当前位置:首页 » 基础知识 » 初一数学知识点讲解大全人教版
扩展阅读
高一数学基础知识复习 2024-11-02 10:01:07
什么是呼唤歌词 2024-11-02 09:57:52

初一数学知识点讲解大全人教版

发布时间: 2024-11-02 07:58:15

㈠ 初一数学重点难点总结 人教版知识点归纳

初中数学 是一个很重要的阶段,下面我就大家整理一下初一数学重点难点总结。

人教版初一数学重要知识点

1.有理数:

(1)凡能写成形式的数,都是有理数正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数注意: 0即不是正数,也不是负数;-a不一定是负数, +a也不一定是正数;p不是有理数;

(2)有理数的分类:①②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.

2.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反 数;0的相反数还是0;

(2)相反数的和为0?a+ b=0?a、b互为相反数.

3.绝对值:

(1)正数的绝对值是其本身, 0的绝对值是0 ,负数的绝对值是它的相反数;注意:绝对值的意义是数轴.上表示某数的点离开原点的距离;

(2)绝对值可表示为:或;绝对值的问题经常分类讨论;

4.有理数比大小:

(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小:(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小(5)数轴上的两个数,右边的数总比左边的数大:(6)大数-小数0 ,小数-大数0.

5.互为倒数:

乘积为1的两个数互为倒数;注意: 0没有倒数;若a0 ,那么的倒数是;若ab=1?a、b互为倒数;若ab=- 1?a、b互为负倒数.

初一数学必备知识

一、乘方

求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。

负数的奇次幂是负数,负数的偶次幂是正数。

正数的任何次幂都是正数,0的任何正整数次幂都是0。

有理数混合运算的运算顺序:

⑴先乘方,再乘除,最后加减;

⑵同极运算,从左到右进行;

⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行

二、科学记数法

把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。

用科学记数法表示一个n位整数,其中10的指数是n-1。

三、近似数和有效数字

接近实际数目,但与实际数目还有差别的数叫做近似数。

精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。

从一个数的左边第一个非0 数字起,到末位数字止,所有数字都是这个数的有效数字。

对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字。

初中数学中考知识重难点分析

1.函数(一次函数、反比例函数、二次函数)中考占总分的15%左右。

特别是二次函数是中考的重点,也是中考的难点,在填空、选择、解答题中均会出现,且知识点多,题型多变。

而且一道解答题一般会在试卷最后两题中出现,一般二次函数的应用和二次函数的图像、性质及三角形、四边形综合题难度较大。有一定难度。

如果在这一环节掌握不好,将会直接影响代数的基础,会对中考的分数会造成很大的影响。

2.整式、分式、二次根式的化简运算

整式的运算、因式分解、二次根式、科学计数法及分式化简等都是初中学习的重点,它贯穿于整个初中数学的知识,是我们进行数学运算的基础,其中因式分解及理解因式分解和整式乘法运算的关系、分式的运算是难点。

中考一般以选择、填空形式出现,但却是解答题完整解答的基础。运算能力的熟练程度和答题的正确率有直接的关系,掌握不好,答题正确率就不会很高,进而后面的的方程、不等式、函数也无法学好。

3.应用题,中考中占总分的30%左右

包括方程(组)应用,一元一次不等式(组)应用,函数应用,解三角形应用,概率与统计应用几种题型。

一般会出现二至三道解答题(30分左右)及2—3道选择、填空题(10分—15分),占中考总分的30%左右。

㈡ 人教版初一数学下册知识点

关于人教版初一数学下册课本中的知识点有哪些呢?学习从来无捷径,循序渐进登高峰。这是我整理的人教版初一数学下学期的知识点,希望你能从中得到感悟!
人教版初一数学下册知识点第五章 相交线与平行线
5.1 相交线

对顶角相等。

过一点有且只有一条直线与已知直线垂直。

连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短。本知识点可会出现的填空题中来考)。

5.2 平行线 (重点知识必考)

1、经过直线外一点,有且只有一条直线与这条直线平行。

2、 如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

3、直线平行的条件:

4、两条直线被第三条直线所截,如果同位角相等,那么两直线平行 两条直线被第三条直线所截,如果内错角相丛冲等,那么两直线平行(内错角相等,两直线平行)。

5、两条直线被第三条直线所截,如果同旁内角互补,那么两直线毁肢平行(同旁内角互补,两直线平行)。

5.3 平行线的性质 (重点知识必考)

1、两条平行线被第三条直线所截,同位角相等(两直线平行,同位角相等)。

2、两条平行线被第三条直线所截,内错角相等(两直线平行,内错角相等)。

3、两条平行线被第三条直线所截,同旁内角互补(两直线平行,同旁内角互补)。 判断一件事情的语句,叫做命题(本考点可能会出现在填空题中命题的改写和选择题中判断命题的真假性)。

本章知识考点分析:

1、平行线的性质及判定必考内容

2、命题的真假性、将命题改写

3、证明题(完型填空、自主证明)

4、选择题、填空题中相关知识的考点(相交线、平行线的性质;垂线段最短、过直线外一点有且只有一条直线平行于已知直线)
人教版初一数学下册知识点第六章 实数
6.1 平方根

若一个数的平方等a,那这个数叫做a的平方根;(即若x2=a,那么x叫做a的平方根,其中a为非负数,即a≥0.表示方式为x2=ax=a,其中xa叫做a的算术平方根),(本知识考点重点出现在填空题、选择题与计算题中相关的应用)。

6.2立方根

若一个数的立方等a,那么这个数叫做a的立方根(即若x3=a,那么x叫做a的立方根,表示方式:x3=axa立方根只有一个),(本知识考点重点出现在填空题、选择题与计算题中相关的应用)。

