当前位置:首页 » 基础知识 » 面试中常问的离散数学知识
扩展阅读
儿童玫瑰花怎么折 2024-11-23 09:05:01
怎么辅导孩子学习基础 2024-11-23 09:03:32

面试中常问的离散数学知识

发布时间: 2024-11-08 18:11:10

❶ 程序员必备的一些数学基础知识

作为一个标准的程序员,应该有一些基本的数学素养,尤其现在很多人在学习人工智能相关知识,想抓住一波人工智能的机会。很多程序员可能连这样一些基础的数学问题都回答不上来。

作为一个傲娇的程序员,应该要掌握这些数学基础知识,才更有可能码出一个伟大的产品。

向量 向量(vector)是由一组实数组成的有序数组,同时具有大小和方向。一个n维向量a是由n个有序实数组成,表示为 a = [a1, a2, · · · , an]

矩阵

线性映射 矩阵通常表示一个n维线性空间v到m维线性空间w的一个映射f: v -> w

注:为了书写方便, X.T ,表示向量X的转置。 这里: X(x1,x2,...,xn).T,y(y1,y2,...ym).T ,都是列向量。分别表示v,w两个线性空间中的两个向量。A(m,n)是一个 m*n 的矩阵,描述了从v到w的一个线性映射。

转置 将矩阵行列互换。

加法 如果A和B 都为m × n的矩阵,则A和B 的加也是m × n的矩阵,其每个元素是A和B相应元素相加。 [A + B]ij = aij + bij .

乘法 如A是k × m矩阵和B 是m × n矩阵,则乘积AB 是一个k × n的矩阵。

对角矩阵 对角矩阵是一个主对角线之外的元素皆为0的矩阵。对角线上的元素可以为0或其他值。一个n × n的对角矩阵A满足: [A]ij = 0 if i ̸= j ∀i, j ∈ {1, · · · , n}

特征值与特征矢量 如果一个标量λ和一个非零向量v满足 Av = λv, 则λ和v分别称为矩阵A的特征值和特征向量。

矩阵分解 一个矩阵通常可以用一些比较“简单”的矩阵来表示,称为矩阵分解。

奇异值分解 一个m×n的矩阵A的奇异值分解

其中U 和V 分别为m × m和n×n 的正交矩阵,Σ为m × n的对角矩阵,其对角 线上的元素称为奇异值(singular value)。

特征分解 一个n × n的方块矩阵A的特征分解(Eigendecomposition)定义为

其中Q为n × n的方块矩阵,其每一列都为A的特征向量,^为对角阵,其每一 个对角元素为A的特征值。 如果A为对称矩阵,则A可以被分解为

其中Q为正交阵。

导数 对于定义域和值域都是实数域的函数 f : R → R ,若f(x)在点x0 的某个邻域∆x内,极限

存在,则称函数f(x)在点x0 处可导, f'(x0) 称为其导数,或导函数。 若函数f(x)在其定义域包含的某区间内每一个点都可导,那么也可以说函数f(x)在这个区间内可导。连续函数不一定可导,可导函数一定连续。例如函数|x|为连续函数,但在点x = 0处不可导。

加法法则
y = f(x),z = g(x) 则

乘法法则

链式法则 求复合函数导数的一个法则,是在微积分中计算导数的一种常用方法。若 x ∈ R,y = g(x) ∈ R,z = f(y) ∈ R ,则

Logistic函数是一种常用的S形函数,是比利时数学家 Pierre François Verhulst在 1844-1845 年研究种群数量的增长模型时提出命名的,最初作为一种生 态学模型。 Logistic函数定义为:

当参数为 (k = 1, x0 = 0, L = 1) 时,logistic函数称为标准logistic函数,记 为 σ(x) 。

标准logistic函数在机器学习中使用得非常广泛,经常用来将一个实数空间的数映射到(0, 1)区间。标准 logistic 函数的导数为:

softmax函数是将多个标量映射为一个概率分布。对于 K 个标量 x1, · · · , xK , softmax 函数定义为

这样,我们可以将 K 个变量 x1, · · · , xK 转换为一个分布: z1, · · · , zK ,满足

当softmax 函数的输入为K 维向量x时,

其中,1K = [1, · · · , 1]K×1 是K 维的全1向量。其导数为

离散优化和连续优化 :根据输入变量x的值域是否为实数域,数学优化问题可以分为离散优化问题和连续优化问题。

无约束优化和约束优化 :在连续优化问题中,根据是否有变量的约束条件,可以将优化问题分为无约束优化问题和约束优化问题。 ### 优化算法

全局最优和局部最优

海赛矩阵

《运筹学里面有讲》,前面一篇文章计算梯度步长的时候也用到了: 梯度下降算法

梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。

梯度下降法
梯度下降法(Gradient Descent Method),也叫最速下降法(Steepest Descend Method),经常用来求解无约束优化的极小值问题。

