当前位置:首页 » 基础知识 » 数学边化弦知识点
扩展阅读

数学边化弦知识点

发布时间: 2024-11-16 17:02:32

① 高中数学三角函数知识点总结

在高中数学中三角函数一直是非常难的课程,它有哪些知识点呢。以下是由我为大家整理的“高中数学三角函数知识点总结”,仅供参考,欢迎大家阅读。

高中数学三角函数知识点总结

一、锐角三角函数公式

sin=的对边/斜边

cos=的邻边/斜边

tan=的对边/的邻边

cot=的邻边/的对边

二、倍角公式

Sin2A=2SinA?CosA

Cos2A=CosA2-SinA2=1-2SinA2=2CosA2-1

tan2A=(2tanA)/(1-tanA2)(注:SinA2是sinA的平方sin2(A))

三、三倍角公式

sin3=4sinsin(/3+)sin(/3-)

cos3=4coscos(/3+)cos(/3-)

tan3a=tanatan(/3+a)tan(/3-a)

三倍角公式推导

sin3a

=sin(2a+a)

=sin2acosa+cos2asina

腊颤辅助角公式

Asin+Bcos=(A2+B2)(1/2)sin(+t),其中

sint=B/(A2+B2)(1/2)

cost=A/(A2+B2)(1/2)

tant=B/A

Asin+Bcos=(A2+B2)(1/2)cos(-t),tant=A/B

四、降幂公式

sin2()=(1-cos(2))/2=versin(2)/2

cos2()=(1+cos(2))/2=covers(2)/2

tan2()=(1-cos(2))/(1+cos(2))

推导公式

tan+cot=2/sin2

tan-cot=-2cot2

1+cos2=2cos2

1-cos2=2sin2

1+sin=(sin/2+cos/2)2

=2sina(1-sina)+(1-2sina)sina

=3sina-4sina

cos3a

=cos(2a+a)

=cos2acosa-sin2asina

=(2cosa-1)cosa-2(1-sina)cosa

=4cosa-3cosa

sin3a=3sina-4sina

=4sina(3/4-sina)

=4sina[(3/2)-sina]

=4sina(sin60-sina)

=4sina(sin60+sina)(sin60-sina)

=4sina*2sin[(60+a)/2]cos[(60-a)/2]*2sin[(60-a)/2]cos[(60-a)/2]

=4sinasin(60+a)sin(60-a)

cos3a=4cosa-3cosa

=4cosa(cosa-3/4)

=4cosa[cosa-(3/2)]

=4cosa(cosa-cos30)

谨局拆=4cosa(cosa+cos30)(cosa-cos30)

=4cosa*2cos[(a+30)/2]cos[(a-30)/2]*{-2sin[(a+30)/2]sin[(a-

30)/2]}

=-4cosasin(a+30)sin(a-30)

=-4cosasin[90-(60-a)]sin[-90+(60+a)]

=-4cosacos(60-a)[-cos(60+a)]

=4cosacos(60-a)cos(60+a)

上述两式相比可得

tan3a=tanatan(60-a)tan(60+a)

五、半角公式

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

sin2(a/2)=(1-cos(a))/2

祥枣cos2(a/2)=(1+cos(a))/2

tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

六、三角和

sin(++)=sincoscos+cossincos+coscossin

-sinsinsin

cos(++)=coscoscos-cossinsin-sincossin-sinsincos

tan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)

七、两角和差

cos(+)=coscos-sinsin

cos(-)=coscos+sinsin

sin()=sincoscossin

tan(+)=(tan+tan)/(1-tantan)

tan(-)=(tan-tan)/(1+tantan)

八、和差化积

sin+sin=2sin[(+)/2]cos[(-)/2]

sin-sin=2cos[(+)/2]sin[(-)/2]

cos+cos=2cos[(+)/2]cos[(-)/2]

cos-cos=-2sin[(+)/2]sin[(-)/2]

tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

九、积化和差

sinsin=[cos(-)-cos(+)]/2

coscos=[cos(+)+cos(-)]/2

sincos=[sin(+)+sin(-)]/2

cossin=[sin(+)-sin(-)]/2

十、诱导公式

sin(-)=-sin

cos(-)=cos

tan(—a)=-tan

sin(/2-)=cos

cos(/2-)=sin

sin(/2+)=cos

cos(/2+)=-sin

sin(-)=sin

cos(-)=-cos

sin(+)=-sin

cos(+)=-cos

tanA=sinA/cosA

tan(/2+)=-cot

tan(/2-)=cot

tan(-)=-tan

tan(+)=tan

诱导公式记背诀窍:奇变偶不变,符号看象限

十一、万能公式

sin=2tan(/2)/[1+tan(/2)]

cos=[1-tan(/2)]/1+tan(/2)]

tan=2tan(/2)/[1-tan(/2)]