6.3 实数

无限不循环小数又叫做无理数。

有理数和无理数统称实数。

考点分析:

1、有理数与无理数在填空和选择题可能会出现

2、一个数的平方根和一个代数式的平方根的区别(细心点呀)

3、一个正数的平方根有两个且这两个平方根互为相反数(即它们的和等于0)

4、唯一性:平方根等于它本身的数只有0;立方根等于它本身的数有1、-1和0共三个;算术平方根等于它本身的数有1和0两个。
人教版初一数学下册知识点第七章 平面直角坐标系
7.1 平面直角坐标系

含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数a和b组成的数对,叫做有序数对。

本章知识考点可能会出现在:

1、判断某个点在第几象限或某个点在第几象限再求相应未知数的值;

2、在平面直角坐标系中将某个图形作一次或两次平移后求出平前或平移后各对应点的坐标。
人教版初一数学下册知识点第八章 二元一次方程组
8.1 二元一次方程组

1、方程中含有渗余歼未知数(如:x和y),并且未知数的指数(或未知项的次数)都是1,像这样的方程叫做二元一次方程(本知识考点会出现在填空题和选择题中,注意次数为1和系数不为0)。

2、把两个含有相同未知数二元一次方程合在一起,就组成了一个二元一次方程组。

3、使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解(二元一次方程的解可能会出现在选择题中验根问题)。

4、二元一次方程组的两个方程的公共解,叫做二元一次方程组的解(二元一次方程组的解可能会出现在选择题中验根问题)。

8.2 消元

5、将未知数的个数由多化一(最终解一元一次方程然后反代解决二元三元、逐一解决的想法,叫做消元思想。

6、本章知识考点

a、计算题

b、选择、填空

c、应用题
人教版初一数学下册知识点第九章 不等式与不等式组
9.1 不等式

1、用小于号或大于号表示大小关系的式子,叫做不等式。

2、使不等式成立的未知数的值叫做不等式的解。

3、能使不等式成立的x的取值范围,叫做不等式的解的集合,简称解集。

4、含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。

5、不等式的性质:

不等式两边加(或减)同一个数(或式子),不等号的方向不变。

不等式两边乘(或除以)同一个正数,不等号的方向不变。

不等式两边乘(或除以)同一个负数,不等号的方向改变。

三角形中任意两边之差小于第三边。

三角形中任意两边之和大于第三边。

9.3 一元一次不等式组

6、把两个一元一次不等式合在起来,就组成了一个一元一次不等式组。

7、本章知识考点

a、选择题

b、计算题)

c、简单的一元一次不等式的应用题
人教版初一数学下册知识点第十章 数据的收集、整理与描述
一、知识要点

1、全面调查:对全体对象的调查叫做全面调查(优点:调查结果比较精确; 缺点:费时、费力)。

2、抽样调查:只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况,这种调查 方法 叫做抽样调查(优点:投入少、操作方便,而且有时只能用抽样的方式去调查;缺点:调查结果与总体的结果可能有一些误差)

3、总体:要考察的全体对象称为总体.

4、个体:组成总体的每一个考察对象称为个体.

5、样本:被抽取的那些个体组成一个样本.

6、样本容量:样本中个体的数目称为样本容量.

7、简单随机抽样调查:抽取样本的过程中,总体中的每一个个体都有相等的机会被抽到,像这样的抽样方法是一种简单的随机抽样。

二、统计图的分类:

1.条形统计图——适用于显示不同对象之间的数量特征,根据长方形(条形)的高度能直观地看出被统计对象的量的大小、多少等。

2.折线统计图——适用于显示同一事物在不同的数量变化特征,根据折线的变化能直观地看出事物的变化(如上升或下降、增长快慢等)趋势。

3.扇形统计图——用圆代表整体,能直观地显示各部分(不同的统计对象)所占的百分比,适用于显示不同对象之间数量上的比例关系。

注意:求圆心角度数=所占百分比×3600

4.频数分布直方图——对收集得到的数据,可通过“划计”的方法整理成频数分布表,画出频数分布直方图.它①能够显示数据的分布情况,②易于显示各组之间的频数差别.制作频数分布直方图的步骤为 :①找出所有数据中的最大值和最小值,并算出它们的

极差极差或组距差(极差=最大值-最小值).②决定组距和组数(组数=).③列出频组距组数数分布表.④画频数分布直方图。

5.本章知识考点分析:

1、总体、样本、个体与样本容量会在选择题出现

2、四类统计图的考点中重点注意条形统计图、扇形统计图和直方图的补全及频数的补全等。

㈢ 初一数学人教版上册的知识点500字内容:正数负数、数轴、有理数(不需要有理数的加减法与乘除法)。

初一上册数学知识
第一章 有理数
1正数、负数、有理数、相反数、科学记数法、近似数
2数轴:用数轴来表示数
3绝对值:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零
4正负数的大小比较:正数大于零,零大于负数,正数大于负数,绝对值大的负数值反而小 。
5有理数的加法法则:
同号两数相加,取相同的符号,并把绝对值相加;
绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去减小的绝对值;
互为相反数的两数相加为零;
一个数加上零,仍得这个数。
6有理数的减法(把减法转换为加法)
减去一个数,等于加上这个数的相反数。
7有理数乘法法则
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数同零相乘,都得零。
乘积是一的两个数互为倒数。
8有理数的除法(转换为乘法)
除以一个不为零的数,等于乘这个数的倒数。
9有理数的乘方
正数的任何次幂都是正数;
零的任何次幂都是负数;
负数的奇次幂是负数,负数的偶次幂是正数。
10混合运算顺序
(1) 先乘方,再乘除,最后加减;
(2) 同级运算,从左到右进行;
(3) 如果有括号,先做括号内的运算,按照小括号、中括号、大括号依次进行。

