当前位置:首页 » 基础知识 » 数学知识问答选择题三生级
扩展阅读
最经典的键盘长什么样 2024-11-05 11:20:05
157平房子基础装修多少钱 2024-11-05 11:15:01

数学知识问答选择题三生级

发布时间: 2024-11-04 15:49:05

① 数学和哲学之间是什么关系

世界上数字逻辑推理学,从0十0到1十1至之几%的华陆坚分数发展为代数与牛屯的数字力学的推算法设计出当代最有价值的《数字力学能》。这些算不算是与哲学有所牵连呢。

数字逻辑与哲学论理从整体来说是有关系的。原因是哲学论理就是科学与 科技 研究发明创造成果的过程!而在研究某种高 科技 产品的过程中,必需要有数据数学原理去论证,才能有依据实现完成所研发的项目。这是自然发展中的必然!

因此,数学与哲学互相有关系的“情侣”。缺一就不能成就现代高 科技 产品的产生。这就是问题回答了。

数学是一切科学的基础,数学也是哲学的基础。

为什么说数学是一切科学的基础?不管是物理、化学、生物等所有科学分科,都要用到数学。物理要计算力的大小,需要数学知识,化学、生物进行实验,也要精确计算实验材料,其他的如温度、重量、密度等,都需要数字来表示,或用数学来计算。

为什么说数学是哲学的基础,因为哲学也属于科学的一种,根据三段论自然可以推导出数学也是哲学的基础。但今天我不打算用三段论的逻辑来推理。我认为哲学的核心是:怎么理解“人之所以为人”,人怎么来看待这个世界,所以说哲学是一门人怎么看待世界的学问。我认为人是通过数学来看世界的,所以数学是哲学的基础。

数学是哲学的婢女

在古希腊,哲学家大都格外重视数学。很多伟大的人物既是哲学家又是数学家,比如,毕达哥拉斯,他在当时的哲学家当中是最推崇数学,在数学上成就最大的人。他和他的学派认为,1是最神圣的数字,一生二,二生诸数,数生点,点生线,线生面,面生体,体生万物,也就是说数是万物的本源,数的规律统治万物。其实我们古代也有“一生二、二生三、三生万物”的说法,也是万物皆数的哲学思想,当然,“万物皆数”在今天看来,是片面不严谨的,但在一定程度上也体现了,数学跟这个世界,跟人生哲学的关系。

历史 上很多知名的数学家也是有影响的哲学家,他们既研究数学也研究哲学。

古希腊的泰勒斯(约公元前624一前547),他是着名的哲学家,希腊几何学的鼻祖,也是天文学家。

古希腊的毕达哥拉斯(约公元前580一前497),他是古希腊数学家、天文学家、哲学家,还是音乐理论家。他的学派发现了毕达哥拉斯定理(即勾股定理),他们的哲学基础是“万物皆数”,在他们的精神世界里,不能没有数学。

哲学家柏拉图(前428一前348)对严密定义和逻辑证明的坚持,促进了数学的科学化。哲学家亚里士多德(前384一前322),他也是逻辑学的创始人,却为几何学奠定了巩固的基础。他的公理化思想促进了几何学的诞生和发展。

法国的笛卡儿(1596—1650),他是数学家、哲学家、物理学家,解析几何的奠基人之一。他于17世纪上半叶划时代地在数学中引进了变量的概念和运动的观点,被恩格斯赞誉为是“数学的转折点”,它导致了微积分的诞生,进而推动了自然科学的发展。《几何学》虽是这位着名哲学家唯一的一篇数学着作,然而它的 历史 价值却使笛卡儿的名字在数学史卷上写下了重重的一笔。

德国的莱布尼兹((1646—1716),他是世界着名的数学家、哲学家、逻辑学家,是 历史 上少见的通才,被誉为是“十七世纪的亚里士多德”。在数学上,他独立创建了微积分,并发明了优越的微积分符号。在哲学上,莱布尼兹的乐观主义最为着名,比如他认为,“我们的宇宙,在某种意义上是上帝所创造的最好的一个。”他和笛卡尔、巴鲁赫·斯宾诺莎被认为是十七世纪三位最伟大的理性主义哲学家。我们常说的“世界上没有两片完全相同的树叶”即是他的名言。

数学史上的三次“数学危机”都与哲学有关:

哲学家芝诺于公元前5世纪提出了几个着名的悖论,加之西帕索斯对无理数的发现,使人们对于数学能否成为一门科学产生怀疑,这就是第一次“数学危机”;由于初期的微积分逻辑上的缺陷,围绕微积分基础开始了大论战。英国的唯心主义者大主教贝克莱对微积分的攻击最为激烈,数学家、哲学家和神学家都纷纷介入,引起了第二次“数学危机”;哲学家罗素在集合论中发现的“罗素悖论”,震动了整个数学界,引起了数学界、哲学界激烈的争论,史称第三次“数学危机”。

物理的尽头是数学,数学的尽头是哲学,哲学的尽头是神学?