梯度下降法的过程如图所示。曲线是等高线(水平集),即函数f为不同常数的集合构成的曲线。红色的箭头指向该点梯度的反方向(梯度方向与通过该点的等高线垂直)。沿着梯度下降方向,将最终到达函数f 值的局部最优解。

梯度上升法
如果我们要求解一个最大值问题,就需要向梯度正方向迭代进行搜索,逐渐接近函数的局部极大值点,这个过程则被称为梯度上升法。

概率论主要研究大量随机现象中的数量规律,其应用十分广泛,几乎遍及各个领域。

离散随机变量

如果随机变量X 所可能取的值为有限可列举的,有n个有限取值 {x1, · · · , xn}, 则称X 为离散随机变量。要了解X 的统计规律,就必须知道它取每种可能值xi 的概率,即

称为离散型随机变量X 的概率分布或分布,并且满足

常见的离散随机概率分布有:

伯努利分布

二项分布

连续随机变量
与离散随机变量不同,一些随机变量X 的取值是不可列举的,由全部实数 或者由一部分区间组成,比如

则称X 为连续随机变量。

概率密度函数
连续随机变量X 的概率分布一般用概率密度函数 p(x) 来描述。 p(x) 为可积函数,并满足:

均匀分布 若a, b为有限数,[a, b]上的均匀分布的概率密度函数定义为

正态分布 又名高斯分布,是自然界最常见的一种分布,并且具有很多良好的性质,在很多领域都有非常重要的影响力,其概率密度函数为

其中, σ > 0,µ 和 σ 均为常数。若随机变量X 服从一个参数为 µ 和 σ 的概率分布,简记为

累积分布函数
对于一个随机变量X,其累积分布函数是随机变量X 的取值小于等于x的概率。

以连续随机变量X 为例,累积分布函数定义为:

其中p(x)为概率密度函数,标准正态分布的累计分布函数:

随机向量
随机向量是指一组随机变量构成的向量。如果 X1, X2, · · · , Xn 为n个随机变量, 那么称 [X1, X2, · · · , Xn] 为一个 n 维随机向量。一维随机向量称为随机变量。随机向量也分为离散随机向量和连续随机向量。 条件概率分布 对于离散随机向量 (X, Y) ,已知X = x的条件下,随机变量 Y = y 的条件概率为:

对于二维连续随机向量(X, Y ),已知X = x的条件下,随机变量Y = y 的条件概率密度函数为

期望 对于离散变量X,其概率分布为 p(x1), · · · , p(xn) ,X 的期望(expectation)或均值定义为

对于连续随机变量X,概率密度函数为p(x),其期望定义为

方差 随机变量X 的方差(variance)用来定义它的概率分布的离散程度,定义为

标准差 随机变量 X 的方差也称为它的二阶矩。X 的根方差或标准差。

协方差 两个连续随机变量X 和Y 的协方差(covariance)用来衡量两个随机变量的分布之间的总体变化性,定义为

协方差经常也用来衡量两个随机变量之间的线性相关性。如果两个随机变量的协方差为0,那么称这两个随机变量是线性不相关。两个随机变量之间没有线性相关性,并非表示它们之间独立的,可能存在某种非线性的函数关系。反之,如果X 与Y 是统计独立的,那么它们之间的协方差一定为0。

随机过程(stochastic process)是一组随机变量Xt 的集合,其中t属于一个索引(index)集合T 。索引集合T 可以定义在时间域或者空间域,但一般为时间域,以实数或正数表示。当t为实数时,随机过程为连续随机过程;当t为整数时,为离散随机过程。日常生活中的很多例子包括股票的波动、语音信号、身高的变化等都可以看作是随机过程。常见的和时间相关的随机过程模型包括贝努力过程、随机游走、马尔可夫过程等。

