㈠ 五年级下册的数学每个单元都讲一下重点知识
五年级下册的数学每个单元重要知识点
第一单元 图形的变换:画轴对称图形,及将简单图形以旋转90度;灵活运用平移、对称、和旋转在方格上设计图案。
第二单元 因数与倍数:掌握因数和倍数、质数和合数、奇数和偶数等概念,及掌握2、3、5倍数的特征。
第三单元 长方体和正方体:探索它们的特征,并掌握求它们的表面积和体积。知道容积的意义及测量,并运用体积公式来求物体的容积。
第四单元 分数的意义和性质:理解分数的意义和性质,会比较分数的大小,会把假分数化带分数或整数,会进行整数和小数的互化。
第五单元 分数加法和减法:掌握计算方法,并能解决有关分数加、减法的简单实际问题。
第六单元 统计:认识复式的折线统计图,能根据需要选择合适的统计图表示数据。会求一组数中的众数。
第七单元 数学广角体会解决问题的策略的多样性及运用优化的数学思想方法解决问题的有效性,感受数学魅力。
㈡ 五年级人教版数学下册的重点有哪些
五年级下册数学知识要点:第一单元:图形的变换 1. 轴对称图形:一个图形沿一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形.这条直线叫做它的对称轴. 2. 轴对称图形的特征:1、对称点到对称轴的距离相等;2、对应点连线与对称轴互相垂直. 3. 旋转:图形或物体绕着一个点或一条轴运动的现象叫做旋转. 第二单元:因数与倍数 1. 因数和倍数:在整数乘法里,如果a×b=c,那么a和b是c的因数,c是a和b的倍数. 2. 为了方便,在研究因数和倍数的时候,我们所说的数指的是整数(一般不包括0).但是0也是整数. 3. 一个数的最小因数是1,最大因数是它本身.一个数的因数的个数是有限的. 4. 一个数的最小倍数是它本身,没有最大的倍数. 一个数的倍数的个数是无限的. 5. 个位上是0、2、4、6、8的数都是2的倍数.个位上是0、5的数都是5的倍数.一个数,每个数位上的数的和是3的倍数,这个数就是3的倍数. 6. 自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数. 7. 最小的奇数是1,最小的偶数是0.最小的质数是2,最小的合数是4. 8. 四则运算中的奇偶规律: 奇数+奇数=偶数 奇数-奇数=偶数 奇数×奇数=奇数 偶数+偶数=偶数 偶数-偶数=偶数 偶数×偶数=偶数 奇数+偶数=奇数 奇数-偶数=奇数 奇数×偶数=偶数 偶数-奇数=奇数 9. 一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数);如果除了1和它本身还有别的因数,这样的数叫做合数. 10. 1既不是质数,也不是合数. 11. 自然数按照因数的个数多少,可以分为1、质数、合数;按是否是2的倍数,可以分为奇数、偶数. 12. 100以内的质数表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97. 第三单元:长方体和正方体 1. 正方体也叫立方体. 2. 长方体的特征是:①长方体有6个面;②每个面都是长方形(特殊情况下有两个相对的面是正方形);③相对的面完全相同;④有12条棱;⑤相对的棱长度相等;⑥有8个顶点. 3. 相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高. 4. 正方体可以看成是长、宽、高都相等的长方体.正方体是特殊的长方体. 5. 正方体的特征是:①正方体有6个面;②每个面都是正方形;③所有的面都完全相同;④有12条棱;⑤所有的棱长度都相等;⑥有8个顶点. 6. 长方体的棱长总和=(长+宽+高)×4 7. 正方体的棱长总和=棱长×12 8. 长方体六个面的面积总和叫做长方体的表面积. 9. 上面或下面面积=长×宽;前面或后面面积=长×高;左面或右面面积=宽×高. 10. 长方体的表面积=(长×宽+长×高+宽×高)×2 11. 