物理和数学,它们有个本质性的区别:物理是经验性的真理体系,可以被实验推翻;数学是先验的真理体系,不可能被实验推翻。

数学最明显的本质,就是它是一种先验的真理体系,不是经验科学。物理、化学、生物等科学门类,正确性是由实验来判定的,公认多年的“真理”被进一步的实验证伪是经常发生的事,如牛顿力学被相对论与量子力学否定。数学却跟实验没有关系,你不可能通过数一数,看1个苹果加1个苹果是不是等于2个苹果,来判断1+1是否等于2。

数学本身是一个具象化的东西,它是对实际存在的一个统计、演示过程,但是人类科学的发展,除了需要这种具象化的工具和手段,同时也需要抽象思考来对任何未知可能进行诠释和预设。抽象的思考要超前于现有数据模型,去假设未知模型,这是一种数字宇宙发展的前瞻性设计,这种超越当下、现实,透过现象 探索 本质的天马行空又依之有据的思辨性思考,可以引领数学的发展。但是由于哲学的唯心主义特征,它的本质是脱离现象和具象化,天地万物和宇宙规律这样一个看上去的数学模型实体,在不受物理定律约束的精神世界里,本身变得毫无意义。因为哲学的本质就是拨云见日,撕掉一切表象去发现人生意义的本质,当数学建构的一切模型和轨迹,被哲学思辨追根溯源后,就显得无比虚妄和毫无意义。

神学不同于哲学的地方是,哲学是超脱现实、怀疑一切的精神世界;神学是超脱现实,万念归一的精神世界。当哲学越深入越漫无目的时,精神陷入枯竭疲惫,就容易走向有皈依、有目的的神学之境。世界原本就是一个返璞归真的过程,宋代禅宗大师青原行思提出参禅的三重境界:参禅之初,看山是山,看水是水;禅有悟时,看山不是山,看水不是水;禅中彻悟,看山仍然山,看水仍然是水。其实就是人类发展的铁律。

在人类 探索 物理时,神学既荒谬又可笑,当物理的发展步伐跟不上人类的精神需要时,人类开始更高境界的哲学思考。当哲学思考到了无路可走时,才发现神学原来是人类精神和生命意义的最后归属。

数学与哲学的关系:是对立统一关系

数学和哲学,几乎同时诞生于遥远的古希腊,共同构成了那个时代文明的骄傲,它们在 历史 上有着千丝万缕的联系,也一直寄托着彼时人们对生活和精神的向往。

1.曾经,它们唇齿相依

公元前三世纪,柏拉图在他的学园入口处写道:“不懂几何者,禁止入内。”

作为古希腊的哲学先贤,柏拉图认为数学就是理性哲学的前提条件。数学和哲学,就这样第一次携手走进了柏拉图的理性乐园,也奠定了西方两千年理性文明的基础。柏拉图的影响波及后世无数杰出的数学家和哲学家,比如笛卡尔、斯宾诺莎、康德等等都是柏拉图信念坚定的支持者。

柏拉图之所以赋予数学如此重要的地位,将它视作理性主义的基石,其根源在于数学有着超越其他学科的先天优势。数学成了哲学的前提,但是它们又有本质的不同。哲学的基础是数学,却又高于数学。

2.近代数学与哲学:共同成长的热恋期

在哲学家的思想深处里,他们的理念往往是通过数学的圆满来实现的,比如在哲学思辨中大名鼎鼎的反证法,就是一个源自数学创造的关键工具。曾经提出“我思故我在”的法国大数学家笛卡尔,是现代哲学的奠基者。他同时也在现代数学史上有着自己独一无二的坐标,以发明“解析几何“而名垂青史。他基于悖谬推理的数学论证来逐步展开他的哲学蓝图。这种推理形式就是数学的本质。

17世纪的哲学家斯宾诺莎,认为哲学知识如果没有数学的辅助,人们将无法抵达理性的境界。他的名着《伦理学》采用了类似欧几里得的《几何原本》的结构,赋予其哲学严谨的公理体系和推理证明。从斯宾诺莎开始,哲学开始具有某种几何学的特征,其论证方式因为自然和严谨深受理性主义哲学家的喜爱。以《利维坦》奠定现代政治学基础的哲学家霍布斯也采用了相同的推理结构。他们的思想都受到牛顿通过数学建立自然哲学的启发,这再一次将数学和哲学紧密地联系在一起。

