A. 数学四年级小知识
少年得到北大学霸的数学培优课(四年级)(标清视频)网络网盘
链接:
若资源有问题欢迎追问~
B. 小学四年级下册北大绿卡(北师大版)数学题【要列方程解应用题(也要写设)】
设长方形的宽是x厘米
(x+2x)*2=30
x=5
宽是5厘米,长就是10厘米
面积是10*5=50平方厘米
设小客机每时飞行x米
4x-320=1080
4x=1400
x=350
答,小客机每小时飞行350千米,是350000米
设笑笑x岁
x+27=4x
3x=27
x=9
4*9=36
答笑笑9岁,妈妈36岁
设乙每小时行x千米
20x-36*20=50
20x=770
x=38.5
答乙每小时38.5千米
C. 四年级上册数学北大知识点
(北师大版)四年级数学上册教案 知识点
第一单元《认识更大的数》
数一数
知识点:
1、认识数级、数位、计数单位,并了解它们之间的对应关系。
数级
……
亿级
万级
个级
数位
……
千亿位
百亿位
十亿位
亿
位
千万位
百万位
十万位
万
位
千
位
百
位
十
位
个
位
计数单位
……
千亿
百亿
十亿
亿
千万
百万
十万
万
千
百
十
个
2、十进制计数法。相邻两个计数单位之间的进率是十,也就是十进
制关系。
3、数数。能一万一万地数,十万十万地数,一百万一百万地数……
人口普查(亿以内数的读法、写法)
知识点:
1、亿以内数的读数方法。
含有个级、万级和亿级的数,必须先读亿级,再读万级,最后读个级。(即从高位读起)亿级或万级的数都按个级读数的方法,在后面要加上亿或万。在级末尾的零不读,在级中间的零必须读。中间不管有几个零,只读一个零。
2、亿以内数的写数方法。
从高位写起,按照数位的顺序写,中间或末尾哪一位上一个也没有,就在那一位上写0。
3、比较数大小的方法。
多位数比较大小,如果位数不同,那么位数多的这个数就大,位数少的这个数就小。如果位数相同,从左起第一位开始比起,哪个数字大,哪个数就大。如果左起第一位上的数相同,就开始比第二位……直到比出大小为止。
国土面积(多位数的改写)
知识点:
1、改写以“万”或“亿”为单位的数的方法。
以“万”为单位,就要把末尾的四个0去掉,再添上万字;以“亿”为单位,就要把末尾八个0去掉,再添上亿字。
2、改写的意义。
为了读数、写数方便。
森林面积(求近似数)
知识点:
1、精确数与近似数的特点。
精确数一般都以“一”为单位,近似数都是省略尾数,以“万”或“亿”为单位。
2、用四舍五入法保留近似数的方法。
根据题中要求,看到所要保留位数的下一位,如果这一位满5,则向前一位进一;如果不够5则舍去。而不管尾数的后几位是多少。如精确到万位,只看千位,精确到亿位,只看到千万位。最后一定要写出单位名称。
二单元《线与角》
线的认识
知识点:
1、认识直线、线段与射线,会用字母正确读出直线、线段和射线。
直线:可以向两端无限延伸;没有端点。读作 :直线AB或直线BA。
线段:不能向两端无限延伸;有两个端点。读作:线段AB或线段BA。
射线:可以向一端无限延伸;有一个端点。读作:射线AB(只有一种读法,从端点读起。)
补充知识点:
2、画直线。
过一点可画无数条直线;过两个能画一条直线;过三点,如果三点在一条线上,经过三点只能画一条直线,如果这三点不在一条线上,那么经过三点不能画出直线。
3、明确两点之间的距离,线段比曲线、折线要短。
4、直线、射线可以无限延长。因为直线没有端点,射线只有一个端点,所以不可以测量,没有具体 的长度。如:直线长4厘米。是错误的。只有线段才能有具体的长度。
平移与平行
知识点:
1、感受平移前后的位置关系———平行。(在同一平面内,永不相交的两条直线叫做平行线。)
2、平行线的画法。
(1)固定三角尺,沿一条直角边先画一条直线。
(2)用直尺紧靠三角尺的另一条直角边,固定直尺,然后平移三角尺。
(3)沿一条直角边在画出另一条直线。
3、能够借助实物,平面图形或立体图形,寻找出图中的平行线。
补充知识点 :用数学符号表示两条直线的平行关系。如:AB∥CD。
相交与垂直