正方体的表面积=棱长2×6 12. “有两个相对的面是正方形”的长方体表面积=正方形面的面积×2+长方形面的面积×4 13. 长方体的侧面积=底面周长×高 14. 物体所占空间的大小,叫做物体的体积. 15. 常用的体积单位有立方厘米,立方分米和立方米,可以分别写成cm3,dm3,和m3. 16. 棱长是1cm的正方体,体积是1cm3;棱长是1dm的正方体,体积是1dm3;棱长是1m的正方体,体积是1m3. 17. 长方体的体积=长×宽×高;用字母表示是V=abh 18. 正方体的体积=棱长3;用字母表示是V=a3 19. 长方体(或正方体)的体积=底面积×高=横截面积×长 20. 在工程上,1立方米简称1方. 21. 1个长方体或正方体,如果所有的棱长都扩大n倍,那么棱长总和也扩大n倍,表面积扩大n2倍,体积扩大n3倍. 22. 棱长总和相等的长方体或正方体,正方体的体积最大. 23. 1立方米=1000立方分米;1立方分米=1000立方厘米. 24. 每相邻两个长度单位间的进率是10;每相邻两个面积单位之间的进率是100;每相邻两个体积单位之间的进率是1000. 25. 容器所能容纳物体的体积,通常叫做它们的容积.计量容积,一般就用体积单位. 26. 计量液体的体积,常用的容积单位是升和毫升,也可以写成L和ml. 27. 1升相当于1立方分米,1毫升相当于1立方厘米,所以1升=1000毫升. 28. 长方体或正方体容器容积的计算方法,跟体积的计算方法相同,但要从容器里面量长、宽、高.所以容器的容积比体积要小一些. 29. 浸没在水中的物体的体积=现在水的体积-原来水的体积=容器的长×容器的宽×水面上升的高度 30. 怎样测量一个不规则的物体的体积呢?先在量杯里装上适量的水,记下水面对应的刻度,再把物体浸没在水中,再记下新的水面对应刻度.两次刻度的差,就是这个不规则物体的体积. 第四单元:分数的意义和性质 1. 一个物体或是几个物体组成的一个整体都可以用自然数1来表示,我们通常把它叫做单位“1”. 2. 把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数.例如3/7表示把单位“1”平均分成7份,取其中的3份. 3. 5/8米按分数的意义,表示:把1米平均分成8份,取其中的5份.按分数与除法的关系,表示:把5米平均分成8份,取其中的1份. 4. 把单位“1”平均分成若干份,表示其中一份的数叫分数单位. 5. 分数和除法的关系是:分数的分子相当于除法中的被除数,分数的分数线相当于除法中的除号,分数的分母相当于除法中的除数,分数的分数值相当于除法中的商. 6. 把一个整体平均分成若干份,求每份是多少,用除法.总数÷份数=每份数. 7. 求一个数量是另一个数量的几分之几,用除法.一个数量÷另一个数量=几分之几(几倍). 8. 分子比分母小的分数叫真分数.真分数小于1. 9. 分子比分母大或分子和分母相等的分数叫做假分数.假分数大于1或等于1. 10. 带分数包括整数部分和分数部分,分数部分应当是真分数.带分数大于1. 11. 把假分数化成带分数的方法是用分子除以分母,商是整数部分,余数是分子,分母不变.把带分数化成假分数的方法是用整数部分乘分母的积加原来的分子作分子,分母不变. 12. 整数可以看成分母是1的假分数.例如5可以看成是5/1. 13. 分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变.这叫做分数的基本性质. 14. 几个数公有的因数叫做这几个数的公因数,其中最大的公因数叫作它们的最大公因数.最小公因数一定是1. 15. 几个数公有的倍数叫做这几个数的公倍数,其中最小的公倍数叫作它们的最小公倍数.没有最大的公倍数. 16. 求最大公因数或最小公倍数可以用列举法,也可以用短除法分解质因数. 17. 公因数只有1的两个数叫做互质数.分子和分母是互质数的分数叫做最简分数.最简分数不一定是真分数. 18. 除法计算的结果可以用分数表示,比较方便.