马尔可夫过程 指一个随机过程在给定现在状态及所有过去状态情况下,其未来状态的条件概率分布仅依赖于当前状态。

其中X0:t 表示变量集合X0, X1, · · · , Xt,x0:t 为在状态空间中的状态序列。

马尔可夫链 离散时间的马尔可夫过程也称为马尔可夫链(Markov chain)。如果一个马尔可夫链的条件概率

马尔可夫的使用可以看前面一篇写的有意思的文章: 女朋友的心思你能猜得到吗?——马尔可夫链告诉你 随机过程还有高斯过程,比较复杂,这里就不详细说明了。

信息论(information theory)是数学、物理、统计、计算机科学等多个学科的交叉领域。信息论是由 Claude Shannon最早提出的,主要研究信息的量化、存储和通信等方法。在机器学习相关领域,信息论也有着大量的应用。比如特征抽取、统计推断、自然语言处理等。

在信息论中,熵用来衡量一个随机事件的不确定性。假设对一个随机变量X(取值集合为C概率分布为 p(x), x ∈ C )进行编码,自信息I(x)是变量X = x时的信息量或编码长度,定义为 I(x) = − log(p(x)), 那么随机变量X 的平均编码长度,即熵定义为

其中当p(x) = 0时,我们定义0log0 = 0 熵是一个随机变量的平均编码长度,即自信息的数学期望。熵越高,则随机变量的信息越多;熵越低,则信息越少。如果变量X 当且仅当在x时 p(x) = 1 ,则熵为0。也就是说,对于一个确定的信息,其熵为0,信息量也为0。如果其概率分布为一个均匀分布,则熵最大。假设一个随机变量X 有三种可能值x1, x2, x3,不同概率分布对应的熵如下:

联合熵和条件熵 对于两个离散随机变量X 和Y ,假设X 取值集合为X;Y 取值集合为Y,其联合概率分布满足为 p(x, y) ,则X 和Y 的联合熵(Joint Entropy)为

X 和Y 的条件熵为

互信息 互信息(mutual information)是衡量已知一个变量时,另一个变量不确定性的减少程度。两个离散随机变量X 和Y 的互信息定义为

交叉熵和散度 交叉熵 对应分布为p(x)的随机变量,熵H(p)表示其最优编码长度。交叉熵是按照概率分布q 的最优编码对真实分布为p的信息进行编码的长度,定义为

在给定p的情况下,如果q 和p越接近,交叉熵越小;如果q 和p越远,交叉熵就越大。

❷ 离散数学:一对一函数和映上函数,求答案,详细解答

数学是任何当代科学学科的基石。现代数据科学的几乎所有技术,包括机器学习,都有深厚的数学基础。

毫无疑问,想要成为一个顶级的数据科学家,需要在各个方面都具有优势如编程能力、一定的商业智慧、以及独特的分析能力等。但了解“引擎盖下的机械原理”总是有好处的。对算法背后的数学机制有一个深入的理解,将使你在同行中具有优势。

对于从其他行业(硬件工程、零售、化学加工工业、医药和卫生保健、商业管理等)进入数据科学领域的新人来说,这一基本数学知识尤为重要。虽然这类领域可能需要电子表格、数值计算和投影方面的经验,但数据科学所需的数学技能可能有很大的不同。

考虑web开发人员或业务分析人员。他们可能每天都要处理大量的数据和信息。数据科学应该是关于科学而不是数据。遵循这一思路,某些工具和技术就变得不可或缺。


  • 通过探测底层动态来建模一个过程

  • 形成假设

  • 严格评估数据源的质量

  • 量化数据和预测的不确定性

  • 从信息流中识别隐藏的模式

  • 理解模型的局限性

  • 理解数学证明及其背后的抽象逻辑

  • 数据科学,就其本质而言,并不局限于某一特定的学科领域,它可以处理各种各样的现象,如癌症诊断和社会行为分析。这就产生了令人眼花缭乱的n维数学对象数组、统计分布、优化目标函数等的可能性。

    函数、变量、方程和图形

    这一领域的数学涵盖了基础,从方程的二项式定理和一切之间:

  • 对数,指数,多项式函数,有理数

  • 基本几何和定理,三角恒等式

  • 实数和复数,基本性质

  • 系列、金额、不平等

  • 作图和绘图,笛卡尔坐标和极坐标,圆锥截面

  • 可能用到的地方

    如果您想了解在对百万条目的数据库进行排序之后,搜索是如何更快地运行的,那么您将会遇到“二分查找”的概念。要理解它的机制,你需要理解对数和递归方程。或者,如果你想分析一个时间序列,你可能会遇到“周期函数”和“指数衰减”这样的概念。