第二章 整式的加减
1 整式:单项式和多项式的统称;
2整式的加减
(1) 合并同类项
(2) 去括号

第三章 一元一次方程
1 一元一次方程的认识
2 等式的性质
等式两边加上或减去同一个数或者式子,结果仍然相等;
等式两边乘同一个数,或除以同一个不为零的数,结果仍相等。
3 解一元一次方程
一般步骤:去分母、去括号、移项、合并同类项、系数化为一
第四章 图形认识初步
1 几何图形:平面图和立体图
2 点、线、面、体
3 直线、射线、线段
两点确定一条直线;
两点之间,线段最短
4 角
角的度量度数
角的比较和运算
补角和余角:等角的补角和余角相等

㈣ 人教版初一数学重要知识点

学习从来无捷径,循序渐进登高峰。如果说学习一定有捷径,那只能是勤奋,因为努力永远不会骗人。学习需要勤奋,做任何事情都需要勤奋。下面是我给大家整理的一些初一数学的知识点,希望对大家有所帮助。

七年级数学 知识点

生活中的轴对称

1、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

2、轴对称:对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴。可以说成:这两个图形关于某条直线对称。

3、轴对称图形与轴对称的区别:轴对称图形是一个图形,轴对称是两个图形的关系。

联系:它们都是图形沿某直线折叠可以相互重合。

2、成轴对称的两个图形一定全等。

3、全等的两个图形不一定成轴对称。

4、对称轴是直线。

5、角平分线的性质

1、角平分线所在的直线是该角的对称轴。

2、性质:角平分线上的点到这个角的两边的距离相等。

6、线段的垂直平分线

1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。

2、性质:线段垂直平分线上的点到这条线段两端点的距离相等。

7、轴对称图形有:

等腰三角形(1条或3条)、等腰梯形(1条)、长方形(2条)、菱形(2条)、正方形(4条)、圆(无数条)、线段(1条)、角(1条)、正五角星。

8、等腰三角形性质:

①两个底角相等。②两个条边相等。③“三线合一”。④底边上的高、中线、顶角的平分线所在直线是它的对称轴。

9、①“等角对等边”∵∠B=∠C∴AB=AC

②“等边对等角”∵AB=AC∴∠B=∠C

10、角平分线性质:

角平分线上的点到角两边的距离相等。

∵OA平分∠CADOE⊥AC,OF⊥AD∴OE=OF

11、垂直平分线性质:垂直平分线上的点到线段两端点的距离相等。

∵OC垂直平分AB∴AC=BC

12、轴对称的性质

1、两个图形沿一条直线对折后,能够重合的点称为对应点(对称点),能够重合的线段称为对应线段,能够重合的角称为对应角。2、关于某条直线对称的两个图形是全等图形。

2、如果两个图形关于某条直线对称,那么对应点所连的线段被对称轴垂直平分。

3、如果两个图形关于某条直线对称,那么对应线段、对应角都相等。

13、镜面对称

1.当物体正对镜面摆放时,镜面会改变它的左右方向;

2.当垂直于镜面摆放时,镜面会改变它的上下方向;

3.如果是轴对称图形,当对称轴与镜面平行时,其镜子中影像与原图一样;

学生通过讨论,可能会找出以下解决物体与像之间相互转化问题的办法:

(1)利用镜子照(注意镜子的位置摆放);(2)利用轴对称性质;

(3)可以把数字左右颠倒,或做简单的轴对称图形;

(4)可以看像的背面;(5)根据前面的结论在头脑中想象。

初一数学知识点

一元一次方程的应用

1.一元一次方程解应用题的类型

(1)探索规律型问题;

(2)数字问题;

(3)销售问题(利润=售价﹣进价,利润率=利润进价×100%);

(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);

(5)行程问题(路程=速度×时间);

(6)等值变换问题;

(7)和,差,倍,分问题;

(8)分配问题;

(9)比赛积分问题;

(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).

2.利用方程解决实际问题的基本思路:

首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答。

列一元一次方程解应用题的五个步骤

(1)审:仔细审题,确定已知量和未知量,找出它们之间的等量关系.

(2)设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数.

(3)列:根据等量关系列出方程.

(4)解:解方程,求得未知数的值.

(5)答:检验未知数的值是否正确,是否符合题意,完整地写出答句.

初一数学 方法 技巧

1.请概括的说一下学习的方法

曰:“像做其他事一样,学习数学要研究方法。我为你们推荐的方法是:超前学习,展开联想,多做 总结 ,找出合情合理。

2.请谈谈超前学习的好处

曰:“首先,超前学习能挖掘出自身的潜力,培养自学能力。经过超前学习,会发现自己能独立解决许多问题,对提高自信心,培养学习兴趣很有帮助。”

其次,够消除对新知识的“隐患”。超前学习能够发现在现有的基础上,自己对新知识认识的不妥之处。相反地,若直接听别人说。似乎自己也能一开始就达到这种理解水平,实践证明,并非这样。

再次,超前学习中的有些内容,当时不能透彻理解,但经过深思之后,即使搁置一边,大脑也会潜意识“加工”。当教师进度进行到这块内容时,我们做第二次理解,会深刻的多。

最后,超前学习能提高听课质量。超前学习以后,我们发现新知识中的多数自己完全可以理解。只有少数地方需借助于别人。这样,在课堂上,我们即能将可以集中注意力的时间放“这少数地方”的理解上,即“好钢用在刀刃上”。事实上,一节课,能集中注意力的时间并不太多。

3.请谈谈联想与总结

曰:联想与总结贯穿与学习过程中的始终。对每一知识的认识,必定要有认识基础。寻找认识基础的过程即是联想,而认识基础的是对以前知识的总结。以前总结的越简洁、清晰、合理,越容易联想。这样就可以把新知识熔进原来的知识结构中为以后的某次联想奠定基础。联想与总结在解题中特别有效。也许你以前并没有这样的认识,但解题能力却很强,这说明你很聪明,你在不自觉中使用这种做法。如果你能很明确的认识这一点,你的能力会更强。

4.那么我们怎样预习呢?