知识点:
1、相交与垂直的概念。当两条直线相交成直角时,这两条直线互相垂直。(互相垂直:就是直线OA 垂直于直线OB,直线OB垂直于直线OA)这两条直线的交点叫做垂足。(两条直线互相垂直说明了这两条直线的位置关系:必须相交,相交还要成直角。)
2、画垂线:
(1)过直线上一点画垂线的方法。
把三角尺的一条直角边与这条直线重合,直角顶点是垂足,沿着另一条直角边画直线,这条直线是前一条直线的垂线。注意,要让三角尺的直角顶点与给定的点重合。
(2)过直线外一点画垂线的方法。
把三角尺的一条直角边与这条直线重合,让三角尺的另一条直角边通过这个已知点,沿着三角尺的另一条直角边画直线,这条直线就是前一条直线的垂线。注意,画图时一般左手持三角尺,右手画线。过直线外一点画一条直线的垂线,三角尺的另一条直角边必须通过给定的这个点。
补充知识点:
1、会用数学符号表示两条直线互相垂直的关系。如:OA⊥OB。
2、明确点到直线之间垂线段最短。
旋转与角
知识点:
1、角的概念。由一点引出两条射线所组成的图形叫做角。角是由一个顶点和两条边组成的。
2、认识平角、周角。
平角 :角的两边在同一直线上,(像一条直线),平角等于180°,等于两个直角。
周角:角的两边重合,(像一条射线),周角等于360°,等于两个平角,四个直角。
3、角的分类:小于90度的角叫做锐角;等于90度的角叫做直角;大于90度小于180度的角叫做钝角;等于180度的角叫做平角;大于180度小于270度叫做优角(此为补充内容);等于360度的角叫做周角。
4、动手画平角、周角。
角的度量
知识点:
1、认识度。将圆平均分成360份,把其中的1份所对的角叫做1度,记作1°,通常用1°作为度量角的单位。
2、认识量角器。量角器是把半圆平均分成180份,一份表示1度。量角器上有中心点、0刻度线、内刻度线、外刻度线。
3、量角器的使用方法。“两合一看”,“两合”是指中心点与角的顶点重合;0刻度线与角的一边重合。“一看”就是要看角的另一边所对的量角器的刻度。
4、看角的度数时要注意是看外刻度还是内刻度。交的开口向左看外刻度线,角的开口向右看内刻度线。
画角
知识点:
1、用量角器画指定度数的角的方法。
画一条射线,中心点对准射线的端点,0刻度线对准射线(两合),对准量角器相应的刻度点一个点(一看),把点和射线端点连接,然后标出角的度数。
2、30度、60度、90度、45度、75度、105度、135度、120度和150度用三角板比较方便。
补充知识点:因为角是由两条射线和一个顶点组成的,所以在连线时,不能两点相连,而要冲过一点或不连到那一点。
三单元《乘法》
卫星运行 (三位数乘两位数)
知识点:
1、估算方法。用四舍五入法进行估算。
2、利用竖式计算三位数乘两位数。注意,第二个因数的十位要乘三遍,第二步的乘积末尾写在十位上。
补充知识点
1、时、分、日之间的单位互化。
1时=60分 1日=24时
2、因数中间或末尾有0的三位数乘两位数。
中间有0也要和因数分别相乘;末尾有0的,要将两个因数0前面数的末位对齐,用0前面的数相乘,乘完之后在落0,有几个0落几个0。
体育场(实际生活中的估算)
知识点:
估算的方法及注意事项:要将因数估成整十、整百或整千的数。估算时注意,要符合实际,接近精确值。
神奇的计算工具
知识点:
1、在学生原有基础上进一步认识并会使用计算器。
2、利用“M+”存储键,“MR”提取键,计算四则运算的题目。
3、了解计算机中使用的是二进制计数法,就是满2进1。
补充知识点:了解两个因数越接近(即差越小),积越大,两个因数相等时,积是最大的;两个因数的差越大,积越小。
探索与发现(-)(有趣的算式)
知识点:
第一组算式:积的位数是两个因数位数之和-1,积的最高位和最低位都是1,中间的数字为因数的 位数,两边的数字相同并依次减1。(此为回文数)
第二组算式:积都由1、4、2、8、5、7几个数字组成,而且前后排列的顺序不变,只需要确定末位数字就可以算出积(如果能直接推算出首位数字则更好)
