A. 初中数学基础知识点归纳总结
初中数学教学,注重培养学生正确的数学情操和几何思维能力。下面是我为大家整理的关于初中数学基础知识点归纳 总结 ,希望对您有所帮助。欢迎大家阅读参考学习!
初中数学基础知识点归纳总结
1、定理1 关于中心对称的两个图形是全等的
2、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
3、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
4、等腰梯形性质定理 等腰梯形在同一底上的两个角相等
5、等腰梯形的两条对角线相等
6、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形
7、对角线相等的梯形是等腰梯形
8、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
9、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
10、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边
11、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半
12、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h
13、(1)比例的基本性质:如果a:b=c:d,那么ad=bc 如果 ad=bc ,那么a:b=c:d
14、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d
15、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
16、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例
17、推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
18、定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
19、平行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例
20、定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
21、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
22、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
23、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
24、判定定理3 三边对应成比例,两三角形相似(SSS)
25、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
26、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
27、性质定理2 相似三角形周长的比等于相似比
28、性质定理3 相似三角形面积的比等于相似比的平方
29、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
30、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
31、圆是定点的距离等于定长的点的集合
32、圆的内部可以看作是圆心的距离小于半径的点的集合
33、圆的外部可以看作是圆心的距离大于半径的点的集合
34、同圆或等圆的半径相等
35、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
36、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
37、到已知角的两边距离相等的点的轨迹,是这个角的平分线
38、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
39、定理 不在同一直线上的三点确定一个圆。
40、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
41、推论1
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
42、推论2 圆的两条平行弦所夹的弧相等
43、圆是以圆心为对称中心的中心对称图形
44、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
45、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
46、定理 一条弧所对的圆周角等于它所对的圆心角的一半
47、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
48、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
49、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
50、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
51、①直线L和⊙O相交 d
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
52、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
53、切线的性质定理 圆的切线垂直于经过切点的半径
54、推论1 经过圆心且垂直于切线的直线必经过切点
55、推论2 经过切点且垂直于切线的直线必经过圆心
56、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角
57、圆的外切四边形的两组对边的和相等
58、弦切角定理 弦切角等于它所夹的弧对的圆周角
59、推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
60、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等
61、推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
62、切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
63、推论 从圆外一点引圆的两条割线,这一点到每条 割线与圆的交点的两条线段长的积相等
64、如果两个圆相切,那么切点一定在连心线上
65、①两圆外离 d>R+r ②两圆外切 d=R+r③两圆相交 R-rr)
④两圆内切 d=R-r(R>r) ⑤两圆内含 dr)
66、定理 相交两圆的连心线垂直平分两圆的公共弦
67、定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
68、定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
69、正n边形的每个内角都等于(n-2)×180°/n
70、定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
71、正n边形的面积Sn=pnrn/2 p表示正n边形的周长
72、正三角形面积√3a/4 a表示边长
73、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
74、弧长计算公式:L=n兀R/180
75、扇形面积公式:S扇形=n兀R^2/360=LR/2
76、内公切线长= d-(R-r) 外公切线长= d-(R+r) 本回答被提问者采纳
怎样学好初中数学
1、深刻理解概念,概念是数学的基石,学习概念不仅要知其然,还要知其所以然。
2、对于每个定义、定理必须在牢记其内容的基础上知道是怎样得来的,又是运用到何处的。
3、多看一些例题,不能只看皮毛,不看内涵。
4、要把想和看结合起来,各难度层次的例题都照顾到。
5、看例题要循序渐进,这同后面的“做练习”一样,但看比做有一个显着的好处,例题有现成的解答,思路清晰,只需循着思路走,就会得出结论,所以可以看一些技巧性较强、难度较大的例题。
相关 文章 :
1. 初中数学基础知识点总结
2. 初中数学基础知识点总结之有理数
3. 初中数学知识点整理
4. 初一数学知识点归纳与学习方法
5. 初一数学基础知识有哪些?