一个世纪后,德国大哲学家康德在《纯粹理性批判》里更是强调了数学的重要作用。一如当年牛顿对数学的高度评价“没有数学,就不会有任何自然科学”一样,康德指出批判哲学的存在完全依赖于数学的理性推导。

后世很多杰出的数学家,也同样是伟大的哲学家,比如19世纪的大数学家戴德金、康托,以及庞加莱,他们都是从对数学的思考中绽放出哲学理性主义的光辉。

3.蜜月期的结束:巨大的分歧

尽管数学对哲学产生巨大的推动,人们在数学的概念上却产生了分歧,这一分歧导致了后世对数学于哲学的重要意义有了不同的解读。

第一种观点继承了柏拉图的实在论,人们认为数学是独立于我们而存在的对象。这也是自古希腊时代就被人们认可的理念。另外一种观点则将数学归于形式论的范畴,这一派认为数学仅仅是一种纯粹的人为创造,尤其是形式语言的创造。典型的代表人物如维特根斯坦,他将数学视为众多语言 游戏 中的一种,并不具备真正的普遍性,人们不能把数学绝对化。 西方哲学的主流开始抛弃了柏拉图的实在哲学,不再将数学推理纳入其思考的体系 。从黑格尔到尼采,直至萨特的存在主义,哲学上的浪漫主义远离了分析证明的理性。

与此同时,很多哲学大家仍然支持数学对哲学不可替代的作用。康德尽管相信数学是某种先验的形式论,但他认为数学的普遍性毋庸置疑。他和笛卡尔、斯宾诺莎一样,坚持认为数学的出现为科学铺平了道路。

后来,它们分道扬镳时至今日,数学和哲学渐行渐远,构成了人们对生活认知的两级。

一点感悟

可以说,哲学是研究世界观的学问,是自然知识和 社会 知识的总结,当然离不开自然科学; 而自然科学是一种认识活动,离不开理论思维,离不开世界观的指导。数学是研究空间形式和数量关系的科学。数学作为自然科学中的一支,它逻辑的严密性、高度的抽象性、应用的广泛性,决定了与哲学有着更为密切的联系。

哲学和自然科学具有一般和个别、普遍和特殊的关系,二者是辩证的统一而又有区别。二者相互依赖,相互影响,不能互相替代。数学作为自然科学中的一支,它的逻辑的严密性、高度的抽象性、应用的广泛性,决定了与哲学有着更为密切的联系。不仅 社会 科学及其它科学中充满着矛盾,数学中也充满着矛盾。哲学作为世界观,为数学提供正确的指导思想; 哲学作为方法论,为数学提供伟大的认识工具和 探索 工具。

数学和哲学,应该再度携起手来,为世人共同带来更多理性的光芒,更多灵魂的护航。让我们再回头看看柏拉图的学园入口,“不懂几何者,禁止入内”。其实,柏拉图想告诉人们的,不懂数学的人不能进入的,不是他的学园,而是哲学的殿堂。

数学和哲学,几乎同时诞生于遥远的古希腊,共同构成了那个时代文明的骄傲,

它们在 历史 上有着千丝万缕的联系,也一直寄托着彼时人们对生活和精神的向往。

1.古希腊时代:数学与哲学的第一次相遇

公元前三世纪,柏拉图在他的学园入口处写道:“不懂几何者,禁止入内。”

柏拉图学园

作为古希腊的哲学先贤,柏拉图认为数学就是理性哲学的前提条件。数学和哲学,就这样第一次携手走进了柏拉图的理性乐园,也奠定了西方两千年理性文明的基础。柏拉图的影响波及后世无数杰出的数学家和哲学家,比如笛卡尔、斯宾诺莎、康德等等都是柏拉图信念坚定的支持者。

从此,数学和哲学就紧密地联系在了一起。 数学成了哲学的前提,但是它们又有本质的不同。哲学的基础是数学,却又高于数学。

2.近代数学与哲学:共同成长的热恋期

在哲学家的思想深处里,他们的理念往往是通过数学的圆满来实现的 ,比如在哲学思辨中大名鼎鼎的反证法,就是一个源自数学创造的关键工具。

笛卡尔(1596年 - 1650年)

曾经提出“我思故我在”的法国大数学家笛卡尔,是现代哲学的奠基者。他同时也在现代数学史上有着自己独一无二的坐标,以发明“解析几何“而名垂青史。他基于悖谬推理的数学论证来逐步展开他的哲学蓝图。这种推理形式就是数学的本质。