如果计算结果可以约分的话,要化简成最简分数. 19. 如果两个数是倍数关系,那么它们的最大公因数是较小的数,最小公倍数是较大的数. 20. 如果两个数是互质关系,那么它们的最大公因数是1,最小公倍数是它们的积. 21. 数A×数B=它们的最大公因数×它们的最小公倍数. 22. 两个数是互质数的几种特殊情况有:1、1和任何数都是互质数;2、两个相邻的自然数一定是互质数;3、两个相邻的奇数一定是互质数;4、两个不同的质数一定是互质数;5、一个质数和一个不是它倍数的合数一定是互质数. 23. 把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分.把几个异分母分数分别化成和原来分数相等的同分母分数,叫做通分. 24. 把分数化成小数的方法是用分子除以分母;把小数化成分数的方法是先写成分母是10、100……的分数,然后再进行约分. 25. 如果一个最简分数的分母除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数. 26. 两个数的最大公因数等于两个数公有的质因数的积;两个数的最小公倍数等于两个数公有的质因数×它们各自独有的质因数. 27. 两个数的公因数,都是这两个数的最大公因数的因数;两个数的公倍数,都是这两个数的最小公倍数的倍数. 此资料来源于网络.希望对你有帮助.
㈢ 人教版五年级下册数学重点复习
图形的变换、因数与倍数、长方体与正方体、分数的意义和性质、分数的加法和减法、统计、数学广角。
复习重点:
1、因数与倍数、质数与合数、奇数与偶数等概念以及2、3、5的倍数的特征,以及综合运用这些知识解决实际问题。
2、分数的意义和基本性质,以及运用分数的基本性质解决实际问题,熟练地进行约分和通分,分数大小比较,把假分数化成带分数或整数以及整数、小数的互化。
3、求两个数的最大公因数和最小公倍数。
4、分数加减法的意义以及计算方法,把整数加减法的运算定律推广运用到分数加减法。
5、体积和表面积的意义及度量单位,能进行单位间的换算,长方体和正方体表面积和体积的计算方法以及一些生活中的实物的表面积和体积的测量和计算。
6、在方格纸上画轴对称图形以及将简单图形旋转900
复习难点:
1、在方格纸上将一个简单图形旋转900。
2、分数的意义和基本性质的实际运用。
3、生活中的某些实物的表面积和体积的测量及计算。
4、整数加减法的运算定律推广运用到分数加减法。(尤其是减法的性质的运用)
5、根据具体问题,选择适当的的统计量(平均数、中位数、众数)表示数据的不同特征。
6、对统计图中的数据进行合理分析。
㈣ 5年级数学下册重点知识有哪些内容
5年级数学下册重点知识有如下:
1、表示相等关系的式子叫做等式。
2、含有未知数的等式是方程。
3、方程一定是等式;等式不一定是方程。等式方程
4、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。
等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。这也是等式的性质。
5、求方程中未知数的过程,叫做解方程。
解方程时常用的关系式:
一个加数=和-另一个加数 减数=被减数-差 被减数=减数+差。
一个因数=积另一个因数 除数=被除数商 被除数=商除数。
注意:解完方程,要养成检验的好习惯。
6、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和个数=中间数
7、4个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和个数2(高斯求和公式)
㈤ 五年级下册数学必背知识点有哪些
五年级下册数学必背知识点有如下:
一、长方形的周长=(长+宽)×2 ,C=(a+b)×2。
二、正方形的周长=边长×4, C=4a。
三、长方形的面积=长×宽 ,S=ab。
四、正方形的面积=边长×边长 ,S=a.a=a^2。
