当前位置:首页 » 基础知识 » 大学数学知识框架梳理
扩展阅读
怀孕的小知识大全 2024-11-24 11:11:46

大学数学知识框架梳理

发布时间: 2024-10-17 20:42:54

‘壹’ 大家告诉我对待高等数学,应该如果去归纳总结么,能够详细点谢谢了

介绍一篇文章:新生怎样学好高等数学?(转载)
新生入学后常有“上了大学为何还学数学”,“学数学有什么用”等疑惑。不仅专本科阶段学数学,硕士、博士阶段还要学数学,而且学更高层次的内容。如果你从事管理、工程技术类工作也要继续学习数学。高等数学是必修的基础理论课,它对学生各专业课程的学习,以及毕业后从事各类管理、工程技术工作均起着奠基的作用。尤其是在科学技术日新月异的今天,数学方法已广泛运用到科技的各个领域。因此,对大学生而言,一个明确的任务就是要学好高等数学这门课程,为以后的学习和工作打下良好的基础。

那么,新生怎样才能学好高等数学呢?这里谈几点看法,供同学们参考。

一、对高等数学课要有正确的认识

高等数学虽然只是现代数学的基础,但它能完成很多现实的任务。通过学习高等数学,能够提高学生分析问题解决问题的能力,使他们掌握良好的学习方法、培养敏锐的科学思维。所以,数学被人们称为“智慧的体操”。关于高等数学的用途,我举3个例子加以说明:

其一,火力发电厂冷却塔的外形为什么要做成弯曲状,而不是像烟囱一样笔直的?其中原因就是冷却塔体积大,自重非常大,如果做成直的,那么最下面的建筑材料不能承受巨大的压力(我们知道,地球上的山峰最高只能达到3万米,否则最下面的岩石都要融化了)。把冷却塔的边缘做成双曲面的形状,正好能够让每一截面的压力相等,这样,冷却塔就能做得很大了。为什么会是双曲面?用高等数学中的微积分理论不到5分钟就能够解决。

其二,大家对计算机都很熟悉,但是如果没有数学原理和方法,计算机可以说是一堆“废铜烂铁”。因为,从根本上讲,计算机只会做加法,我们常说的多少亿次实际上就是指加法运算。其它复杂计算必须转化加法才能够实施,这个转化过程就要用到高等数学的知识。如对数计算,实际上就运用微积分的级数理论,可以把对数函数转换为一系列乘法和加法运算。

其三,我国着名数学家吴文俊提出的“吴方法”,是一种数学理论和方法,人们用它已经解决了几何定理机器证明、机床设计、电路设计、机器人轨迹问题,曲面拼接等诸多高端科技问题,享誉世界。在这些前沿科学问题中“吴方法”起着关键技术的作用,因此,目前出现了“数学技术”这个词。

可以说数学无处不在。现代科学如果没有微积分(高等数学的主要内容),就不能称之为科学,这就是高等数学的作用。

二、尽快摈弃中学的学习方法,了解掌握大学的学习方法

从中学升入大学后,学生在高等数学的学习方法上要有一个大的转变。中学的教学方法与大学有质的差别。突出表现在:中学生是在教师的直接指导下进行模仿和单一性的学习,大学则要求学生在教师的指导下进行创造性的学习。例如,中学数学课的教学是完全按照教材进行的,在课堂上只要求教师讲、学生听,不要求做笔记,教师讲得慢而且细、计算方法举例也多,课后要求学生模仿课堂上老师讲的内容做些习题即可,没有必要钻研教材和其他参考书(为了高考选择参考书只是为了训练解题能力)。大学的高等数学课程则不同,教材只是作为一种主要的参考书,老师常常不完全按照教材授课,这就要求学生以课堂上老师所讲的重点和难点为线索,通过大量阅读教材和同类参考书,充分消化和掌握课堂上所讲授内容,然后做习题巩固所掌握知识,进行反复的创造性的学习。

三、学习基本概念、基本思想是重中之重,掌握核心思想和方法是目的

大学阶段的学习不能为应付考试,重要的是学习每门课程的内涵,即思想方法。高等数学中,为了提出或建立一种思想和方法,总要有基本概念、基本结论作为铺垫。如果对这些概念和基本结论掌握不好,就很难掌握其内在的核心思想和方法。学习高等数学的过程也是新的认识观念的建立过程,如有限数学过渡到无限数学的过程就是认知的一个飞跃。新生往往认识不到学习基本概念、基本结论的重要性,只从文字表面上理解,忽略思想观念的转变,导致学习吃力,失去兴趣、甚至厌学。其实,高等数学的学习难点在于对基本概念、结论的准确理解、灵活运用,以及动态变化观念的建立上。突破了这一难点,很多问题迎刃而解。

