当前位置:首页 » 基础知识 » 初二下一次函数数学知识梳理
扩展阅读
最经典的键盘长什么样 2024-11-05 11:20:05
157平房子基础装修多少钱 2024-11-05 11:15:01

初二下一次函数数学知识梳理

发布时间: 2024-11-04 20:18:58

⑴ 初中数学函数知识点总结

函数是初中数学的重要知识点,接下来给大家总结初中数学函数重要知识点,一起看一下具体内容,供参考。

一次函数知识点

1.一次函数

如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数。

特别地,当b=0时,一次函数y=kx+b成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数。

2.一次函数的图像及性质

(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)。

(3)正比例函数的图像总是过原点。

(4)k,b与函数图像所在象限的关系:

当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

当k>0,b>0时,直线通过一、二、三象限;

当k>0,b<0时,直线通过一、三、四象限;

当k<0,b>0时,直线通过一、二、四象限;

当k<0,b<0时,直线通过二、三、四象限;

当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

二次函数知识点

1.二次函数表达式

(一)顶点式

y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标为(h,k),对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax²的图像相同,当x=h时,y最大(小)值=k。

(二)交点式

y=a(x-x₁)(x-x₂) [仅限于与x轴即y=0有交点时的抛物线,即b²-4ac>0]

函数与图像交于(x₁,0)和(x₂,0)

(三)一般式

y=aX²+bX+c=0(a≠0)(a、b、c是常数)

2.二次函数的对称轴

二次函数图像是轴对称图形。对称轴为直线x=-b/2a

对称轴与二次函数图像唯一的交点为二次函数图象的顶点P。

特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。

a,b同号,对称轴在y轴左侧;

a,b异号,对称轴在y轴右侧。

3.二次函数图像的对称关系

(一)对于一般式:

①y=ax2+bx+c与y=ax2-bx+c两图像关于y轴对称

②y=ax2+bx+c与y=-ax2-bx-c两图像关于x轴对称

③y=ax2+bx+c与y=-ax2-bx+c-b2/2a关于顶点对称

④y=ax2+bx+c与y=-ax2+bx-c关于原点中心对称。(即绕原点旋转180度后得到的图形)

(二)对于顶点式:

①y=a(x-h)2+k与y=a(x+h)2+k两图像关于y轴对称,即顶点(h,k)和(-h,k)关于y轴对称,横坐标相反、纵坐标相同。

②y=a(x-h)2+k与y=-a(x-h)2-k两图像关于x轴对称,即顶点(h,k)和(h,-k)关于x轴对称,横坐标相同、纵坐标相反。

③y=a(x-h)2+k与y=-a(x-h)2+k关于顶点对称,即顶点(h,k)和(h,k)相同,开口方向相反。

④y=a(x-h)2+k与y=-a(x+h)2-k关于原点对称,即顶点(h,k)和(-h,-k)关于原点对称,横坐标、纵坐标都相反。

⑵ 初二数学一次函数知识点归纳总结

初二对于学生来说是很重要的一个阶段,而一次函数是初二数学比较重要的章节,我整理了一些重要的知识点。

基本概念

1、变量:在一个变化过程中可以取不同数值的量。常量:在一个变化过程中只能取同一数值的量。

2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

定义

一次函数的定义:一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数。

函数的图像

一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象。

(1)k>0,b>0

(2)k>0,b<0

(3)k<0,b>0

(4)k<0,b<0

以上是我整理的一次函数的知识点,希望能帮到你。

⑶ 初二数学下册知识点

第一章 轴对称图形
1. 成轴对称的定义:
把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。

2. 轴对称图形的定义:
把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形是轴对称图形,这条直线就是对称轴。

3. 线段垂直平分线的定义:
垂直并且平分一条线段的直线,叫做这条线段的垂直平分线。

4. 轴对称的性质:
(1)成轴对称的两个图形全等.
(2)成轴对称的两个图形的对应线段相等,对应角相等.
(3)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线.