曰:“先 说说 学习的目标:(1)知道知识产生的背景,弄清知识形成的过程。

(2)或早或晚的知道知识的地位和作用:(3)总结出认识问题的规律(或说出认识问题使用了以前的什么规律)。

再说具体的做法:(1)对概念的理解。数学具有高度的抽象性。通常要借助具体的东西加以理解。有时借助字面的含义:有时借助其他学科知识。有时借助图形……理解概念的境界是意会。一定要在理解概念上下一番苦功夫后再做题。

(2)对公式定理的预习,公式定理是使用最多的“规律”的总结。如:完全平方公式,勾股定理等。往往公式的推导定理的证明蕴含着丰富的数学方法及相当有用的解题规律。如三角形内角平分线定理的证明。我们应当先自己推导公式或证明定理,若做不成再参考别人的做法。无论是自己完成的,还是看别人的,都要说出这样做是怎样想出来的。

(3)对于例题及习题的处理见上面的(2)及下面的第五条。


人教版初一数学重要知识点相关 文章 :

★ 人教版初一数学知识点整理

★ 初一数学人教版知识点归纳

★ 初一数学知识点人教版

★ 2021初一数学知识点总结

★ 初一人教版数学上册知识点总结归纳

★ 人教版七年级上册数学知识点

★ 初一数学重点知识点归纳有哪些

★ 初一数学知识点2021

★ 七年级数学知识点大全

★ 人教版初一数学下册知识点复习总结备战中考

㈤ 人教版初一数学知识点

知识是一座宝库,而实践就是开启宝库的钥匙。学习任何学科,不仅需要大量的记忆,还需要大量的练习,从而达到巩固知识的效果。下面是我给大家整理的一些初一数学的知识点,希望对大家有所帮助。

七年级下册数学知识点

概率

一、事件:

1、事件分为必然事件、不可能事件、不确定事件。

2、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。

3、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。

4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。

二、等可能性:是指几种事件发生的可能性相等。

1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。

2、必然事件发生的概率为1,记作P(必然事件)=1;

3、不可能事件发生的概率为0,记作P(不可能事件)=0;

4、不确定事件发生的概率在0—1之间,记作0

三、几何概率

1、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。

2、求几何概率:

(1)首先分析事件所占的面积与总面积的关系;

(2)然后计算出各部分的面积;

(3)最后代入公式求出几何概率。

初一数学下册知识点 总结

篇一:直线、射线、线段

(1)直线、射线、线段的表示 方法

①直线:用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB.

②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边.

③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA)。

(2)点与直线的位置关系:

①点经过直线,说明点在直线上;

②点不经过直线,说明点在直线外。

篇二:两点间的距离

(1)两点间的距离:连接两点间的线段的长度叫两点间的距离。

(2)平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离。

篇三:正方体

(1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象.

(2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.

(3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面.

篇四:一元一次方程的解

定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解。

把方程的解代入原方程,等式左右两边相等。

13、解一元一次方程:

1.解一元一次方程的一般步骤

去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化。

2.解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号。

3.在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c。

使方程逐渐转化为ax=b的最简形式体现化归思想。

将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要准确判断符号,a、b同号x为正,a、b异号x为负。

七年级数学 学习方法 技巧

1回归书本,梳理章节概念公式、性质定理等

就像盖房子,房子的地基是否扎实稳固。比如我们在复习课中,要求孩子们默写公式等,记忆单项式、多项式、整式的概念,以及幂的运算、整式乘除的法则,而且一定要记住平方差和完全平方公式以及变形。有些孩子能够背下完全平方公式,但是一旦用的时候,就偏偏不用,因为不够熟练,怕出错,所以就用最复杂的公式推导一遍,费时费力,还总错,而且重要的公式更加生疏。

比如知识点填空:

知识点填空

我们的孩子在学校大题普遍做的多,考试也能拿到一些分数,但是选择填空老错,考完试下来一看,错就错在概念不清。

比如平行线是怎么定义,性质定理有几条,判定定理有几条?他们之间有什么联系和区别?在这一章中,哪些地方一定要加“同一平面内”这5个字?家长们可以让孩子找找看,捋一捋。

再比如说,三角形一章,涉及到三边关系,角的关系,以及三角形的重要线段和它们的性质,等腰等边三角形的性质,这些一定是期末选择题的备选项。

还有全等的几种证明方法,常见的辅助线做法这是几何证明题的思路。

2题型突破,对各章节常见的 热点 问题归纳练习。

我们的数学、物理这些理科都是要做题型的,而不仅仅是做题,一定要明白思路。

大多数孩子要考的题型和难度,学校每天的作业以及每周的考试卷,你都必须分析一下,对题型归类,你可以用不同的笔标记一下,比如第2题和第8题是一类题,是化简求值还是公式的变形应用?通过这样一遍的分析,孩子们都会发现,其实考来考去,就是那几种题型反复的出,反复的练。这是非常高效的学习方法。

3、熟悉套路、模型

平行线常见的模型:铅笔模型、猪蹄模型,比如我经常和大家说的,遇见拐点,就做平行线。

三角形倒角常见模型:8字型、飞镖型、折角型。

三角形全等模型:角平分线的性质模型,等腰直角三角形模型,三垂直模型,翻折(对称)。

学好这些模型相等于我们是拿着工具箱考试,效率很高,比起其他同学,省去了推导的过程,速度又快,又准确。当然前提要掌握好基础内容,不要本末倒置。

如果孩子们能把前面的步骤都做好了,基本知识点,题型都掌握了,计算也不会出错,那你们考试一定没有问题,除了有些学校本来要求考很难,比如压轴题,不在于做的多,而是在精练,你做完之后不断的复盘,用自己的语言说出思路来,找找看里面的逻辑关系。