第三组算式:积的个位都是1,首位都是9;积的位数正好是两个因数位数之和;积的每一位都是由9、8、0、1组成,只要在首位补9,倒数第二位补0就可以了,只有一个8和一个1。
第四组算式:在0~9的十个数字中,任意选择四个数字,组成数字不重复的最大的四位数和最小的四位数。然后两数相减,并把结果的四个数字重现组成一个最大的四位数与最小的四位数。再次相减······在这样不断重复的过程中,最后得到数字4176。
探索与发现(二)(乘法结合律)
知识点:
1、乘法结合律:三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再 和第一个数相乘,它们的积不变。用字母表示是:(a×b)×c=a×(b×c).
2、使用时机:当几个数相乘时,如果其中两个数相乘得整十、整百、整千的数就可以应用乘法交换律和乘法结合律。乘法结合律可以改变乘法运算中的顺序。数字如;25和4、50和2、125和8、50和4、500和2等。
探索与发现(三)(乘法分配律)
知识点:
1、乘法分配律:两个数的和(或差)与一个数相乘,可以把两个加数(或被减数、减数)分别与这个数相乘,在把两个积相加(或相减),结果不变。用字母表示数:(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c
补充知识点:
1、式子的特点:式子的原算符号一般是×、+(-)、×的形式;在两个乘法式子中,有一个相同的因数;另为两个不同的因数之和(或之差)基本上是能凑成整十、整百、整千的数。
2、102×88、99×15这类题的特点:两个数相乘,把其中一个比较接近整十、整百、整千的数改写成整十、整百、整千与一个数的和(或差),再应用乘法分配律可以使运算简便。
四单元 《图形的变换》
知识点:
1、绕中心点旋转的方向:顺时针,即顺着钟表时针走的方向,从上往右走,再往下,最后向上。 逆时针,和顺时针的方向相反,从上往左走,再往下,最后向上。
2、对照方格纸能准确的说出图形的平移或旋转的变化过程。
3、体会一个简单图形经过平移或旋转制作复杂图形的过程,并能进行简单的制作。如利用一个三角形,通过旋转和平移制作出不同的复杂图形。
五单元《除法》
买文具(除数是整十数的除法)
知识点:
1、用竖式求除数是两位数(整十数)除法。注意:三位数除以两位数,商要写在个位上。
2、用乘法进行验算。
补充知识点:除数是整十数,商也是整十数的竖式计算方法。注意在商的末尾必须补0,它起到占位的作用。
路程、时间和速度
知识点:
1、路程、时间和速度之间的关系。
路程=速度×时间 时间=路程÷速度 速度=路程÷时间
2、利用上面三个关系式解决生活中的实际问题。
3、将出意义并能比较速度的快慢。如:4千米|时
12千米分 340米|秒 30万千米|秒
参观苗圃(把除数看作整十数试商)
知识点:
1、笔算三位数除以两位数的方法,试商时把除数看作整十数试商。
2、了解被除数、除数和商之间的关系。被除数÷除数=商。。。。。。余数;被除数=除数×商+余数,为验算做好准备。
秋游(三位数除以两位数)
知识点:
1、体验改商的过程,掌握改商的方法。在试商的时候,如果在估商的时候,把除数变大了,商就可能变小;如果把除数变小了,商就可能变大。(或者当所得的余数大于等于除数时,商小了需要调大;当试的商与除数的乘积大于被除数的时候,则商要调小。)
2、能够对三位数除以两位数的除法进行估算。
补充知识点:
1、单价×数量=总价 单价=总价÷数量 数量=总价÷单价
2、确定商是几位数的方法:三位数除以两位数,如果前两位够商1,商则是两位数;如果前两位不够商1,商则是一位数。
国家体育场(感受较大数的意义)
知识点:收集并感受亿以内大数的实际意义。
补充知识点:步长,是脚尖到脚尖的距离。
探索与发现(四)(商不变的规律)
知识点:
1、商不变的规律:被除数和除数同时乘或除以相同的数(0除外),商不变。
2、根据商不变的性质计算150÷25 800÷25 2000÷125因为25乘4能得到100,125乘8能得到1000,所以将被除数和除数同时扩大4倍、8倍。