5. 关于线段:
(1)线段是轴对称图形,有两条对称轴,线段的垂直平分线是它的对称轴.
(2)线段垂直平分线的性质:
线段的垂直平分线上的点到线段两端的距离相等。
反过来:
到线段两端距离相等的点,在这条线段的垂直平分线上。

6. 关于角:
(1)角是轴对称图形,有一条对称轴,角平分线所在直线是它的对称轴.
(2)角平分线的性质:
角平分线上的点到角角的两边距离相等。
反过来:
角的内部到角的两边距离相等的点,在这个角的平分线上。

7. 关于等腰三角形:
(1)等腰三角形是轴对称图形,有一条对称轴,顶角平分线所在直线是它的对称轴.
(2)等腰三角形的两个底角相等(“等边对等角”)
(3)如果一个三角形有两个角相等,那么这两个角所对的边也相等(“等角对等边”)
(4)三线合一:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

8. 关于直角三角形:
(1)直角斜边上的中线等于斜边的一半。
(2)直角三角形中,30°角所对的直角边等于斜边的一半。
反过来:
在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角为30°.

9. 关于等边三角形:
(1)等边三角形是轴对称图形,有三条对称轴.
(2)等边三角形的判定: ①三边相等的三角形是等边三角形
②三个角相等的三角形是等边三角形
③两个角等于60°的三角形是等边三角形
④一个角等于60°的等腰三角形是等边三角形

10. 关于等腰梯形:
(1)等腰梯形是轴对称图形,过两底中点的直线是它的对称轴.
(2)等腰梯形的性质:
①等腰梯形在同一底上的两个角相等。
②等腰梯形的对角线相等。
(3)等腰梯形的判定:
①两腰相等的梯形是等腰梯形。
②在同一底上的两个角相等的梯形是等腰梯形。
③对角线相等的梯形是等腰梯形。

第二章 勾股定理与平方根

1. 勾股定理的定义:
直角三角形两直角边的平方和等于斜边的平方。
2. 判定直角三角形的方法:
如果三角形的三边长 、 、 满足 ,那么这个三角形是直角三角形。
3. 平方根的定义:
如果一个数的平方等于 ,那么这个数叫做 的平方根,也称为二次方根。也就是说,如果 ,那么 就叫做 的平方根。

4. 平方根的性质:
一个正数有两个平方根,它们互为相反数;
0只有一个平方根,是0;
负数没有平方根。

5. 算术平方根的定义:
正数 有两个平方根,其中正的平方根,也叫做 的算术平方根。

6. 立方根的定义:
如果一个数的立方等于 ,那么这个数叫做 的立方根,也称为三次方根。也就是说,如果 ,那么 就叫做 的立方根。

7. 立方根的性质:
正数的立方根是正数;
负数的立方根是负数;
0的立方根是0。

8. 无理数的定义:
无限不循环小数称为无理数。

9. 实数与数轴上的点一一对应。

第三章 第三章 中心对称图形(一)

1.旋转的定义:
在平面内,将一个图形绕一个定点转动一定的角度,这样的图形运动称为图形的旋转。这个定点称为旋转中心,旋转的角度称为旋转角。图形的旋转不改变图形的形状、大小。

2.旋转前后的图形全等,对应点到旋转中心的距离相等,每一对对应点与旋转中心的连线所成的角彼此相等

3.成中心对称的定义:
把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称。这个点叫做对称中心。两个图形中的对应点叫做对称点。

4.成中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分;
反过来:如果两个图形的对应点连成的线段都经过某一点,并且被这个点所平分,那么这两个图形一定关于这一点成中心对称。

5.中心对称图形的定义:
把一个平面图形绕着某一点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形。这个点就是它的对称中心。

6.关于平行四边形:
(1) 平行四边形的定义:
两组对边分别平行的四边形叫做平行四边形。
(2)平行四边形的性质:
①平行四边形是中心对称图形。
②平行四边形的对边相等。
③平行四边形的对角相等。
④平行四边形的对角线互相平分。
(3)平行四边形的判定:
①两组对边分别平行的四边形是平行四边形。
②两组对边分别相等的四边形是平行四边形。
③一组对边平行且相等的四边形是平行四边形。
④两组对角分别相等的四边形是平行四边形。
⑤两条对角线互相平分的四边形是平行四边形。

7.关于矩形:
(1)矩形的定义:
有一个角是直角的平行四边形叫做矩形。
(2)矩形的特殊性质:
①矩形既是轴对称图形,又是中心对称图形。
②矩形的四个角都是直角。
③矩形的对角线相等。
(3)矩形的判定:
①有一个角是直角的平行四边形是矩形。
②三个角是直角的四边形是矩形。
③对角线相等的平行四边形是矩形。