五、三角形的面积=底×高÷2 ,S=ah÷2。
六、平行四边形的面积=底×高, S=ah。
七、梯形的面积=(上底+下底)×高÷2, S=(a+b)h÷2。
八、圆的周长=圆周率×直径=圆周率×半径×2, c=πd=2πr。
九、圆的面积=圆周率×半径×半径πr ^2。
㈥ 人教版五年级下册数学复习资料
小学五年级下册数学期末知识点复习资料
一、简便计算
加法结合律:(a+b)+c=a+(b+c) 减法的性质:a-b-c=a-(b+c) a-(b-c)=a-b+c
例:
二、计算部分
1、 注意计算结果约分,尤其是分子和分母是3的倍数的分数。2、快速找到几个分数的公分母。例:
三、解方程
等式的性质:a±c=b±c a÷c=b÷c a×c=b×c c≠0
四、长方体和正方体的计算
h
b
a a
长方体的棱长和=4a+4b+4h=4(a+b+h) 正方体的棱长和=12a (带长度单位)
长方体的表面积= 2(ab+bh+ah) 正方体的表面积= (带面积单位)
长方体的体积= abh 正方体的体积= (带体积单位)五、知识点
1、几个最小:最小的自然数是0,最小的偶数是0,最小的奇数是1,最小的质数是2,最小的合数是4。
2、一个数的最大因数是它本身,最小因数是1;一个数的最小倍数是它身,没有最大倍数。
一个数的最大因数等于它的最小倍数。
3、图形的变换有:平移、对称、旋转、放大与缩小。
4、旋转的三要素:方向、角度、中心点(定点)。
5、长方形的对称轴有2条,正方形的对称轴有4条,圆形有无数条对称轴,半圆只有1条对称轴,扇形只有1条对称轴,等腰三角形只有1条对称轴,等边三角形有3条对称轴,
等腰梯形只有1条对称轴,菱形有2条对称轴。一般的平行四边形不是轴对称图形。
6、长方体和正方体都有6个面,8个顶点,12条棱。长方体每个面一般都是长方形,特殊情况有相对的两个面是正方形,其余四个面都是面积相等的长方形。长方体相对的棱长度相等,相对的面的面积相等,长方体有4条长,4条宽,4条高。正方体也叫立方体,是长、宽、高都相等的特殊的长方体,正方体每个面都是正方形且面积都相等。
7、体积:物体所占空间的大小。常用的体积单位有:
容积:容器、桶、仓库等所能容纳物体的体积。常用的容积单位有:l ml
体积与容积间的单位换算:
8、分数与除法的关系:分数的分子相当于除法里的被除数,分母相当于除法里的除数,分数线相当于除法里的除号,分数的大小(分数的值)相当于除法里的商。区别:分数是一种数,除法是一种运算。它的关系用字母表示为:
9、分子比分母小的分数叫真分数,真分数小于1;分子比分母大(或相等)的分数叫假分数,假分数大于或等于1。
10、分数的基本性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
11、最简分数:分子和分母只有公因数1的分数叫最简分数。
12、同分数加减法的计算法则:分母不变,把分子相加减。
13、异分母加减法的计算法则:先通分,再按照同分母加减法的计算法则进行计算。
14、奇数:不是2的倍数的数。偶数:是2的倍数的数。
15、质数:一个数除了1和它本身两个约数,没有别的约数的数。合数:一个数除了1和它本身以外,还有别的约数的数。1不是质数,也不是合数。
16、2的倍数的特点:个位上是0、2、4、6、8的数。5的倍数的特点:个位上是0或5的数。3的倍数的特点:一个数各位上的数字之和是3的倍数的数。
17、互质数:只有公因数1的两个数。如:2和5,9和8,7和15,4和9。
六、解决问题
1、求一个量是另一个量的几分之几的?
方法:用一个量除以另一个量。注意:结果约成最简分数。
例:把5克糖放入20克水中,糖的重量占水的几分之几?糖的重量占糖水的几分之几?
解答思路:第一问题是求糖的重量是水的几分之几应该用糖的重量去除以水的重量。而第二问题是求重量是糖水的重量的几分之几应该用糖的重量去除以糖水的重量。根据分析列式为:
2、分数加减法应用题
例1:水果店里原有水果 吨,卖出 吨后又运进 吨。水果店现在有水果多少吨?