补充知识点:
1、被除数不变,除数扩大或缩小若干倍(0除外),商随着缩小或扩大相同的倍数。
2、除数不变,被除数扩大或缩小若干倍(0除外),商随着扩大或缩小相同的倍数。
中括号(四则混合运算的顺序)
知识点:
1、中括号的作用,能够改变运算顺序。
2、明确四则混合运算的顺序:算式中既有小括号又有中括号时,要先算小括号里面的,再算中括号里面的。
六单元《方向与位置》
确定位置(一)(用数对确定位置)
知识点
1、数对的表示方法:先表示横的方向,后表示纵的方向,即根据直角坐标系,确定某一点的坐标(x,y).
2、数对的写法:先横向观察,在第几位就在小括号里先写几,再点上逗号;然后再纵向观察,在第几位,就在小括号里面写上几。如小青的位置在第三组,第二个座位,用数对表示为(3,2)。
3、能根据数对说出相应的实际位置。如某个同学在(5,6)这个位置。他的实际位置是,班级中(从左往右数)第五组第六个座位。
确定位置(二)(根据方向和距离确定位置)
知识点:
1、认识方向:东、南、西、北、东南、东北、西南、西北。
2、根据方向和距离确定物体位置的方法:(1)以某一点为观测中心,标出方向,上北、下南、左西、右东;将观测点与物体所在的位置连线;用量角器测量角度,最后得出结论在哪个方向上。(2)用直尺测量两点之间的图上距离。
补充知识点:认识并初步了解比例尺:如1:5000 单位:千米 就表示图上1厘米等于实际距离5000千米。
七单元《生活中的负数》
温度
知识点:
1、零下温度的表示方法,在温度前面写上“—”号,如“—2℃”“—12℃”通常读作零下2摄氏度、零下12摄氏度。
2、能够正确地比较两个零下的温度的高低:0℃和零上的温度高于零下的温度;零下温度的数字越大表示温度越低。
正负数
知识点:
1、正数:比0大的数字都是正数,有的时候我们在正数前面添上“+”号,如+5、+20等等,读作:正5、正20。
2、负数:比0小的数字都是负数,我们在负数前面提案上“—”号,如—2、—10等等,读作:负2、负10。
3、明确0既不是正数也不是负数。
4、能用正数、负数表示实际问题,要确定以什么作为标准(即以什么作0点)
第八单元统计
栽蒜苗(一)(条形统计图)
知识点:
1、统计图中1格表示不同单位量,要结合具体的情况来判断1个表示几个单位。数据大,每1格所表示的单位就多,数据小,每1格所表示的单位就小。
2、理解条形统计图上的数据所表示的意义。
3、明确条形统计图的特点:直观、方便、便于察看。
4、制作条形统计图的方法:确定水平方向,标出项目;确定垂直方向代表的数量(一格代表的数量);根据数据的大小画出长度不同的直条;写出标题。
补充知识点:初步了解复式条形统计图,能够从中获得信息,并能回答相应的问题。
栽蒜苗(二)(折线统计图)
知识点:
1、折线统计图的特点:能获取数据变化情况的信息,并进行简单的预测。
2、折线统计图的方法:在方格纸中,根据所给出的数据把点标出来,再用线将点连接起来,要顺次连接。
3、能够看出折线统计图所提供的信息,并回答相关的问题。
补充知识点:
4、条形统计图与折线统计图的不同:条形统计图用直条表示数量的多少,折线统计图用折线表示数量的增减变化情况。
5、初步了解复式折线统计图,能够从中获得相应的信息,回答提出的问题。
D. 四年级下册数学北大绿卡期末综合检测(二)答案 快 明天就要交了 大哥大姐们 帮一下嘛
用因式分解法一元二次方程(初中数学九年级)
所在班级情况,学生特点分析
学生已经学过因式分解,对于因式分解的方法大体是知道的,但是每种方法或多或少还会有些生疏,教师还要及时复习因式分解的几种方法,同时强调用因式分解法界一元二次方程式将方程化成 =0的形式的重要,以及分解成( )( )=0的重要意义。
教学内容分析
本节是在学生学习并掌握了用直接开平方法、配方法、公式法解一元二次方程之后,从有挑战性的问题入手,太久用因式分解解特殊的一元二次方程。
教学目标
(一)知识教学点:1.正确理解因式分解法的实质.2.熟练掌握运用因式分解法解一元二次方程.