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();B. 初中数学学好要掌握哪些基础知识点
有理数
整式的加减
一元一次方程
图形初步认识
相交线与平行线
平面直角坐标系
三角形
二元一次方程
不等式与不等式组
数据的收集、整理与描述
全等三角形
轴对称
实数
一次函数
整式的乘除与因式分解
分式
反比例函数
勾股弦定理
四边形
数据的分析
二次根式
一元二次方程
旋转
圆
概率初步
二次函数
相似
锐角三角函数
投影与视图
C. 初中数学知识点之基础知识点总结
初中数学知识点之基础知识点总结
在年少学习的日子里,很多人都经常追着老师们要知识点吧,知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。想要一份整理好的知识点吗?下面是我帮大家整理的初中数学知识点之基础知识点总结,欢迎大家分享。
初中数学知识点之基础知识点总结1
一、数与代数A、数与式:1、有理数:①整数→正整数/0/负整数②分数→正分数/负分数
数轴:
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
绝对值:
①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:
①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数无理数:无限不循环小数叫无理数
平方根:
①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:
①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:
①实数分有理数和无理数。
②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。
③每一个实数都可以在数轴上的一个点来表示。
3、代数式
代数式:单独一个数或者一个字母也是代数式。
合并同类项:
①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
②把同类项合并成一项就叫做合并同类项。
③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
4、整式与分式
整式:
①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。
②一个单项式中,所有字母的指数和叫做这个单项式的次数。
③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN除法一样。
整式的乘法:
①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:平方差公式/完全平方公式
整式的除法:
①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
方法:提公因式法、运用公式法、分组分解法、十字相乘法。
分式:
①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。
②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。
初中数学知识点:直线的位置与常数的关系
①k>0则直线的倾斜角为锐角
②k<0则直线的倾斜角为钝角
③图像越陡,|k|越大
④b>0直线与y轴的`交点在x轴的上方
⑤b<0直线与y轴的交点在x轴的下方
初中数学知识点之基础知识点总结2
1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。
3.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解)。
4.列一元一次方程解应用题:
(1)读题分析法:多用于“和,差,倍,分问题”
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套—————”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。
(2)画图分析法:多用于“行程问题”
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。
11.列方程解应用题的常用公式:
(1)行程问题:距离=速度·时间;
(2)工程问题:工作量=工效·工时;
(3)比率问题:部分=全体·比率;