十二、其它公式

(1)(sin)2+(cos)2=1

(2)1+(tan)2=(sec)2

(3)1+(cot)^2=(csc)^2

(4)对于任意非直角三角形,总有

tanA+tanB+tanC=tanAtanBtanC

证:

A+B=-C

tan(A+B)=tan(-C)

(tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC)

整理可得

tanA+tanB+tanC=tanAtanBtanC

得证

同样可以得证,当x+y+z=n(nZ)时,该关系式也成立

由tanA+tanB+tanC=tanAtanBtanC可得出以下结论

(5)cotAcotB+cotAcotC+cotBcotC=1

(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

(7)(cosA)2+(cosB)2+(cosC)2=1-2cosAcosBcosC

(8)(sinA)2+(sinB)2+(sinC)2=2+2cosAcosBcosC

(9)sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)++sin[+2*(n-1)/n]=0

cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)++cos[+2*(n-1)/n]=0以及

sin2()+sin2(-2/3)+sin2(+2/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

拓展阅读:学好函数的方法

一、学数学就像玩游戏,想玩好游戏,当然先要熟悉游戏规则

而在数学当中,游戏规则就是所谓的基本定义。想学好函数,第一要牢固掌握基本定义及对应的图像特征,如定义域,值域,奇偶性,单调性,周期性,对称轴等。

很多同学都进入一个学习函数的误区,认为只要掌握好的做题方法就能学好数学,其实应该首先应当掌握最基本的定义,在此基础上才能学好做题的方法,所有的做题方法要成立归根结底都必须从基本定义出发,最好掌握这些定义和性质的代数表达以及图像特征。

二、牢记几种基本初等函数及其相关性质、图象、变换

中学就那么几种基本初等函数:一次函数(直线方程)、二次函数、反比例函数、指数函数、对数函数、正弦余弦函数、正切余切函数,所有的函数题都是围绕这些函数来出的,只是形式不同而已,最终都能靠基本知识解决。

还有三种函数,尽管课本上没有,但是在高考以及自主招生考试中都经常出现的对勾函数:y=ax+b/x,含有绝对值的函数,三次函数。这些函数的定义域、值域、单调性、奇偶性等性质和图像等各方面的特征都要好好研究。

三、图像是函数之魂!要想学好做好函数题,必须充分关注函数图象问题

翻阅历年高考函数题,有一个算一个,几乎百分之八十的函数问题都与图像有关。这就要求同学们在学习函数时多多关注函数的图像,要会作图、会看图、会用图!多多关注函数图象的平移、放缩、翻转、旋转、复合与叠加等问题。

② 数学三角函数知识点整理有哪些

数学三角函数知识点整理有:

1、一个三角形中,各边和所对角的正弦之比相等,且该比值等于该三角形外接圆的直径(半径的2倍)长度。

2、对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。

3、三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。

4、三角函数诱导公式,就是将角n(/2)的三角函数转化为角的三角函数。

5、全等三角形的对应边相等,全等三角形的对应角相等。

③ 三角函数的数学知识

关于三角函数的数学知识点1

.三角函数的定义及单位圆内的三角函数线

(正弦线、余弦线、正切线)的定义你知道吗?

.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?

.你还记得三角化简的通性通法吗?

(切割化弦、降幂公式、用三角公式转化出现特殊角。异角化同角,异名化同名,高次化低次)

.反正弦、反余弦、反正切函数的取值范围分别是

.你还记得某些特殊角的三角函数值吗?

.掌握正弦函数、余弦函数及正切函数的图象和性质。你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?

.函数的图象的平移,方程的平移以及点的平移公式易混:

(1)函数的图象的平移为左+右-,上+下-;

(2)方程表示的图形的平移为左+右-,上-下+;

(3)点的平移公式:点按向量平移到点,则。

.在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)

.正弦定理时易忘比值还等于2R.