4、坚持改错题

把整个学期的试卷装订在一起,每周花半天的时间,订正错题,不会的标记星号,问老师问同学,直到会了为止,下周继续改,看自己是否真的懂了,对于错题,就像骆驼吃草一样,不停地咀嚼,错题也需要孩子们不断反复的看思路,才能在考试的时候避免在同类型的题上反复错。


人教版初一数学知识点相关 文章 :

★ 初一数学人教版知识点归纳

★ 初一数学上册知识点人教版

★ 人教版初一数学知识点

★ 初一数学上册知识点归纳

★ 初一数学人教版上知识点

★ 初一数学知识点人教版

★ 初一人教版数学上册知识点总结归纳

★ 初一上册数学知识点总结人教版(2)

★ 初一数学上册人教版提纲

★ 初一数学上册人教版知识点归纳(2)

㈥ 初一数学全册知识点归纳

知识是一座宝库,而实践就是开启宝库的钥匙。学习任何学科,不仅需要大量的记忆,还需要大量的练习,从而达到巩固知识的效果。下面是我给大家整理的一些初一数学的知识点,希望对大家有所帮助。

初一下册数学知识点 总结

1、单项式:数字与字母的积,叫做单项式。

2、多项式:几个单项式的和,叫做多项式。

3、整式:单项式和多项式统称整式。

4、单项式的次数:单项式中所有字母的指数的和叫单项式的次数。

5、多项式的次数:多项式中次数的项的次数,就是这个多项式的次数。

6、余角:两个角的和为90度,这两个角叫做互为余角。

7、补角:两个角的和为180度,这两个角叫做互为补角。

8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。

9、同位角:在“三线八角”中,位置相同的角,就是同位角。

10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。

11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。

12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。

13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。

14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。

17、全等图形:两个能够重合的图形称为全等图形。

18、变量:变化的数量,就叫变量。

19、自变量:在变化的量中主动发生变化的,变叫自变量。

20、因变量:随着自变量变化而被动发生变化的量,叫因变量。

21、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。

22、对称轴:轴对称图形中对折的直线叫做对称轴。

初一下册数学知识点

一、同底数幂的乘法

(m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:

a)法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;

b)指数是1时,不要误以为没有指数;

c)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;

二、幂的乘方与积的乘方

三、同底数幂的除法

(1)运用法则的前提是底数相同,只有底数相同,才能用此法则

(2)底数可以是具体的数,也可以是单项式或多项式

(3)指数相减指的是被除式的指数减去除式的指数,要求差不为负

四、整式的乘法

1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。单独的一个数或一个字母也是单项式。单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。

如:bca22-的系数为2-,次数为4,单独的一个非零数的次数是0。

2、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数项的次数叫多项式的次数。

五、平方差公式

表达式:(a+b)(a-b)=a^2-b^2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式

公式运用

可用于某些分母含有根号的分式:

1/(3-4倍根号2)化简:

六、完全平方公式

完全平方公式中常见错误有:

①漏下了一次项

②混淆公式

③运算结果中符号错误

④变式应用难于掌握。

七、整式的除法

1、单项式的除法法则

单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

注意:首先确定结果的系数(即系数相除),然后同底数幂相除,如果只在被除式里含有的字母,则连同它的指数作为商的一个因式。

初一数学知识点

一元一次方程

一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.

一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0).

一元一次方程的最简形式: ax=b(x是未知数,a、b是已知数,且a≠0).

一元一次方程解法的一般步骤: 整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… (检验方程的解).

列方程解应用题的常用公式:

(1)行程问题:距离=速度·时间;

(2)工程问题:工作量=工效·工时;

(3)比率问题:部分=全体·比率;

(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;

(5)商品价格问题:售价=定价·折·0.1 ,利润=售价-成本;

(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab, C正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abc ,V正方体=a3,V圆柱=πR2h ,V圆锥=1/3πR2h.


初一数学全册知识点归纳相关 文章 :

★ 初一数学上册知识点归纳

★ 初一数学上册知识点汇总归纳

★ 初一数学知识点小归纳

★ 初一数学知识点梳理归纳

★ 初一数学人教版知识点归纳

★ 初一数学知识点归纳与学习方法

★ 初一上册数学知识点归纳整理

★ 初一数学部编版知识点归纳

★ 初中七年级数学知识点归纳整理

★ 七年级数学知识点整理大全

㈦ 人教版初一数学知识点

篇一:直线、射线、线段

直线、射线、线段的表示方法:直线用小写字母表示,如直线l,或两个大写字母表示,如直线AB。射线是直线的一部分,用小写字母表示,如射线l;用两个大写字母表示,端点在前,如射线AB。线段是直线的一部分,用小写字母表示,如线段a;用两个大写字母表示端点,如线段AB或BA。

点与直线的位置关系:点经过直线则在直线上,点不经过直线则在直线外。

篇二:两点间的距离

两点间的距离定义为连接两点间的线段长度。平面上任意两点间都存在一定距离,这是连接这两点的线段长度。学习此概念时,强调距离是一个量,有大小,不同于线段,线段是图形,线段的长度才是两点的距离。

篇三:正方体

解决正方体问题通常方法是折叠纸张或理解展开图。结合立体图形与平面图形的转化,建立空间观念是关键。正方体展开图有11种情况,分析各种情况后确定两个对面。

篇四:一元一次方程的解

一元一次方程的解定义为使方程左右两边相等的未知数值。验证解是否正确,只需将解代入原方程,左右两边相等即可。解一元一次方程通常步骤包括去分母、去括号、移项、合并同类项、系数化为1。解方程时需观察方程形式,灵活应用步骤,最终目标是将方程化简为ax=b形式。处理类似ax+bx=c的方程时,可将方程简化为(a+b)x=c。在系数化为1时,注意正负符号和计算准确度。

