当前位置:首页 » 基础知识 » 整理数学概念知识树
扩展阅读
经典实木沙发多少钱一套 2024-11-22 09:31:00
智能教育费用多少 2024-11-22 09:12:39
零基础怎么学摩托 2024-11-22 09:12:01

整理数学概念知识树

发布时间: 2024-11-14 10:25:55

A. 数学知识树怎么画

数学知识树画法如下:

材料:笔、纸。

1、先画出知识树粗壮的树干和细小的枝桠。

绘制数学知识树时注意事项

1、定义主题:首先确定你想要绘制的数学知识树的主题或领域,例如代数、几何、微积分等。

2、确定核心概念:识别并列出该主题的核心概念,如方程、平面几何、导数等。这些核心概念将成为你绘制知识树的根节点。

3、划分子概念:将每个核心概念进一步划分为更具体的子概念。例如,在几何领域中,你可以将平面几何进一步拆分为三角形、圆、多边形等。

4、确定关系:确定每个概念之间的关系,例如,某个概念是否是另一个概念的子概念、是否依赖于其他概念等。这些关系可以使用箭头或线条表示。

5、绘制知识树:使用图形软件或手绘工具按照你的设计开始绘制知识树。根据关系和层次结构,在纸上或计算机屏幕上画出根节点和其对应的子概念节点。

6、添加标签:为每个节点添加标签,以显示该节点所代表的概念。可以使用文字或简短的词组来描述每个概念。

7、细化层级:根据需要,可以进一步细化概念之间的层级结构。例如,在微积分中,你可以细分导数为求导规则、高阶导数等。

8、调整布局:调整知识树的布局,使其具有清晰的层次结构和易读性。例如,将具有相似关系的概念放在一起,或者将密切相关的概念放在一起。

9、修订和修改:进行知识树的修订和修改,确保其准确性和完整性。添加遗漏的概念或调整节点之间的关系。

B. 数学七年级上册各章的知识树,不要太多,只要点出知识,思想,方法就可以了

第一章 有理数 1.1 正数和负数 阅读与思考 用正负数表示加工允许误差 1.3 有理数的加减法 实验与探究 填幻方 阅读与思考 中国人最先使用负数 1.4 有理数的乘除法 观察与思考 翻牌游戏中的数学道理 1.5 有理数的乘方 数学活动 小结 复习题1 第二章 整式的加减 2.1 整式 阅读与思考 数字1与字母X的对话 2.2 整式的加减 信息技术应用 电子表格与数据计算 数学活动 小结 复习题2 第三章 一元一次方程 3.1 从算式到方程 阅读与思考 “方程”史话 3.2 解一元一次方程(一)——合并同类项与移项 实验与探究 无限循环小数化分数 3.3 解一元一次方程(二)——去括号与去分母 3.4 实际问题与一元一次方程 数学活动 小结 复习题3 第四章 图形认识初步 4.1 多姿多彩的图形 阅读与思考 几何学的起源 4.2 直线、射线、线段 阅读与思考 长度的测量 4.3 角 4.4 课题学习 设计制作长方体形状的包装纸盒

C. 苏教版四年级上册数学知识树怎么画

苏教版四年级上册数学知识树:

主要内容

一、认识:10个十万是一百万,10个一百万是一千万,十个一千万是一亿,10个一亿是十亿,10个十亿是一百亿,10个一百亿是一千亿。

一(个)、十、百、千、万、十万、百万、千万、亿、十亿、百亿、千亿都是计数单位。

每相邻两个计数单位的进率是十。

用数字表示数的时候,这些计数单位要按照一定的顺序排列起来,它们所占的位置叫数位。

简介

“知识树”破天荒般地揭示了,知识的结构、形成规律和过程与树的结构、生长规律和过程如出一辙。这是人类首次发现人类文化和文明与树的密切逻辑关系。如今“知识树”的概念已被世人广泛应用。

D. 初一数学各章内容的知识树

过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48定理 四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180°
51推论 任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等
53平行四边形性质定理2 平行四边形的对边相等
54推论 夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角
61矩形性质定理2 矩形的对角线相等
62矩形判定定理1 有三个角是直角的四边形是矩形
63矩形判定定理2 对角线相等的平行四边形是矩形
64菱形性质定理1 菱形的四条边都相等
65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×b)÷2
67菱形判定定理1 四边都相等的四边形是菱形
68菱形判定定理2 对角线互相垂直的平行四边形是菱形
69正方形性质定理1 正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1 关于中心对称的两个图形是全等的
72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一
点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理 如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第
三边

E. 七年级下册数学第五章的知识点以知识树的形式整理出来!! 快 快 快啊

七年级数学(下)期末复习知识点整理
5.1相交线
1、邻补角与对顶角
两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:
图形 顶点 边的关系 大小关系
对顶角