关于三角函数的数学知识点2

诱导公式的本质

所谓三角函数诱导公式,就是将角n(/2)的三角函数转化为角的三角函数。

常用的'诱导公式

公式一: 设为任意角,终边相同的角的同一三角函数的值相等:

sin(2k)=sin kz

cos(2k)=cos kz

tan(2k)=tan kz

cot(2k)=cot kz

公式二: 设为任意角,的三角函数值与的三角函数值之间的关系:

sin()=-sin

cos()=-cos

tan()=tan

cot()=cot

公式三: 任意角与 -的三角函数值之间的关系:

sin(-)=-sin

cos(-)=cos

tan(-)=-tan

cot(-)=-cot

公式四: 利用公式二和公式三可以得到与的三角函数值之间的关系:

sin()=sin

cos()=-cos

tan()=-tan

cot()=-cot

关于三角函数的数学知识点3

它是反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x这些函数的统称,各自表示其正弦、余弦、正切、余切为x的角。

三角函数的反函数不是单值函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。欧拉提出反三角函数的概念,并且首先使用了“arc+函数名”的形式表示反三角函数,而不是。

为限制反三角函数为单值函数,将反正弦函数的值y限在-π/2≤y≤π/2,将y作为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2

反正弦函数

y=sin x在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1] ,值域[-π/2,π/2]。

反余弦函数y=cos x在[0,π]上的反函数,叫做反余弦函数。记作arccosx,表示一个余弦值为x的角,该角的范围在[0,π]区间内。定义域[-1,1] , 值域[0,π]。

反正切函数

y=tan x在(-π/2,π/2)上的反函数,叫做反正切函数。记作arctanx,表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。定义域R,值域(-π/2,π/2)。

反余切函数

y=cot x在(0,π)上的反函数,叫做反余切函数。记作arccotx,表示一个余切值为x的角,该角的范围在(0,π)区间内。定义域R,值域(0,π)。

关于三角函数的数学知识点4

一.定义

1.全等形:形状大小相同,能完全重合的两个图形.

2.全等三角形:能够完全重合的两个三角形.

二.重点

1.平移,翻折,旋转前后的图形全等.

2.全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.

3.全等三角形的判定:

SSS三边对应相等的两个三角形全等[边边边]

SAS两边和它们的夹角对应相等的两个三角形全等[边角边]

ASA两角和它们的夹边对应相等的两个三角形全等[角边角]

AAS两个角和其中一个角的对边开业相等的两个三角形全等[边角边]

HL斜边和一条直角边对应相等的两个三角形全等[斜边,直角边]

4.角平分线的性质:角的平分线上的点到角的两边的距离相等.

5.角平分线的判定:角的内部到角的两边的距离相等的点在角的平分线上.

④ +初中三角函数的知识点有哪些,怎么学习

我们接触初中三角函数之时,要了解它是高中三角函数的基础,是高中数学的重难点和必考点。三角函数是超越函数一类函数,属于初等函数。任意角的集合与一个比值的集合变量之间的映射就是三角函数的本质。通常用平面直角坐标系来定义三角函数,定义是整个实数域。初中三角函数包含六种基本函数:正切、余切、正弦、余弦、正割、余割。

高中三角函数,如一头拦路虎,让很多学生望而却步、畏惧不已。初中三角函数学得好坏,直接影响高中三角函数的学习,因为初中是高中的基础。那么,初中三角函数知识点有哪些?初中三角函数公式有哪些?如何记忆这些公式?初中三角函数怎么学才能为高中打好基础?不用担心,下面为您解答。

步骤/方法1

1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方a2+b2=c2。

2、如下图,在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B):

3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。

5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)

6、正弦、余弦的增减性:

当0°≤α≤90°时,sinα随α的增大而增大,cosα随α的增大而减小。

7、正切、余切的增减性:当0°<α<90°时,tanα随α的增大而增大,cotα随α的增大而减小。

接下来你要熟悉初中三角函数公式。

三角函数恒等变形公式:

·初中三角函数两角和与差的三角函数:

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

·初中三角函数倍角公式:

sin(2α)=2sinα·cosα

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

·初中三角函数三倍角公式:

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

·初中三角函数半角公式:

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα

·初中三角函数万能公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

·初中三角函数积化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

·初中三角函数和差化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

最后,初中三角函数怎么学才能掌握好,才能为高中三角函数打下扎实基础?