㈧ 初一数学上册知识点归纳

七年级初一上册的数学知识点是奠定中学数学学习的基础,所以新初一的学生最好趁这个暑期将这部分内容学习好。我在这里整理了相关资料,希望能帮助到您。

目录

第一章 有理数

第二章 整式的加减

第三章 一元一次方程

第四章 几何图形初步

第一章 有理数

1.1 正数与负数

①正数:大于0的数叫正数。(根据需要,有时在正数前面也加上“+”)

②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。与正数具有相反意义。

③0既不是正数也不是负数。0是正数和负数的分界,是唯一的中性数。

注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等

1.2 有理数

1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;

(3)有理数:整数和分数统称有理数。

2、数轴(1)定义 :通常用一条直线上的点表示数,这条直线叫数轴;

(2)数轴三要素:原点、正方向、单位长度;

(3)原点:在直线上任取一个点表示数0,这个点叫做原点;

(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

3、相反数:只有符号不同的两个数叫做互为相反数。(例:2的相反数是-2;0的相反数是0)

4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。从几何意义上讲,数的绝对值是两点间的距离。

(2) 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

1.3 有理数的加减法

①有理数加法法则:

1、同号两数相加,取相同的符号,并把绝对值相加。

2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

3、一个数同0相加,仍得这个数。

加法的交换律和结合律

②有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法

①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;

任何数同0相乘,都得0;

乘积是1的两个数互为倒数。

乘法交换律/结合律/分配律

②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;

两数相除,同号得正,异号得负,并把绝对值相除;

0除以任何一个不等于0的数,都得0。

1.5 有理数的乘方

1、求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

2、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

3、把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a <10。


第二章 整式的加减

2.1 整式

1、单项式:由数字和字母乘积组成的式子。系数,单项式的次数. 单项式指的是数或字母的积的代数式.单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式.

2、单项式的系数:是指单项式中的数字因数;

3、单项数的次数:是指单项式中所有字母的指数的和.

4、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,常数项,多项式的次数就是多项式中次数最高的次数。多项式的次数是指多项式里次数最高项的次数,这里是次数最高项,其次数是6;多项式的项是指在多项式中,每一个单项式.特别注意多项式的项包括它前面的性质符号.

5、它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。

6、单项式和多项式统称为整式。

2.2整式的加减

1、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。

2、同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可.同类项与系数大小、字母的排列顺序无关

3、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。

4、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;

5、去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。

6、整式加减的一般步骤:

一去、二找、三合

(1)如果遇到括号按去括号法则先去括号. (2)结合同类项. (3)合并同类项


第三章 一元一次方程

3.1 一元一次方程

1、方程是含有未知数的等式。

2、方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。

注意:判断一个方程是否是一元一次方程要抓住三点:

1)未知数所在的式子是整式(方程是整式方程);

2)化简后方程中只含有一个未知数;

3)经整理后方程中未知数的次数是1.

3、解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

4、等式的性质: 1)等式两边同时加(或减)同一个数(或式子),结果仍相等;

2)等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。

注意:运用性质时,一定要注意等号两边都要同时变;运用性质2时,一定要注意0这个数.

3.2 、3.3解一元一次方程

在实际解方程的过程中,以下步骤不一定完全用上,有些步骤还需重复使用. 因此在解方程时还要注意以下几点:

①去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;去分母与分母化整是两个概念,不能混淆;

②去括号:遵从先去小括号,再去中括号,最后去大括号;不要漏乘括号的项;不要弄错符号;

③移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(移项要变符号) 移项要变号;

④合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式;

⑤系数化为1::字母及其指数不变系数化成1,在方程两边都除以未知数的系数a,得到方程的解。不要分子、分母搞颠倒。

3.4 实际问题与一元一次方程

一.概念梳理

⑴列一元一次方程解决实际问题的一般步骤是:①审题,特别注意关键的字和词的意义,弄清相关数量关系;②设出未知数(注意单位);③根据相等关系列出方程;④解这个方程;⑤检验并写出答案(包括单位名称)。

⑵一些固定模型中的等量关系及典型例题参照一元一次方程应用题专练学案。

二、思想 方法 (本单元常用到的数学思想方法小结)

⑴建模思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立一元一次方程的思想.

⑵方程思想:用方程解决实际问题的思想就是方程思想.

⑶化归思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a的形式. 体现了化“未知”为“已知”的化归思想.

⑷数形结合思想:在列方程解决问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来,体现了数形结合的优越性.

⑸分类思想:在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.

三、数学思想方法的学习

1. 解一元一次方程时,要明确每一步过程都作什么变形,应该注意什么问题.

2. 寻找实际问题的数量关系时,要善于借助直观分析法,如表格法,直线分析法和图示分析法等.

3. 列方程解应用题的检验包括两个方面:⑴检验求得的结果是不是方程的解;

⑵是要判断方程的解是否符合题目中的实际意义.