解答思路:由于每个分数都带上了单位,所以每个分数表示具体的数量。应该用我们以前学的整数应用题的解答方法进行解答。
例2:五四班有45人,有 的同学参加了语文兴趣小组,有 的同学参加了数学兴趣小组,其余的参加了音、体、美兴趣小组。参加音、体、美兴趣小组的同学占全班同学的几分之几?
解答思路:本题的每个分数没有带单位,它表示量与量之间的关系。因此本题应把全班45人看作单位“1”进行思考。
3、长方体正方体表面积、体积的应用
方法:根据题意学会画图进行分析思考,抓住重点词句,利用好其计算公式。
例1:给一个无盖长方体水缸抹水泥,从里面量得长8分米,宽4分米,深6分米;抹水泥的面积是多少?
解答思路:这是关于长方体的表面积的应用,从无盖和抹水泥的面积中可以看出。在计算时,由于无盖只算五个面。
8×4+8×6×2+4×6×2=176(平方分米)
4、最大公因数和最小公倍数的应用
例1:五一班有48人,五二班有56人。如果把这两个班分成人数相等的小组,每组最多几人?一共可分几个小组?
解答思路:根据题意,要想两个班分成的人数相等,说明这个人数既是48的因数,也是56的因数,由于是求每组人数最多几人,所以是求它们的最大公因数。
48的因数有:1,2,3,4,6,8,12,16,24,48.
56的因数有:1,2,4,7,8,14,28,56。
48和56的最大公因数是8。所以每组人数最多是8人。
48÷8+56÷8=13(组)
例2:一个班有40多人,如果4个人一组或6个人一组都能刚好分完,这个班有多少人?
解答思路:根据题意,4人一组或多或6人一组都能刚好分完,所这个班的人数既是4的倍数也是6的倍数。所以是4和6的公倍数,并且是在40多的一个公倍数。
4的倍数:4,8,12,16,20,24,28,32,36,40,44,48。
6的倍数:6,12,18,24,30,36,42,48。
4 和6的公倍数有:12,24,36,48。
所以这个班有48人。
5、找次品
有一批零件共15个,其中有一个比其它零件轻一些,你能用天平找出这个次品来吗?至少要几次一定能找到这个次品?
解答:15个零件(5,5,5)先天平各放5个,如果不平衡,将其中轻的5个零件再分成(2,2,1),又将天平各放2个,如果不平衡,最后将轻的2个零件再分面(1,1)。这样至少三次就可以找出这个较轻的零件了。
每个大格是30度,每个小格是6度。
九、最大公因数和最小公倍数
方法:列举法 短除法 集合法 口算法
18和12(6)[24] 30和60(30)[60] 7和5(1)[35] 8、6和12(2)[24]
如果两个数是倍数关系,则它们的最大公因数是较小的数,最小公倍数是较大的数。
如果两个数是互质数,则它们的最大公因数是1,最小公倍数是它们的乘积。
十、通分与约分
依据:分数的基本性质 用字母表示:
例1:将下面的分数约成最简分数
例2:将下面的各组分数进行通分
十一、分数与小数的互化
小数化分数的方法:先将小数改写成分母是10、100、1000的分数,能约分的再约分。
例
分数化成小数的方法:一般根据分数与除法的关系,用分子除以分母,除不尽的保留一定的小数位数。
例
常用的分数与小数间的互化。
十二、分解质因数
方法:将合数写成几个质数相乘的形式。
28、30、24、32、77、100
28=2×2×7
十三、分数的意义
把单位“1”平均分成若干份,表示其中的一份或几份的数。
㈦ 五年级下册数学重要知识点
五年级下册数学重要知识点有哪些呢?感兴趣的同学们快来和我一起看看吧。下面是由我为大家整理的“五年级下册数学重要知识点”,仅供参考,欢迎大家阅读。
五年级下册数学重要知识点
第一单元 方程
1、表示相等关系的式子叫做等式。
2、含有未知数的等式是方程。
3、方程一定是等式;等式不一定是方程。等式>方程
4、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。
等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。这也是等式的性质。
5、求方程中未知数的过程,叫做解方程。
解方程时常用的关系式:
一个加数=和-另一个加数 减数=被减数-差 被减数=减数+差
一个因数=积÷另一个因数 除数=被除数÷商 被除数=商×除数
注意:解完方程,要养成检验的好习惯。
6、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数
7、4个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和×个数÷2(高斯求和公式)