8.关于菱形:
(1)菱形的定义:
有一组邻边相等的平行四边形叫做菱形。
(2)菱形的特殊性质:
①菱形既是轴对称图形,又是中心对称图形。
②菱形的四条边都相等。
③菱形的对角线互相垂直。
(3)菱形的判定:
①有一组邻边相等的平行四边形是菱形。
②四条边相等的四边形是菱形。
③对角线垂直的平行四边形是菱形。

9.关于正方形:
(1)正方形的特殊性质:
①正方形是特殊的平行四边形。
②正方形是特殊的矩形。
③正方形是特殊的菱形。
④正方形既是轴对称图形,又是中心对称图形。
(2)正方形的判定:
①有一组邻边相等的矩形是正方形。
②对角线垂直的矩形是正方形。
③有一个角为直角的菱形是正方形。
④对角线相等的菱形是正方形。

⑷ 初二数学一次函数知识点归纳是什么

1、函数概念。

在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说x是自变量,y是x的函数。

2、一次函数和正比例函数的概念。

若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数。

说明:

(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定。

(2)一次函数y=kx+b(k,b为常数,b≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x的次数为1,一次项系数k必须是不为零的常数,b可为任意常数。

(3)当b=0,k≠0时,y=b仍是一次函数。

(4)当b=0,k=0时,它不是一次函数。

⑸ 初二数学一次函数知识点有哪些

初二数学一次函数知识点归纳有:

1、正比例函数和一次函数的概念


基础知识归纳:一般地,如果y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数。特别地,当一次函数y=kx+b中的b为0时,y=kx(k为常数,k≠0)。这时,y叫做x的正比例函数。


基本方法归纳:判断一个函数是否是一次函数关键是看它的k是否不为0和自变量指数是否为1;而要判断是否为正比例函数还要在一次函数基础上加上b=0这个条件。





2、一次函数的图像


基础知识归纳:所有一次函数的图像都是一条直线;一次函数y=kx+b的图像是经过点(0,b)的直线。


正比例函数y=k/x的图像是经过原点(0,0)的直线。


k>0,b>0时,图像经过一、二、三象限,y随x的增大而增大。


k>0,b<0时,图像经过一、三、四象限,y随x的增大而增大。


k<0,b>0时,图像经过一、二、四象限,y随x的增大而减小。


k<0,b<0时,图像经过二、三、四象限,y随x的增大而减小。


当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。


基本方法归纳:一次函数y=kx+b是由正比例函数y=kx上下平移得到的,要判断一次函数经过的象限,再由b的正负得向上平移还是向下平移,从而得出所过象限。而增减性只由k的正负决定,与b的取值无关。

3、正比例函数和一次函数解析式的确定


基础知识归纳:确定一个正比例函数,就是要确定正比例函数定义式y=kx(k≠0)中的常数k。确定一个一次函数,需要确定一次函数定义式y=kx+b(k≠0)中的常数k和b。解这类问题的一般方法是待定系数法。


4、一次函数图象与坐标轴围成的三角形的面积


基础知识归纳:直线y=kx+b与x轴的交点坐标和与Y轴的交点坐标;能求直线与两坐标轴围成的三角形的面积。


5、一次函数的应用


基础知识归纳:主要涉及到经济决策、市场经济等方面的应用.利用一次函数并与方程(组)、不等式(组)联系在一起决实际生活中的利率、利润、租金、生产方案的设计问题。


基本方法归纳:利用函数知识解应用题的一般步骤:


(1)设定实际问题中的变量。


(2)建立变量与变量之间的函数关系,如:一次函数,二次函数或其他复合而成的函数式。


(3)确定自变量的取值范围,保证自变量具有实际意义。


(4)利用函数的性质解决问题。


(5)写出答案。


注意问题归纳:读图时首先要弄清横纵坐标表示的实际意义,还要会将图像上点的坐标转化成表示实际意义的量;自变量取值范围要准确,要满足实际意义。

⑹ 初中数学函数知识点归纳

函数在初中数学中分值占比较大,一次函数、二次函数和反比例函数都会考查,所以我归纳了有关初中数学函数的知识点,赶快记起来吧!