(二)能力训练点:通过新方法的学习,培养学生分析问题解决问题的能力及探索精神.
(三)德育渗透点:通过因式分解法的学习使学生树立转化的思想.
教学难点分析
重点:会用因式分解法解特殊的一元二次方程。
难点:理解并应用因式分解法解特殊的一元二次方程,理解 “或”的含义。
教学课时:1课时
教学过程、课堂练习、作业安排
(一)明确目标
学习了公式法,便可以解所有的一元二次方程.对于有些一元二次方程,例如(x-2)(x+3)=0,如果转化为一般形式,利用公式法就比较麻烦,如果转化为x-2=0或x+3=0,解起来就变得简单多了.即可得x1=2,x2=-3.这种解一元二次方程的方法就是本节课要研究的一元二次方程的方法——因式分解法.
(二)整体感知
所谓因式分解,是将一个多项式分解成几个一次因式积的形式.如果一元二次方程的左边是一个易于分解成两个一次因式积的二次三项式,而右边为零.用因式分解法更为简单.例如:x2+5x+6=0,因式分解后(x+2)(x+3)=0,得x+2=0或x+3=0,这样就将原来的一元二次方程转化为一元一次方程,方程便易于求解.可以说二次三项式的因式分解是因式分解法解一元二次方程的关键.“如果两个因式的积等于零,那么两个因式至少有一个等于零”是因式分解法解方程的理论依据.方程的左边易于分解,而方程的右边等于零是因式分解法解方程的条件.满足这样条件的一元二次方程用因式分解法最简单.
(三)重点、难点的学习与目标完成过程
例1 解方程x2+2x=0.
解:原方程可变形x(x+2)=0……第一步
∴ x=0或x+2=0……第二步
∴ x1=0,x2=-2.
教师提问、板书,学生回答.
分析步骤(一)第一步变形的方法是“因式分解”,第二步变形的理论根据是“如果两个因式的积等于零,那么至少有一个因式等于零”.分析步骤(二)对于一元二次方程,一边是零,而另一边易于分解成两个一次式时,可以得到两个一元一次方程,这两个一元一次方程的解就是原一元二次方程的解.用此种方法解一元二次方程叫做因式分解法.由第一步到第二步实现了由二次向一次的“转化”,达到了“降次”的目的,解高次方程常用转化的思想方法.
例2 用因式分解法解方程x2+2x-15=0.
解:原方程可变形为(x+5)(x-3)=0.
得,x+5=0或x-3=0.
∴ x1=-5,x2=3.
教师板演,学生回答,总结因式分解的步骤:(一)方程化为一般形式;(二)方程左边因式分解;(三)至少一个一次因式等于零得到两个一元一次方程;(四)两个一元一次方程的解就是原方程的解.
练习:P.22中1、2.
第一题学生口答,第二题学生笔答,板演.
体会步骤及每一步的依据.
例3 解方程3(x-2)-x(x-2)=0.
解:原方程可变形为(x-2)(3-x)=0.
∴ x-2=0或3-x=0.
∴ x1=2,x2=3.