8、列方程解应用题的思路:A、审题并弄懂题目的已知条件和所求问题。B、理清题目的等量关系。C、设未知数,一般是把所求的数用X表示。D、根据等量关系列出方程E、解方程F、检验G、作答。
第二单元 确定位置
1、确定位置时,竖排叫做列,横排叫做行。确定第几列一般从左往右数,确定第几行一般从前往后数。
2、数对(x,)第1个数表示第几列(x),第2个数表示第几行(),写数对时,是先写列数,再写行数。
3、从地球仪上看,连接北极和南极两点的是经线,垂直于经线的线圈是纬线,经线和纬线、分别按一定的顺序编排表示“经度”和“纬度”,“经度”和“纬度”都用度(°)、分(′)、秒(″)表示。
4、将某个点向左右平移几格,只是列(x)上的数字发生加减变化,向左减,向右加,行()上的数字不变。举例:将点(6,3)的位置向右平移2个单位后的位置是(8,3),列6+2=8;将点(6,3)的位置向左平移2个单位后的位置是(4,3),列6-2=4。
5、将某个点向上下平移几格,只是行()上的数字发生加减变化,向上减,向下加,列(x)上的数字不变。举例:将点(6,3)的位置向上平移2个单位后的位置是(6,5),行3+2=5;将点(6,3)的位置向下平移2个单位后的位置是(6,1),列3-2=1。
第三单元 公倍数和公因数
1、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。
一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。
一个数最大的因数等于这个数最小的倍数。
2、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,用符号[ ,]表示。几个数的公倍数也是无限的。
3、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数,用符号( , )。两个数的公因数也是有限的。
4、两个素数的积一定是合数。举例:3×5=15,15是合数。
5、两个数的最小公倍数一定是它们的最大公因数的倍数。举例:[6,8]=24,(6,8)=2,24是2的倍数。
6、求最大公因数和最小公倍数的方法:
倍数关系的.两个数,最大公因数是较小的数,最小公倍数是较大的数。举例:15和5,[15,5]=15,(15,5)=5;
素数关系的两个数,最大公因数是1,最小公倍数是它们的乘积。举例:[3,7]=21,(3,7)=1;
一个素数和一个合数,最大公因数是1,最小公倍数是它们的乘积。[5,8]=40,(5,8)=1;
相邻关系的两个数,最大公因数是1,最小公倍数是它们的乘积。[9,8]=72,(9,8)=1;
特殊关系的数(两个都是合数,一个是奇数,一个是偶数,但他们之间只有一个公因数1),比如4和9、4和15、10和21,最大公因数是1,最小公倍数是它们的乘积。
拓展阅读:五年级上册数学知识点
第一单元 小数乘法
1、小数乘整数:意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。
1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:
⑴四舍五入法;⑵进一法;⑶去尾法
5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。
6、小数四则运算顺序跟整数是一样的。
7、运算定律和性质:
加法:
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
乘法:乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)
变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c
减法:减法性质:a-b-c=a-(b+c)
除法:除法性质:a÷b÷c=a÷(b×c)
第二单元 位置
8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。用数对要能解决两个问题:一是给出一对数对,要能在坐标途中标出物体所在位置的点。二是给出坐标中的一个点,要能用数对表示。
第三单元 小数除法
10、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:0.6÷0.3表示已知两个因数的积0.6,一个因数是0.3,求另一个因数是多少。