四、应用(常见等量关系)

行程问题:s=v×t

工程问题:工作总量=工作效率×时间

盈亏问题:利润=售价-成本

利率=利润÷成本×100%

售价=标价×折扣数×10%

储蓄利润问题:利息=本金×利率×时间

本息和=本金+利息


第四章 几何图形初步

4.1 几何图形

1、几何图形:从形形色色的物体外形中得到的图形叫做几何图形。

2、立体图形:这些几何图形的各部分不都在同一个平面内。

3、平面图形:这些几何图形的各部分都在同一个平面内。

4、虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。

立体图形中某些部分是平面图形。

5、三视图:从左面看,从正面看,从上面看

6、展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。这样的平面图形称为相应立体图形的展开图。

7、⑴几何体简称体;包围着体的是面;面 面相 交形成线;线线相交形成点;

⑵点无大小,线、面有曲直;

⑶几何图形都是由点、线、面、体组成的;

⑷点动成线,线动成面,面动成体;

⑸点:是组成几何图形的基本元素。

4.2 直线、射线、线段

1、直线公理:经过两点有一条直线,并且只有一条直线。即:两点确定一条直线。

2、当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。

3、把一条线段分成相等的两条线段的点,叫做这条线段的中点。

4、线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。

5、连接两点间的线段的长度,叫做这两点的距离。

6、直线的表示方法:如图的直线可记作直线AB或记作直线m.

(1)用几何语言描述右面的图形,我们可以说:

点P在直线AB外,点A、B都在直线AB上.

(2)如图,点O既在直线m上,又在直线n上,我们称直线

m、n 相交,交点为O.

7、在直线上取点O,把直线分成两个部分,去掉一边的一个部分,保留点0和另一部分就得到一条射线,如图就是一条射线,记作射线OM或记作射线a.葫芦岛英霸 教育 联盟http://www.yingbajiaoyu.com/ 18342389605

注意:射线有一个端点,向一方无限延伸.

8、在直线上取两个点A、B,把直线分成三个部分,去掉两边的部分,保留点A、B和中间的一部分就得到一条线段.如图就是一条线段,记作线段AB或记作线段a.

注意:线段有两个端点.

4.3 角

1. 角的定义:有公共端点的两条射线组成的图形叫角。这个公共端点是角的顶点,两条射线为角的两边。如图,角的顶点是O,两边分别是射线OA、OB.

2、角有以下的表示方法:

① 用三个大写字母及符号“∠”表示.三个大写字母分别是顶点和两边上的任意点,顶点的字母必须写在中间.如上图的角,可以记作∠AOB或∠BOA.

② 用一个大写字母表示.这个字母就是顶点.如上图的角可记作∠O.当有两个或两个以上的角是同一个顶点时,不能用一个大写字母表示.

③ 用一个数字或一个希腊字母表示.在角的内部靠近角的顶点

处画一弧线,写上希腊字母或数字.如图的两个角,分别记作∠、∠1

2、以度、分、秒为单位的角的度量制,叫做角度制。角的度、分、秒是60进制的。

1度=60分 1分=60秒 1周角=360度 1平角=180度

3、角的平分线:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线。

4、如果两个角的和等于90度(直角),就说这两个叫互为余角,即其中每一个角是另一个角的余角;

如果两个角的和等于180度(平角),就说这两个叫互为补角,即其中每一个角是另一个角的补角。

5、同角(等角)的补角相等;同角(等角)的余角相等。

6、方位角:一般以正南正北为基准,描述物体运动的方向。


初一数学上册知识点归纳相关 文章 :

1. 初一数学上册人教版知识点归纳

2. 初一数学知识点总结

3. 初一年级上册数学的21个热门知识点

4. 初一上册数学知识点手抄报

5. 初一上册数学第一单元知识点

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

㈨ 初一下册数学知识点(人教版)

初一数学(下)应知应会的知识点
二元一次方程组
1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.
2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.
3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有唯一解(即公共解).
4.二元一次方程组的解法:
(1)代入消元法;(2)加减消元法;
(3)注意:判断如何解简单是关键.
※5.一次方程组的应用:
(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则“难列易解”;
(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;
(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.
一元一次不等式(组)
1.不等式:用不等号“>”“<”“≤”“≥”“≠”,把两个代数式连接起来的式子叫不等式.
2.不等式的基本性质:
不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;
不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;
不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.
3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集.
4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b>0或ax+b<0 ,(a≠0).
5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点.
6.一元一次不等式组:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组;注意:ab>0   或 ;
ab<0   或 ; ab=0  a=0或b=0;  a=m .
7.一元一次不等式组的解集与解法:所有这些一元一次不等式解集的公共部分,叫做这个一元一次不等式组的解集;解一元一次不等式时,应分别求出这个不等式组中各个不等式的解集,再利用数轴确定这个不等式组的解集.
8.一元一次不等式组的解集的四种类型:设 a>b

9.几个重要的判断: , ,

整式的乘除
1.同底数幂的乘法:am•an=am+n ,底数不变,指数相加.
2.幂的乘方与积的乘方:(am)n=amn ,底数不变,指数相乘; (ab)n=anbn ,积的乘方等于各因式乘方的积.
3.单项式的乘法:系数相乘,相同字母相乘,只在一个因式中含有的字母,连同指数写在积里.
4.单项式与多项式的乘法:m(a+b+c)=ma+mb+mc ,用单项式去乘多项式的每一项,再把所得的积相加.
5.多项式的乘法:(a+b)•(c+d)=ac+ad+bc+bd ,先用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加.
6.乘法公式:
(1)平方差公式:(a+b)(a-b)= a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;
(2)完全平方公式:
① (a+b)2=a2+2ab+b2, 两个数和的平方,等于它们的平方和,加上它们的积的2倍;
② (a-b)2=a2-2ab+b2 , 两个数差的平方,等于它们的平方和,减去它们的积的2倍;
※ ③ (a+b-c)2=a2+b2+c2+2ab-2ac-2bc,略.
7.配方:
(1)若二次三项式x2+px+q是完全平方式,则有关系式: ;
※ (2)二次三项式ax2+bx+c经过配方,总可以变为a(x-h)2+k的形式,利用a(x-h)2+k
①可以判断ax2+bx+c值的符号; ②当x=h时,可求出ax2+bx+c的最大(或最小)值k.
※(3)注意: .
8.同底数幂的除法:am÷an=am-n ,底数不变,指数相减.
9.零指数与负指数公式:
(1)a0=1 (a≠0); a-n= ,(a≠0). 注意:00,0-2无意义;
(2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01×10-5 .