教师板演,学生回答.
此方程不需去括号将方程变成一般形式.对于总结的步骤要具体情况具体分析.
练习P.22中3.(2)(3x+2)2=4(x-3)2.
解:原式可变形为(3x+2)2-4(x-3)2=0.
[(3x+2)+2(x-3)][(3x+2)-2(x-3)]=0
即:(5x-4)(x+8)=0.
∴ 5x-4=0或x+8=0.
学生练习、板演、评价.教师引导,强化.
练习:解下列关于x的方程
(4x+2)2=x(2x+1).
学生练习、板演.教师强化,引导,训练其运算的速度.
练习P.22中4.
(四)总结、扩展
因式分解法的条件是方程左边易于分解,而右边等于零,关键是熟练掌握因式分解的知识,理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零.”
(五)布置作业
教材P.21中A1、2.
教材P.23中B1、2(学有余力的学生做).
注意:因式分解法解一元二次方程的步骤是:
(1)化方程为一般形式;
(2)将方程左边因式分解;
(3)至少有一个因式为零,得到两个一元二次方程;
(4)两个一元一次方程的解就是原方程的解.
但要具体情况具体分析.
(六)板书设计
12.2 用因式分解法解一元二次方程(一)
例1.……
例2……
二、因式分解法的步骤
(1)……
练习:……
(2)……
……
(3)……
(4)……
附录(教学资料及资源)
1、判断:(1)若ab=0, 则a=0或b=0 ( )
(2) 若ab=1,则a=1或b=1 ( )
(3)若(x-5)(x+2)=0,则x-5=0或x+2=0 ( )
(4) 若(x-5)(x+2)=1,则x-5=1或x+2=1 ( )
2、将下列各式因式分解:
(1)x2-9= ; (2)3x2+2x=
(3)x2-1= ; (4)16x2-25=
(5)x2-3x= ; (6)(x+1)2-4=
3、用适当的数填空,使下列各等式成立。
(1) a2-2a+ =(a-1)2 (2) x2+4x+ =(x+2)2
(3) x2+3x+ =(x+ )2 (4) x2-x+ =(x- )2
(5) x2- x+ =(x- )2 (6) x2+ x+ =(x+ )2
4、解下列方程:
(1)x2-1=0 (2)16x2-25=0
解法1:x2= 16x2=
x= x2=
x1= ,x2= x=
x1= ,x2=
解法2:(x+1)(x- )=0 ( )( )=0
x+1=0或x- =0 ( )=0或( )=0
x1= ,x2= x1= ,x2=
5、解下列方程:
(1)3x2+2x=0 (2)x2=3x
解:x( )=0 解: x2- =0
x=0或( )=0 x( )=0
x1=0 ,x2= x=0或( )=0
x1=0 ,x2=
6、解下列方程:(1)(x+1)2-4=0 (2) 4(x-2)2-9=0
(3)12y2-25=0; (4)x2-2x=0
(5)(t-2)(t+1)=0; (6)x(x+1)-5x=0
(7)x2+2x-48=0 (8) x(x+5)=24
(9)x2+7x+12=0 (10)x2-10x+16=0
自我问答
1、问:如何用因式分解法解一元二次方程?
答:将方程左边变为 =0的形式,再用分解因式的方法,得
(x+____)(x-____)=0,
必有 x+____=0,或 x-____=0
分别解这两个一元一次方程,得
x1=_____,x2=____.
2、问:因式分解方法的方法有哪些?
答:提公因式法,运用公式法、分组分解法、十字相乘法。
平方差公式:a2-b2=(a+b)(a-b)
完全平方公式:a2±2ab+b2=(a±b)2
教学反思:
本节课通过由浅入深,由特殊到一般地提出问题,引导学生自主探索,动手实践,合作交流,教学模式遵循了“以学生为主体,教师为主导”的教学原则,培养学生良好的学习习惯和严谨的科学态度。练习设计由浅入深,循序渐进。在参透教材的同时,也在引入上多做文章,让学生的自主能力、发现能力、探索能力、创造能力得到锻炼和提高。并通过检测,及时反馈,查漏补缺。