11、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
11、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
注意:如果被除数的位数不够,在被除数的末尾用0补足。
12、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。
13、除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大(缩小),商随着扩大(缩小)。③被除数不变,除数缩小,商反而扩大;被除数不变,除数扩大,商反而缩小。
14、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。 循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32.简写作6.32
15、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。小数分为有限小数和无限小数。
第四单元 可能性
16、事件发生有三种情况:可能发生、不可能发生、一定发生。
17、可能发生的事件,可能性大小。把几种可能的情况的份数相加做分母,单一的这种可能性做分子,就可求出相应事件发生可能性大小。
第五单元 简易方程
18、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。加号、减号除号以及数与数之间的乘号不能省略。
19、a×a可以写作a·a或a ,a 读作a的平方 2a表示a+a
特别地1a=a这里的:“1“我们不写
20、方程:含有未知数的等式称为方程(★方程必须满足的条件:必须是等式 必须有未知数两者缺一不可)。使方程左右两边相等的未知数的值,叫做方程的解。求方程的解的过程叫做解方程。
21、解方程原理:天平平衡。等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。
22、10个数量关系式:加法:和=加数+加数 一个加数=和-另一个加数
减法:差=被减数-减数 被减数=差+减数 减数=被减数-差
乘法:积=因数×因数 一个因数=积÷另一个因数
除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商
23、所有的方程都是等式,但等式不一定都是等式。
24、方程的检验过程:方程左边=……
25、方程的解是一个数;解方程式一个计算过程。=方程右边 所以,X=…是方程的解。
第六单元 多边形的面积
26、公式:
正方形:
正方形的面积=边长X边长 S正=aXa=a2;
已知:正方形的面积,求边长;
长方形:
长方形的面积=长X宽;
S长=aXb
已知:长方形的面积和长,求宽;
平行四边形:
平行四边形的面积=底X高;
S平=aXh
已知:平行四边形的面积和底,求高 h=S平÷a;
三角形:
三角形的面积=底X宽高÷2;
S三=aXh÷2
已知:三角形的面积和底,求高;
H=S三X2÷a
梯形:
梯形形的面积=(上底+下底)X高÷2
S梯=(a+b)X2
已知:梯形的面积与上下底之和,求高
高=面积×2÷(上底+下底)
上底=面积×2÷高-下底
组合图形:
当组合图形是凸出的,用两种或三种简单图形面积相加进行计算。
当组合图形是凹陷的,用一种最大的简单图形面积减较小的简单图形面积进行计算。
27、平行四边形面积公式推导:剪拼、平移
平行四边形可以转化成一个长方形;长方形的长相当于平行四边形的底; 长方形的宽相当于平行四边形的高;长方形的面积等于平行四边形的面积,因为长方形面积=长×宽,所以平行四边形面积=底×高。
28、三角形面积公式推导:旋转
两个完全一样的三角形可以拼成一个平行四边形,平行四边形的底相当于三角形的底;平行四边形的高相当于三角形的高;
平行四边形的面积等于三角形面积的2倍,因为平行四边形面积=底×高,所以三角形面积=底×高÷2;
29、梯形面积公式推导:旋转
30、两个完全一样的梯形可以拼成一个平行四边形。平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2。
㈧ 人教版五年级下册数学重要复习资料
九、解决问题的策略
1.学会用“倒过来推想”的策略解题。
十、圆
1.圆的特征,圆心、半径、直径;
2.能用圆规画指定大小的圆;
3.会用圆的知识解释生活中的一些现象与解决一些简单问题;
4.圆周率的含义;圆周长、面积计算。 ?