一次函数知识归纳

(1)一次函数

如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数。

特别地,当b=0时,一次函数y=kx+b成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数。

(2)一次函数的图象

一次函数y=kx+b的图象是一条经过(0,b)点和点的直线。

特别地,正比例函数图象是一条经过原点的直线。

需要说明的是,在平面直角坐标系中,“直线”并不等价于“一次函数y=kx+b(k≠0)的图象”,因为还有直线y=m(此时k=0)和直线x=n(此时k不存在),它们不是一次函数图象。

(3)一次函数的性质

当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

直线y=kx+b与y轴的交点坐标为(0,b),与x轴的交点坐标为。

(4)用函数观点看方程(组)与不等式

①任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:一次函数y=kx+b(k,b为常数,k≠0),当y=0时,求相应的自变量的值,从图象上看,相当于已知直线y=kx+b,确定它与x轴交点的横坐标。

②二元一次方程组对应两个一次函数,于是也对应两条直线,从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数值相等,以及这两个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线的交点的坐标。

③任何一元一次不等式都可以转化ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,解一元一次不等式可以看做:当一次函数值大于0或小于0时,求自变量相应的取值范围。

反比例函数知识点总结

(1)反比例函数:如果(k是常数,k≠0),那么y叫做x的反比例函数。

(2)反比例函数的图象:反比例函数的图象是双曲线。

(3)反比例函数的性质

①当k>0时,图象的两个分支分别在第一、三象限内,在各自的象限内,y随x的增大而减小。

②当k<0时,图象的两个分支分别在第二、四象限内,在各自的象限内,y随x的增大而增大。

③反比例函数图象关于直线y=±x对称,关于原点对称。

(4)k的两种求法

①若点(x0,y0)在双曲线上,则k=x0y0。

②k的几何意义:若双曲线上任一点A(x,y),AB⊥x轴于B,则S△AOB。

(5)正比例函数和反比例函数的交点问题

若正比例函数y=k1x(k1≠0),反比例函数,则

当k1k2<0时,两函数图象无交点;

当k1k2>0时,两函数图象有两个交点,由此可知,正反比例函数的图象若有交点,两交点一定关于原点对称。

二次函数知识点

1.二次函数

如果y=ax2+bx+c(a,b,c为常数,a≠0),那么y叫做x的二次函数。

几种特殊的二次函数:y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h)2(a≠0)。

2.二次函数的图象

二次函数y=ax2+bx+c的图象是对称轴平行于y轴的一条抛物线。

由y=ax2(a≠0)的图象,通过平移可得到y=a(x-h)2+k(a≠0)的图象。

3.二次函数的性质

二次函数y=ax2+bx+c的性质对应在它的图象上,有如下性质:

(1)抛物线y=ax2+bx+c的顶点是,对称轴是直线,顶点必在对称轴上;

(2)若a>0,抛物线y=ax2+bx+c的开口向上,因此,对于抛物线上的任意一点(x,y),当x<0时,y随x的增大而减小;当x>0时,y随x的增大而增大;当x=0,y有最小值;

若a<0,抛物线y=ax2+bx+c的开口向下,因此,对于抛物线上的任意一点(x,y),当x<0,y随x的增大而增大;当x>0时,y随x的增大而减小;当x=0时,y有最大值;

(3)抛物线y=ax2+bx+c与y轴的交点为(0,c);

(4)在二次函数y=ax2+bx+c中,令y=0可得到抛物线y=ax2+bx+c与x轴交点的情况:

当△=b2-4ac>0,抛物线y=ax2+bx+c与x轴有两个不同的公共点,它们的坐标分别是A(x1,0)和B(x2,0),这两点的距离为AB=|x2-x1|;当△=0时,抛物线y=ax2+bx+c与x轴只有一个公共点,即为此抛物线的顶点;当△<0时,抛物线y=ax2+bx+c与x轴没有公共点。

4.抛物线的平移

抛物线y=a(x-h)2+k与y=ax2形状相同,位置不同.把抛物线y=ax2向上(下)、向左(右)平移,可以得到抛物线y=a(x-h)2+k.平移的方向、距离要根据h、k的值来决定。