边的中点与另一边平行的直线,必平分第
三边
81
三角形中位线定理
三角形的中位线平行于第三边,并且等于它
的一半
82
梯形中位线定理
梯形的中位线平行于两底,并且等于两底和的
一半
L=(a+b)÷2
S=L×h
83
(1)比例的基本性质
如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d
84
(2)合比性质
如果a/b=c/d,那么(a±b)/b=(c±d)/d
85
(3)等比性质
如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
86
平行线分线段成比例定理
三条平行线截两条直线,所得的对应
线段成比例
87
推论
平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88
定理
如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89
平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90
定理
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91
相似三角形判定定理1
两角对应相等,两三角形相似(ASA)
92
直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93
判定定理2
两边对应成比例且夹角相等,两三角形相似(SAS)
94
判定定理3
三边对应成比例,两三角形相似(SSS)
95
定理
如果一个直角三角形的斜边和一条直角边与另一个直角三
角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96
性质定理1
相似三角形对应高的比,对应中线的比与对应角平
分线的比都等于相似比
97
性质定理2
相似三角形周长的比等于相似比
98
性质定理3
相似三角形面积的比等于相似比的平方
99
任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等
于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半
径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直
平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距
离相等的一条直线
109定理
不在同一直线上的三点确定一个圆。
110垂径定理
垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2
圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦
相等,所对的弦的弦心距相等
115推论
在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两
弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理
一条弧所对的圆周角等于它所对的圆心角的一半
117推论1
同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118推论2
半圆(或直径)所对的圆周角是直角;90°的圆周角所
对的弦是直径
119推论3
如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理
圆的内接四边形的对角互补,并且任何一个外角都等于它
的内对角
121①直线L和⊙O相交
d<r