10.单项式除以单项式: 系数相除,相同字母相除,只在被除式中含有的字母,连同它的指数作为商的一个因式.
11.多项式除以单项式:先用多项式的每一项除以单项式,再把所得的商相加.
※12.多项式除以多项式:先因式分解后约分或竖式相除;注意:被除式-余式=除式•商式.
13.整式混合运算:先乘方,后乘除,最后加减,有括号先算括号内.
线段、角、相交线与平行线

几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)
1. 角平分线的定义:
一条射线把一个角分成两个相等的部分,这条射线叫角的平分线.(如图)
几何表达式举例:
(1) ∵OC平分∠AOB
∴∠AOC=∠BOC
(2) ∵∠AOC=∠BOC
∴OC是∠AOB的平分线
2.线段中点的定义:
点C把线段AB分成两条相等的线段,点C叫线段中点.(如图)

几何表达式举例:
(1) ∵C是AB中点
∴ AC = BC
(2) ∵AC = BC
∴C是AB中点
3.等量公理:(如图)
(1)等量加等量和相等;(2)等量减等量差相等;
(3)等量的等倍量相等;(4)等量的等分量相等.
(1) (2)
(3)

(4) 几何表达式举例:
(1) ∵AC=DB
∴AC+CD=DB+CD
即AD=BC
(2) ∵∠AOC=∠DOB
∴∠AOC-∠BOC=∠DOB-∠BOC
即∠AOB=∠DOC
(3) ∵∠BOC=∠GFM
又∵∠AOB=2∠BOC
∠EFG=2∠GFM
∴∠AOB=∠EFG
(4) ∵AC= AB ,EG= EF
又∵AB=EF
∴AC=EG
4.等量代换: 几何表达式举例:
∵a=c
b=c
∴a=b 几何表达式举例:
∵a=c b=d
又∵c=d
∴a=b 几何表达式举例:
∵a=c+d
b=c+d
∴a=b
5.补角重要性质:
同角或等角的补角相等.(如图)

几何表达式举例:
∵∠1+∠3=180°
∠2+∠4=180°
又∵∠3=∠4
∴∠1=∠2
6.余角重要性质:
同角或等角的余角相等.(如图)

几何表达式举例:
∵∠1+∠3=90°
∠2+∠4=90°
又∵∠3=∠4
∴∠1=∠2

7.对顶角性质定理:
对顶角相等.(如图)
几何表达式举例:
∵∠AOC=∠DOB
∴ ……………

8.两条直线垂直的定义:
两条直线相交成四个角,有一个角是直角,这两条直线互相垂直.(如图)

几何表达式举例:
(1) ∵AB、CD互相垂直
∴∠COB=90°
(2) ∵∠COB=90°
∴AB、CD互相垂直

9.三直线平行定理:
两条直线都和第三条直线平行,那么,这两条直线也平行.(如图)

几何表达式举例:
∵AB∥EF
又∵CD∥EF
∴AB∥CD

10.平行线判定定理:
两条直线被第三条直线所截:
(1)若同位角相等,两条直线平行;(如图)
(2)若内错角相等,两条直线平行;(如图)
(3)若同旁内角互补,两条直线平行.(如图)

几何表达式举例:
(1) ∵∠GEB=∠EFD
∴ AB∥CD
(2) ∵∠AEF=∠DFE
∴ AB∥CD
(3) ∵∠BEF+∠DFE=180°
∴ AB∥CD
11.平行线性质定理:
(1)两条平行线被第三条直线所截,同位角相等;(如图)
(2)两条平行线被第三条直线所截,内错角相等;(如图)
(3)两条平行线被第三条直线所截,同旁内角互补.(如图)

几何表达式举例:
(1) ∵AB∥CD
∴∠GEB=∠EFD
(2) ∵AB∥CD
∴∠AEF=∠DFE
(3) ∵AB∥CD
∴∠BEF+∠DFE=180°
几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)
一 基本概念:
直线、射线、线段、角、直角、平角、周角、锐角、钝角、互为补角、互为余角、邻补角、两点间的距离、相交线、平行线、垂线段、垂足、对顶角、延长线与反向延长线、同位角、内错角、同旁内角、点到直线的距离、平行线间的距离、命题、真命题、假命题、定义、公理、定理、推论、证明.
二 定理:
1.直线公理:过两点有且只有一条直线.
2.线段公理:两点之间线段最短.

3.有关垂线的定理:
(1)过一点有且只有一条直线与已知直线垂直;
(2)直线外一点与直线上各点连结的所有线段中,垂线段最短.
4.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.

三 公式:
直角=90°,平角=180°,周角=360°,1°=60′,1′=60″.
四 常识:
1.定义有双向性,定理没有.
2.直线不能延长;射线不能正向延长,但能反向延长;线段能双向延长.
3.命题可以写为“如果………那么………”的形式,“如果………”是命题的条件,“那么………” 是命题的结论.
4.几何画图要画一般图形,以免给题目附加没有的条件,造成误解.
5.数射线、线段、角的个数时,应该按顺序数,或分类数.
6.几何论证题可以运用“分析综合法”、“方程分析法”、“代入分析法”、“图形观察法”四种方法分析.
7.方向角:

(1) (2)

8.比例尺:比例尺1:m中,1表示图上距离,m表示实际距离,若图上1厘米,表示实际距离m厘米.
9.几何题的证明要用“论证法”,论证要求规范、严密、有依据;证明的依据是学过的定义、公理、定理和推论.