四、把握四个环节,提高学习效率

第一,课前预习。了解老师即将讲什么内容,相应地复习与之相关内容,有的放矢,主动学习。第二,认真上课。听课是一个全身心投入——听、记、思考相结合的过程。注意老师的讲解方法、思路,以及分析问题和解决问题的过程,同时关注你预习时遇到的问题,记好课堂笔记。第三,课后复习,循序渐进。当天必须回忆一下老师讲课内容,然后结合笔记重复看教材内容,完善笔记,掌握所学内容之间的联系,最后完成作业。做作业时从中总结、提炼学过的知识、思想和方法,在比较中构筑知识结构的框架;要经常复习、巩固学过的内容,进行循环学习;学会归纳、总结。第四,整体把握,不能断链。高等数学是一条完整的锁链,一环扣一环。对任何一个环节掌握不好将影响整个学习进程。特别注意将要讲到的函数和极限的概念,这是高等数学的“地基”,直接影响后续学习。如果不进行整体掌握,很容易在大量概念、结论和题海中“淹没”。

五、培养创造性思维和用数学方法解决问题的能力

学习一门课程要思考其延伸的作用。学习高等数学不能只学数学知识,还应该努力培养自己创造性思维和运用数学的能力,尤其是数学模型的意识。高等数学充分体现了逻辑思维、抽象思维、类比思维、归纳思维、发散思维、逆向思维等创造性思维,学生应通过高等数学这一载体很好地体验这些思维方式,提高自己的科学思维能力。所谓数学意识,是指用数学知识的心理倾向性。它包含两方面的意义:一方面,当你面临有待解决的问题时,能主动尝试用数学的立场、观点和方法寻求解决问题的策略;另一方面,当你接受一个新的数学理论时(可能学习更多的数学分支),能主动地探索这一新知识的来龙去脉和实用价值,为此贯穿的数学思维将起到直接或潜移默化的作用。这就需要学生在学习中努力树立数学观念并提高对数学的悟性。所谓建立数学模型的意识是指遇到实际问题时,我们用所学的知识建立该问题对应的数学问题(数学模型),在解答数学问题的同时,解决原有的实际问题。我们在学习过程中将遇到很多这样的应用例子,请认真总结这些例子,归纳提升为通用方法,学习其它课程时有意去思考能否用这些方法处理本学科的问题。

‘贰’ 大一高数怎么学最全知识点总结!

高数学习无非是上课努力听和记,先看课本,注重公式定义的理解,后做练习题对公式定义的理解进行巩固,熟练运用。

学习应该循序渐进,意思就是,应该从已有的知识出发,保持足够小的步伐前进。

高数各章是相互关联层层推进的,每一章都是后一章的基础,所以学习时一定要按部就班,只有将这一章真正搞懂了再进入下一章学习,欲速则不达,所以一定要一章一章去学。

高数复习内容目录: 第一章 函数与极限、第二章 导数与微分、第三章 微分中值定理与导数的应用、第四章 不定积分、第五章 定积分、第六章 定积分的应用 、第七章 微分方程、 第八章 向量代数与空间解析几何 、第九章 多元函数微分法及其应用、 第十章 重积分 、第十一章 曲线积分和曲面积分 、第十二章 无穷级数

通过这个思维图将高数复习的内容大致分解如下:

相关公式一定要记熟 ,主要是几个基本的函数公式, 洛必达法则 ,中值定理,导数公式,积分公式, 微分公式 等。

极限是最重要的难点,务必重视并掌握扎实。极限的定义,两个重要极限,洛必达求极限等。

泰勒公式 也很难理解,不定积分与定积分的计算是重点,通过多做题,熟练运用凑微分法、换元法、分部积分法等各种公式求解。

微分方程和无穷级数也是高数学习的难点,这部分是应用数学的重点,要重在理解和实践。

学好高数你要做到基本概念要透彻,基本定理要牢记,基本框架要清晰,基本常识要谨记,基本题型要熟练。

数学其实就是一个概念+定理体系包括推理 ,所以对概念的理解就尤为重要。比如说极限、导数等,你要对它们有形象的理解,熟记它们的数学描述,不要只是硬背,可以自己画个图看看,通过多做题,在做题中多多体会。学会建立基本框架,总结知识提纲,形成数学思维。

这些你都能做到了,高等数学应该学得不会差。蜂考还搜集了相关资料,总结了高数的知识点,看完这些,想学不会都难!(侵删)

级数、向量代数与几何、微分方程的思维导图点 知乎这篇文章 哦!

是不是看到这里感觉很头疼???没关系,蜂考会对童鞋们负责到底的!!!

千万不要相信没有挂过科的大学是不完整这样的话 ,成绩真的很重要,至少维持在中上水平,可以让你在未来拥有更大的选择性。大一成绩更重要,不要无脑翘课和挂科,挂科会很难受,不仅仅影响你之后的心态,还丧失了许多机会,这样惨痛的教训,希望都不要经历!

最后蜂考希望大家都能 学神附体,逢考必过!

有蜂考,不挂科!大学在线课程辅导,关注知乎【蜂考】,大学备考路上不迷茫~