(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度—水流速度;
(5)商品价格问题:售价=定价·折·,利润=售价—成本,;
(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a,
S正方形=a2,S环形=π(R2—r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥=πR2h。
本章内容是代数学的核心,也是所有代数方程的基础。丰富多彩的问题情境和解决问题的快乐很容易激起学生对数学的乐趣,所以要注意引导学生从身边的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力,体会数学思想方法。
初中数学知识点之基础知识点总结3
二元二次方程与二元二次方程组以及解法要领的孩子试点已经为大家讲完,接下来给大家带来的知识点内容是数轴,希望同学们了解有向直线和数轴的知识要领了。
数轴
11有向直线
在科学技术和日常生活中,为了区别一条直线的两个不同方向,可以规定其中一方向为正向,另一方向为负相
规定了正方向的直线,叫做有向直线,读作有向直线l
12数轴
我们把数轴上任意一点所对应的实数称为点的坐标
对于每一个坐标(实数),在数周上可以找到唯一的点与之对应这就是直线的坐标化
数轴上任意一条有向线段的数量等于它的终点坐标与起点坐标的差任意一条有向线段的长度等于它两个断电坐标差的绝对值
上面的内容是初中数学知识点之数轴,相信同学们看过以后都可以很好的掌握了吧。如果想要了解更多更全的初中数学知识就来关注吧。
初中数学知识点总结:平面直角坐标系
下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系
平面直角坐标系: 在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成
对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成
在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
初中数学知识点:点的坐标的性质
下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。
点的坐标的性质
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。
一个点在不同的象限或坐标轴上,点的坐标不一样。
希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。
初中数学知识点:因式分解的一般步骤
关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。
因式分解的一般步骤
如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。
初中数学知识点:因式分解
下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。
因式分解
因式分解定义 :
把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
因式分解要素 :
①结果必须是整式②结果必须是积的形式③结果是等式④
因式分解与整式乘法的关系:m(a+b+c)
公因式:
一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
公因式确定方法 :
①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
提取公因式步骤:
①确定公因式。②确定商式③公因式与商式写成积的形式。
分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。
通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。
;D. 初中数学之基础知识点总结
有关初中数学之基础知识点总结
在日常生活或是工作学习中,大家一定都或多或少地接触过一些化学知识,下面是我为大家收集的有关初中数学之基础知识点总结相关内容,仅供参考,希望能够帮助到大家。
一、数与代数
数与式:
1、有理数:①整数→正整数/0/负整数②分数→正分数/负分数
数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数 无理数:无限不循环小数叫无理数