∠1与∠2 有公共顶点 ∠1的两边与∠2的两边互为反向延长线 对顶角相等
即∠1=∠2
邻补角

∠3与∠4 有公共顶点 ∠3与∠4有一条边公共,另一边互为反向延长线。 ∠3+∠4=180°
注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;
⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角
⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。
⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。

2、垂线
⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
符号语言记作:
如图所示:AB⊥CD,垂足为O

⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)
⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。简称:垂线段最短。

3、垂线的画法:
⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。
注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。

画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。

4、点到直线的距离
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离
记得时候应该结合图形进行记忆。
5、如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念
分析它们的联系与区别
⑴垂线与垂线段 区别:垂线是一条直线,不可度量长度;垂线段是一条线段,可以度量长度。 联系:具有垂直于已知直线的共同特征。(垂直的性质)
⑵两点间距离与点到直线的距离 区别:两点间的距离是点与点之间,点到直线的距离是点与直线之间。 联系:都是线段的长度;点到直线的距离是特殊的两点(即已知点与垂足)间距离。
⑶线段与距离 距离是线段的长度,是一个量;线段是一种图形,它们之间不能等同。

5.2平行线
1、平行线的概念:
在同一平面内,不相交的两条直线叫做平行线,直线 与直线 互相平行,记作 ‖ 。
2、两条直线的位置关系
在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行。
因此当我们得知在同一平面内两直线不相交时,就可以肯定它们平行;反过来也一样(这里,我们把重合的两直线看成一条直线)
判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:
①有且只有一个公共点,两直线相交;
②无公共点,则两直线平行;
③两个或两个以上公共点,则两直线重合(因为两点确定一条直线)
3、平行公理――平行线的存在性与惟一性
经过直线外一点,有且只有一条直线与这条直线平行
4、平行公理的推论:
如果两条直线都与第三条直线平行,那么这两条直线也互相平行
7、两直线平行的判定方法
方法一 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行
简称:同位角相等,两直线平行
方法二 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行
简称:内错角相等,两直线平行
方法三 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行
简称:同旁内角互补,两直线平行
注意:⑴几何中,图形之间的“位置关系”一般都与某种“数量关系”有着内在的联系,常由“位置关系”决定其“数量关系”,反之也可从“数量关系”去确定“位置关系”。上述平行线的判定方法就是根据同位角或内错角“相等”或同旁内角“互补”这种“数量关系”,判定两直线“平行”这种“位置关系”。
⑵根据平行线的定义和平行公理的推论,平行线的判定方法还有两种:①如果两条直线没有交点(不相交),那么两直线平行。②如果两条直线都平行于第三条直线,那么这两条直线平行。
典型例题:判断下列说法是否正确,如果不正确,请给予改正:
⑴不相交的两条直线必定平行线。
⑵在同一平面内不相重合的两条直线,如果它们不平行,那么这两条直线一定相交。
⑶过一点可以且只可以画一条直线与已知直线平行
解答:⑴错误,平行线是“在同一平面内不相交的两条直线”。“在同一平面内”是一项重要条件,不能遗漏。
⑵正确
⑶不正确,正确的说法是“过直线外一点”而不是“过一点”。因为如果这一点不在已知直线上,是作不出这条直线的平行线的。
1、平行线的性质:
性质1:两直线平行,同位角相等;
性质2:两直线平行,内错角相等;
性质3:两直线平行,同旁内角互补。
两条平行线的距离
直线AB‖CD,EF⊥AB于E,EF⊥CD于F,则称线段EF的长度为两平行线AB与CD间的距离。
注意:直线AB‖CD,在直线AB上任取一点G,过点G作CD的垂线段GH,则垂线段GH的长度也就是直线AB与CD间的距离。

3、命题:
⑴命题的概念:
判断一件事情的语句,叫做命题。
⑵命题的组成

每个命题都是题设、结论两部分组成。题设是已知事项;结论是由已知事项推出的事项。命题常写成“如果……,那么……”的形式。具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。
有些命题,没有写成“如果……,那么……”的形式,题设和结论不明显。对于这样的命题,要经过分析才能找出题设和结论,也可以将它们改写成“如果……,那么……”的形式。
注意:命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述;命题的结论部分,有时也可用“求证……”或“则……”等形式表述。

4、平行线的性质与判定
①平行线的性质与判定是互逆的关系
两直线平行 同位角相等;
两直线平行 内错角相等;
两直线平行 同旁内角互补。
其中,由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质。

5.4平移
1、平移变换
①把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
②新图形的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点
③连接各组对应点的线段平行且相等
2、平移的特征:
①经过平移之后的图形与原来的图形的对应线段平行(或在同一直线上)且相等,对应角相等,图形的形状与大小都没有发生变化。
②经过平移后,对应点所连的线段平行(或在同一直线上)且相等。