    统计数据

    掌握统计和概率的基本概念的重要性怎么强调都不过分。该领域的许多实践者实际上认为经典(非神经网络)机器学习只不过是统计学习。有重点的规划对于涵盖最基本的概念至关重要:

  • 数据汇总和描述性统计,集中趋势,方差,协方差,相关性

  • 基本概率:期望,概率微积分,贝叶斯定理,条件概率

  • 概率分布函数:均匀、正态、二项式、卡方、中心极限定理

  • 采样,测量,误差,随机数生成

  • 假设检验,A/B检验,置信区间,p值

  • 方差分析、t检验

  • 线性回归,正规化

  • 如果你已经掌握了这些概念,你将很快给人留下深刻印象。作为一名数据科学家,你几乎每天都会用到它们。

    线性代数

    这是数学的一个基本分支,用来理解机器学习算法如何在数据流上工作。从QQ上的好友推荐,到酷狗上的歌曲推荐,再到用深度转移学习将你的自拍照转换成萨尔瓦多·达利式的肖像,所有这些都涉及到矩阵和矩阵代数。以下是需要学习的基本数学:

  • 矩阵和向量的基本性质:标量乘法,线性变换,转置,共轭,秩,行列式

  • 内积和外积,矩阵乘法规则和各种算法,矩阵逆

  • 特殊矩阵:方阵,单位矩阵,三角矩阵,单位向量,对称矩阵,厄米矩阵,斜厄米矩阵和酉矩阵

  • 矩阵分解概念/LU分解,高斯/高斯-约当消去,解Ax=b线性方程组的方程

  • 向量空间,基底,空间,正交性,正交性,线性最小二乘法

  • 特征值,特征向量,对角化,奇异值分解

  • 如果你用过降维技术(主成分分析),那么你可能已经使用奇异值分解以更少的参数实现了数据集的紧凑维数表示。所有的神经网络算法都使用线性代数技术来表示和处理网络结构和学习操作。

    微积分

    不管你在大学里喜欢还是讨厌它,微积分在数据科学和机器学习中都有很多应用。这是一项极有价值的技能:

  • 函数的单变量、极限、连续性、可微性

  • 中值定理,不定式,洛必达法则

  • 最大值和最小值

  • 乘积与链式法则

  • 泰勒级数,无穷级数求和/积分的概念

  • 积分学的基本定理和中值定理,定积分和反常积分的计算

  • 函数

  • 多元函数,极限,连续性,偏导数

  • 常微分方程和偏微分方程基础

  • 想知道逻辑回归算法是如何实现的吗?它很有可能使用一种叫做“梯度下降”的方法来寻找最小损失函数。要理解它是如何工作的,您需要使用微积分的概念:梯度、导数、极限和链式法则。

    离散数学

    这一领域在数据科学中并不常见,但所有现代数据科学都是在计算系统的帮助下完成的,而离散数学是这些系统的核心。

  • 集合,子集

  • 计数函数,组合学,可数性

  • 基本的证明技巧:归纳法、反证法

  • 归纳、演绎和命题逻辑的基础

  • 基本数据结构:堆栈、队列、图形、数组、哈希表、树

  • 图的性质:连接的组成部分,程度,最大流量/最小切割的概念,图着色

  • 递推关系与方程

  • 在任何社会网络分析中,你需要知道一个图的属性和快速算法来搜索和遍历网络。在任何算法的选择中,你都需要理解时间和空间的复杂性。

    优化和运营研究课题

    这些主题在理论计算机科学、控制理论或操作研究等专业领域最为相关。但是对这些强大技术的理解也可以在机器学习的实践中取得丰硕的成果。实际上,每一种机器学习算法的目标都是使受各种约束的某种估计误差最小化,这是一个优化问题。以下是需要学习的数学:

  • 优化的基础,如何制定问题

  • 极大值,极小值,凸函数,全局解

  • 线性规划,单纯形算法

  • 整数规划

  • 约束规划,背包问题

  • 使用最小二乘损失函数的简单线性回归问题通常有精确的解析解,但是逻辑回归问题没有。要理解其中的原因,您需要熟悉优化中的“凸性”概念。这一系列的研究也将阐明为什么我们必须对大多数机器学习问题的“近似”解决方案保持满意。

    虽然有很多东西要学习,网上有很好的资源。在复习这些主题和学习新概念之后,你将有能力在日常数据分析和机器学习项目中听到隐藏的“音乐”。这是成为一个了不起的数据科学家的巨大飞跃。

    想了解更多精彩内容,快来关注老胡说科学