17世纪的哲学家斯宾诺莎,认为哲学知识如果没有数学的辅助,人们将无法抵达理性的境界。以《利维坦》奠定现代政治学基础的哲学家霍布斯也采用了相同的推理结构。他们的思想都受到牛顿通过数学建立自然哲学的启发,这再一次将数学和哲学紧密地联系在一起。

一个世纪后,德国大哲学家康德在《纯粹理性批判》里更是强调了数学的重要作用。一如当年牛顿对数学的高度评价“没有数学,就不会有任何自然科学”一样,康德指出批判哲学的存在完全依赖于数学的理性推导。

后世很多杰出的数学家,也同样是伟大的哲学家,比如19世纪的大数学家戴德金、康托,以及庞加莱,他们都是从对数学的思考中绽放出哲学理性主义的光辉。

3.蜜月期的结束:巨大的分歧

尽管数学对哲学产生巨大的推动,人们在数学的概念上却产生了分歧,这一分歧导致了后世对数学于哲学的重要意义有了不同的解读。

第一种观点继承了柏拉图的实在论,人们认为 数学是独立于我们而存在的对象 。这也是自古希腊时代就被人们认可的理念。

另外一种观点则将数学归于形式论的范畴,这一派认为 数学仅仅是一种纯粹的人为创造,尤其是形式语言的创造 。典型的代表人物如维特根斯坦,他将数学视为众多语言 游戏 中的一种,并不具备真正的普遍性,人们不能把数学绝对化。这场思辨源于19世纪非欧几何的诞生。统治几何学两千多年的欧几里得公理一度被颠覆,给彼时的人们带来巨大的思想震撼。一时间,“公理都会改变“的事实动摇了人们对数学的信仰。这引起了一些人对数学普遍性更为深入的思考。基于此, 维特根斯坦认定哲学并不依从于数学,数学中也并没有揭示人类存在的真理

后来,数学与哲学,它们分道扬镳。

时至今日,数学和哲学渐行渐远,构成了人们对生活认知的两级。

作者 :黄逸文(中国科学院数学与系统科学研究院)

出品 :科学大院

哲学是隐性的数学;数学是显性的哲学!

哲学是对事物最基础的普遍性的抽象;数学是对事物最基础的普遍性的抽象的直观。

当“事物”处于抽象时,人们的思绪可以天马行空自由驰骋,因此也就有了起劲发现“不足、毛病”的欲望;抽象的“事物”一旦“直观”显发出来时,人们却又立马羞涩得不好意思了!

数学和哲学是:数理关系。它们是谁也离不谁的,有时侯是很微妙的,如物理.化学。

数学和哲学看似没有联系 ,其实并非如此。当我们回顾数学史和哲学史的时候 , 就会发现一些有趣的现象: 一是很多人既是数学家又是哲学家,例如 毕达哥拉斯、柏拉图、笛卡儿、莱布尼 兹、罗素、希尔伯特等人 。 二是有些哲学家虽然不是数学家 ,但也会精通数学知识,例如 ,黑格尔、马克思、恩格斯等。这些有趣的现象说明数学和哲学有着密切的关系。

首先,在古代 ,数学其实是哲学的一部分。在古代 ,哲学和科学还没有分开 ,它们处于浑然一体之中 ,哲学是包括一切理论科学在内的知识总汇,是笼统的直观感觉。 数学从哲学中分离出来 ,比其他科学分离时间要早。 在亚历山大时期几何学开始脱离哲学,导致这种分离的原因是数学在工程方面的应用。

其次,数学和哲学都有高度的抽象性。

数学有高度的抽象性,它仅仅从量的方面进行研究。 例如,直线的概念 ,并不是指现实世界中拉紧的线 , 而是把现实的线的质量、 弹性、粗细等具体性质都撇开 ,只留下了“向两方无限伸长”这一抽象的属性。数学的抽象性包含三个特点: 首先 ,它舍弃了事物的具体内容 ,而只保留了空间形式和数量关系。 其次 ,数学的抽象是经过一系列的阶段而形成的。 再次 ,不仅数学概念是抽象的 ,而且数学方法也是抽象的。数学研究方法主要是思维方法 ,而且 表述数学的研究成果即数学理论只能用演绎方法。