既然谈到初中三角函数实为高中三角函数的基础,我给大家举一个高中的例子:

我记得有一年,有个高一的学生找到我,说高一数学学得很一般,希望我能给他点拨点拨。他就拿着一套卷子来到我办公室,上面有一道题是:

y=sinx23sinxcosx4cosx2

求这个函数的最值。

我一看高一的学生,连这个题都不会做,可见他的水平太一般了。这个题我几句话就能给他讲明白,但我不能光给他讲这个题,而是考虑这个孩子的问题出在哪儿,否则同样的题他还是不会做。

我就问他:“降幂公式会吗?”

他说不知道。

我心想今天是碰着“高手”了,我继续问:“三角函数的倍角公式你会吗?”

他想了想:“没有印象了。”

我继续往回推:“两角和与差的三角函数你会吗?”

他想了想:“sin(αβ)好像等于sinαsinβcosαcosβ。”

我都想跳楼了,一个高一的学生,两角和与差的三角函数都记不住,还有什么可说的?但是我这个人也比较固执,我一般要帮的学生,他再怎么差,我也要把他帮到底。我想今天豁出去了,我非要把他不会的根源挖掘出来,继续往回退,问他:“任意角的三角函数定理,你知道吧?”

他说不知道。

再往回退,一直退到初二的内容上:“锐角三角函数的定理你知道吧?”

他说:“老师,你能不能说得具体一点儿?”

我说:“在一个直角三角形里,那个sinα等于什么?”

他眼睛一亮:“sinα等于对边比斜边。”

我说:“就是它。”又问:“cosα等于什么?”

“cosα等于邻边比斜边。”

“tanα呢?”

“等于对边比邻边。”

我总算松了一口气,说:“孩子你太厉害了,你竟然连这个东西都记着,就从它开始。”

我为了把这个学生的问题解决,一直给他退到初二的内容了,从初二开始讲起。

我说:“跟着我想,我们要把这个直角三角形平移到直角坐标系下边,你看那个斜边成了直角坐标系下的一个角的终边,那么你说,sinα等于什么?cosα等于什么?”

他一想,于是就出现了任意角的三角函数定义,然后用任意角的三角函数,我引导着他派生出同角三角函数间的基本关系、平方关系、商数关系、倒数关系,这些都是他自己推导的。我继续引导这个学生往前走,结果在我的引导下,用了两个小时的时间,这个学生竟然从锐角三角函数定义开始,把他高中学过的所有的三角函数的公式全部推导了一遍。我在旁边看着,他的鼻尖上都冒汗了,状态非常投入。

我说:“今天这个课就上到这儿吧,我看你这两个小时把三角函数的内容全给搞定了。”

他吃了一惊,问:“老师,多长时间了?真的过了两个小时了吗?”

我说:“你看看表,咱们从八点开始,你看现在都十点多了。”

他说:“老师,原来学习这么好玩!我学了这么多年数学,也没找着一次这样的感觉,这两个小时我怎么把三角函数全给搞定了?”

我笑着问:“现在三角函数的公式还需要记忆吗?”

他说:“不需要记忆,我现在绝对能记住。因为我都会推导它了,我还怕它吗?”

在理解的基础上,加以记忆,这是一个很好的办法。碰到记不住的公式,自己推导一下,就算考试时一时想不起来,现推都来得及。而且你推导过几次,那个公式就逐步成为你永恒的记忆。

由此可见,要在理解的基础上加以记忆。其实好多问题,你理解了,就记住了;你不理解它,硬性的记忆,可能用的时间很长,也记不住,就算记住也会忘得很快。

数学上的很多定理,你要把它记下来很难,但你要是把这个定理求证一遍,它就活灵活现地展现在你面前,这个定理你不用记就记住

注意事项
  • 初中三角函数在理解之后,便能举一反三,而这样一来,公式就多了,要是记忆这些公式,负担是很重的。但是我的学生对三角函数的公式基本不用记,都能掌握得比较好。我让学生详细地把这些公式推导一遍,看这些公式是怎么得到的,顺着源头,一步步地自己推下来。学生推了一遍之后,就感觉那个公式就像他们自己发明的一样,再去记忆这个公式就很容易了,即使忘了也不要紧,再从头推一遍就行了。