平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。
3、代数式
代数式:单独一个数或者一个字母也是代数式。
合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
4、整式与分式
整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN 除法一样。
整式的.乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:平方差公式/完全平方公式
整式的除法:
①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
方法:提公因式法、运用公式法、分组分解法、十字相乘法。
分式:
①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。
②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。
直线的位置与常数的关系
①k>0则直线的倾斜角为锐角
②k<0则直线的倾斜角为钝角
③图像越陡,|k|越大
④b>0直线与y轴的交点在x轴的上方
⑤b<0直线与y轴的交点在x轴的下方
;E. 楂树腑鏁板︽湁鍝浜涘埯涓鏁板︾殑锘虹鐭ヨ瘑
鍒濅腑鏁板︾殑锘虹鐭ヨ瘑楂树腑鏁板﹂兘闇瑕併
鍒濅腑鏁板﹀唴瀹癸细
浠f暟閮ㄥ垎锛
1銆佹湁鐞嗘暟銆佹棤鐞嗘暟銆佸疄鏁般
2銆佹暣寮忋佸垎寮忋佷簩娆℃牴寮忋
3銆佷竴鍏冧竴娆℃柟绋嬨佷竴鍏冧簩娆℃柟绋嬨佷簩锛堜笁锛夊厓涓娆℃柟绋嬬粍銆佷簩鍏冧簩娆℃柟绋嬬粍銆佸垎寮忔柟绋嬨佷竴鍏冧竴娆′笉绛夊纺銆
4銆佸嚱鏁帮纸涓娆″嚱鏁般佷簩娆″嚱鏁般佸弽姣斾緥鍑芥暟锛夈
5銆佺粺璁″埯姝ャ
鍑犱綍閮ㄥ垎锛
1銆佺嚎娈点佽掋
2銆佺浉浜ょ嚎銆佸钩琛岀嚎銆
3銆佷笁瑙掑舰銆
4銆佸洓杈瑰舰銆
5銆佺浉浼煎舰銆
6銆佸浑銆
镓╁𪾢璧勬枡
瀛﹀ソ楂树腑鏁板︽敞镒忎簨椤癸细
涓銆佸洖褰掕炬湰涓轰富锛 镓惧嗳澶囱冩柟钖
锘虹宸镄勫︾敓锛屾渶濂藉眰灞傝拷婧鍒拌嚜宸卞︿笉濂界殑镙规簮銆 镞犺哄摢涓瀛︾戯纴 锘烘湰涓婇兘鏄鎸夌収鏁欐潗灞傚眰鍏宠仈镄勶纴 锘虹涓嶅ソ镄勫悓瀛︿互璇炬湰涓轰富锛岄厤濂楃粌涔犺炬湰钖庣殑缁冧範棰桡纴浠ヤ腑绛夐樸佺亩鍗曢树负杈呫 阃愭笎钖冮忚炬湰锛屼篃娓愭笎鎻愰珮淇″绩銆
鍙瑕佹妸锘虹鎶揿ソ锛 闾d箞钥冭瘯镞堕櫎浜嗕竴浜涜缉闅剧殑棰樼洰锛 锘烘湰涓婇兘鍙浠ュ嚟鍊熻兘锷涙嬁涓嬶纴鍒嗘暟镄勯珮浣庝粎鍓╀笅鍙戞尌镄勯梾棰樸
浜屻佸惊搴忔笎杩涳纴鍒囧繉镐ヨ簛
鍦ㄥ崭範镄勬椂鍊欙纴 鐢变簬鏄浠ヨ嚜宸变负涓诲硷纴 链夋椂鍊椤崭範镄勭増鍧楀拰鏁椤﹁繘搴︿笉钖岋纴褰撹冭瘯镞朵细鍙戠幇娌℃湁澶崭範鍒扮殑閮ㄥ垎涓㈠垎涓ラ吨銆傚艰嚧鎴愮哗涓嶉珮銆 浣嗘槸宸茬粡澶崭範杩囩殑鐗埚潡锛屽嵈澶у氲兘澶熸嬁涓嬨傝繖灏辨槸杩涙,涓嶈佸洜涓虹敤涓镞剁殑鍒嗘暟楂树绠锅氢负琛¢噺镙囧嗳锛屽崭範瑕佸惊搴忔笎杩涳纴涓嶈佹ヨ簛銆
澶崭範灏卞儚淇涓 𨱒″潙鍧戞醇娲肩殑璺锛 姣忎釜鍧庡澐閮芥槸闅灭嶏纴鎴戜滑鍙链夎ょ湡镄勪粠璧风偣寮濮嬶纴鎸夌収椤哄簭鎱㈡参鎺ㄥ钩銆傚摢镐曞墠闱渚濇棫娌熸暣锛屼絾鏄褰扑綘锲炲ご镄勬椂鍊欙纴灞旷幇鍦ㄤ綘鐪煎墠镄勬槸涓𨱒″悍搴勫ぇ阆撱傚熀链涓婏纴 濡傛灉绾锅氶樼殑璇濓纴 1 -2涓链堟椂闂村氨鑳芥妸钖勭戠殑璇曢树粠绗涓绔犺妭鍒版渶钖庝竴涓绔犺妭鎽稿缑宸涓嶅氥
涓夈佸悎鐞嗗埄鐢ㄤ綔涓氲瘯棰樸 璇曞嵎
绠鍗曢樸佷腑绛夐树竴鏂归溃鍙浠ュ嵃璇併佹楠岃嚜宸辩殑锘虹鐭ヨ瘑浣撶郴锛 鍙堜竴鏂归溃鍙浠ユ彁鍗囨垜浠澶崭範镄勪俊蹇冦傚湪阃夋嫨浣滀笟涓婏纴绠鍗曢樸佷腑绛夐桦挨鍏舵槸姒傚康鐞呜В搴旂敤棰树竴 瀹氲佽嚜宸卞姩镓嫔仛锛岃缮瑕佽繘琛屾荤粨銆 闅鹃桦彲浠ュ弬钥幂瓟妗堬纴 浣呜佽ょ湡镐濊冨叾涓镄勬ラゆ帹瀵兼濇兂鍜岃浆鍖栨濇兂锛岃繖浜涢兘鏄楂樿冩墍钥冨疗镄勚
锲涖佸缓绔嬩俊蹇冿纴 涓嶈′竴镞跺缑澶
链変簺瀛︾敓镊璁や负镊宸辨槸宸鐢燂纴 镞犲彲鏁戣嵂浜嗐备絾鏄浜嫔疄涓婂线寰涓嶆槸杩欐牱銆傛湁浜涘︾敓璁や负镊宸卞ぉ鐢熸瘆鍒浜虹锛 涓嶅傚埆浜鸿仾鏄庛备篃璁稿湪镆愪竴鏂归溃涓婄‘瀹炴槸链夎嚜韬镄勭己闄凤纴浣嗘槸鍗村拷鐣ヤ简镊宸辩殑浼桦娍镓鍦ㄣ备负浜呜嚜宸卞绩涓闾d唤鎴栬稿苟涓嶆槸鍗佸垎纭瀹氱殑姊︽兂锛屼竴瀹氲佹墦璧风簿绁炪
钥冭瘯涓嶈佽颁竴镞跺缑澶憋纴钥屾槸瑕佷笉鏂镄勬荤粨褰掔撼銆备腑绛夌敓锛屽彧瑕佷綘涓嶆斁寮冿纴镓惧埌镊宸辩殑缂洪櫡锛屼弗镙肩粰镊宸卞畾涓嫔崭範瑕佹眰骞惰ょ湡镓ц岋纴銮峰彇600鍒嗭纴鍙闇瑕2-3涓链堬纴灏辫兘杈惧埌銆