哲学也是高度抽象的学科 , 它的提象性主要表现在: 第一 ,从哲学研究的对象是关于世界观的学问 ,是系统化、理论化的世界观,是经过了抽象、概括的东西。哲学不仅要对关于整个世界的一般问题作出回答 ,提出一定的观点,还要对这些观点作出理论的解释和逻辑的论证。所以哲学的研究对象是抽象的。 第二 ,从哲学和具体科学的关系来看 ,哲学是自然知识、 社会 知识和 思维知识的概括与总结。具体的自然知识、 社会 知识和思维知识只是关于世界某一局部领域的规律性知识 ,哲学则是从这些具体科学知识中抽象概括出来的最一般的知识。 所以哲学比具体科学更抽象。第三 ,从哲学的基本问题来看 ,哲学的基本问题是物质和意识的关系问题。 数学和哲学都有高度的抽象性 ,这是它们共同的特点 ,也是它们相通之处,哲学比数学的抽象化程度更高。

再次,从古代、近代到现代 ,数学始终影响着哲学,哲学家用数学的成果来论证哲学思想 , 或者对数学的成果进行抽象概括 ,建立哲学理论。 在古代 ,哲学家的任务是探求宇宙本体的奥秘。古代哲学的中心问题是本体论。毕达哥拉斯认为 ,世界万物的本原是数,他的数本说的哲学思想明显受到了数学的影响。 在近代 ,哲学家的任务是 探索 认识规律和人的认识界限。 近代哲学的中心问题是认识论对认识规律的不同认识 ,产生了唯理论和经验论两大学派 ,但这两大学派都受到了数学的影响。 唯理论的哲学家笛卡儿和莱布尼兹都是卓越的数学家。与唯理论相对立的经验论哲学学派 ,也受到了数学的影响。总之数学始终影响着哲学的发展 ,数学以其成果推动着人类哲学思想的发展。

最后,哲学对数学有着巨大的影响。 数学的发生和发展 ,归根结底是由生产决定的-。 哲学思想通过数学家而影响其研究成果的获得。正确的哲学思想对数学的发展起促进作用 ,错误的哲学思想对数学的发展起阻碍作用。

总而言之 ,数学和哲学有着密切的联系,没有哲学 ,固然难以得知数学的深度 ,然而没有数学 ,也同样无法探知哲学的深度 ,两者互相依存。

人类进化齐眼耳口鼻大脑皮肤之前,是靠的那六种感官凭条件反射觅的食。

这也是动物活着的方法。

当能初步果腹,有了多余的食物吃不完扔了可惜(由大脑指挥的一一哲思),剩余可互换所需,结绳节计数定多少(数学登台了), 社会 形成了。

这是人类第一次伟大的和平,交换剩余价值,不打抢,不战争(推翻了弱肉强食邪说)。

人类第一次将集体力量,对向了大自然。

哲学与数学离不开,同时产生的。共同引导了人类战胜大自然。

哲学引导了数学,数学以及各学科验证了哲学。

哲学是导航塔,科学是护航人。

我想简短的说这一关系,数学是哲学的低级表现,哲学是数学和其它任何学科的指导。例如,在数学里,众多的数可以组成一条延伸的线,这就是哲学里的量变到质变的定律。又如,数学里,1+1=2,这是不变的。而在哲学里可以等于2,也可大于2,也可小于2,这里就出现了矛盾的多样性,数学是不能解决的。所以这时就体现了哲学的全面性。

所以数学是哲学的低级表现,哲学起指导和决定的作用。

1.数学和哲学即存在联系又相互区别:因为他们都是对客观事物的反应,因此,数学和哲学都是对物质世界的一种发现,必然存在联系;而他们之间又有区别,因为客观事物在发展,客观事物的表象也不仅相同,因此反映到数学和哲学上,必然有所不同;

2.说数学是研究数量、结构、变化以及空间模型等概念的一门学科,是不尽然的,数学中的有的研究方法也适用于哲学;同样的,哲学中的方法论也对研究数学又所启迪和帮助;因此,数学和哲学在某种程度上是可以互补和转化的,因为客观事物之间也是可以互补和转化的. 数学和哲学即存在联系又相互区别:因为他们都是对客观事物的反应,因此,数学和哲学都是对物质世界的一种发现,必然存在联系;而他们之间又有区别,因为客观事物在发展,客观事物的表象也不仅相同,因此反映到数学和哲学上,必然有所不同;

3 .说数学是研究数量、结构、变化以及空间模型等概念的一门学科,是不尽然的,数学中的有的研究方法也适用于哲学;同样的,哲学中的方法论也对研究数学又所启迪和帮助;因此,数学和哲学在某种程度上是可以互补和转化的,因为客观事物之间也是可以互补和转化的.

数学是绝对的,1+1=2,也只能是1加1等于2,而哲学可以把1加1说成等于任何数!