五年级下册数学总复习 一、数与运算 《分数乘法》:
1、分数乘整数的意义:分数乘整数的意义同整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2、分数乘整数的计算方法:分母不变,分子和整数相乘的积作分子,能约分的要约成最简分数,计算结果能化成整数的要化成整数。 注:0乘以任何数还得0。
3、分数乘分数的意义:求这个数的几分之几是多少。
4、分数乘分数的计算方法:分子相乘做分子,分母相乘做分母,能约分的可以先约分。计算结果要求是最简分数。
注:理解打折的含义。例如:九折,是指现价是原价的十分之九。 六五折,是指现价是原价的百分之六十五。
5、知道一个数是多少,求这个数的几分之几是多少?这样的应用题,可以用乘法解答。 《分数除法》
1、倒数:如果两个数的乘积是1,那么其中一个数是另一个数的倒数。倒数是对两个数来说的,并不是孤立存在的。乘积是1的两个数互为倒数。 2、求倒数的方法。
3、1的倒数仍是1;0没有倒数。(理由:0没有倒数,是因为在分数中,0不能做分母)。 4、一个数(A)除以另一个数(B)(零除外)等于乘这个数(B)的倒数。 5、分数除以整数表示的意义:就是求这个数的几分之几是多少。 6、比较商与被除数的大小。 除数小于1,商大于被除数;
除数等于1。商等于被除数;
除数大于1,商小于被除数。 《分数的混合运算》
1、分数的混合运算顺序与整数混合运算顺序相同。(有括号先算括号里,再算括号外;没括号,先算乘除,再算加减;有乘有除,从左往右依次计算。除法先转换成乘法再约分,最后结果是最简分数)
2、整数运算定律在分数运算中同样适用。 3、用方程解决有关分数混合运算的实际问题。 4、会利用线段图来分析应用题题中的数量关系、 《百分数》
1、百分数的意义:表示一个数是另一个数的百分之几的数叫作百分数,百分数又叫百分比、百分率。
2、百分数的读法、写法。
3、小数化成百分数的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。
4、分数化成百分数的方法:把分数化成百分数,可以先把分数化成小数(除不尽时,通常保留三位小数),再写成百分数;也可以把分子分母同时乘一个数将其化成一百分之几的数,再写成百分数。
5、百分数化成小数、分数的方法。
百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。 百分数化成小数时,要把百分号去掉,同时把小数点向左移动两位。
6、用方程解决“已知一个数的百分之几多少,求这个数”的实际问题。 7、百分数和分数的区别:
意义不同:百分数只表示两个数量之间的关系,后面不加单位;而分数既可以表示两个数量之间的关系,也可以表示某个具体数量,可加单位。 读法不同:百分数只读作百分之几,不读作一百分之几。 写法不同
二、空间与图形
1、长方体、正方体各自的特点: 3、知道正方体是特殊的长方体。
4、计算长方体、正方体的棱长总和:
长方体的棱长总和=(长 宽 高)?4或者是长?4 宽?4 高?4 正方体的棱长总和=棱长?12 5、长方体的表面积
长方体的表面积=长?宽?2 长?高?2 宽?高?2=(长?宽 长?高 宽?高)?2 正方体的表面积=棱长?棱长?6 6、计算露在外面的面的面积时:
首先数出露在外面的面的个数,再求露在外面的面的面积=露在外面的面的个数?一个面的面积。
《长方体(二)》
1、体积与容积的概念。
体积:物体所占空间的大小叫作物体的体积。
容积:容器所能容纳入体的体积叫做物体的容积。 2、体积单位
常用的体积单位有:立方厘米、立方分米、立方米。常用的容积单位有:升、毫升。 补充特殊的知识点:冰箱的容积用“升”作单位;我们饮用的自来水用“立方米”作单位。 3、长方体的体积
长方体的体积=长?宽?高
正方体的体积=棱长?棱长?棱长
长方体(正方体)的体积=底面积?高
4、不规则物体体积的测量方法和不规则物体体积的计算方法。 物体的体积=升高的水的体积=容器的底面积?水面上升的高度。 (参看课本55页第二题) 5、体积、容积单位之间的进率。
1立方分米=1升,1立方厘米=1毫升,1升=1000毫升 1立方米=1000立方分米
( 相邻两个体积单位、容积单位之间的进率是1000) 6、其他单位之间的进率
1米=100厘米 1立方米=1000000立方厘米 长度单位:
1米=10分米 1分米=10厘米(相邻两个长度单位间的进率是10) 面积单位:
1平方米=100平方分米 1平方分米=100平方厘米 (相邻两个面积单位间的进率是100) 体积单位:
1立方分米=1000立方厘米 1立方米=1000立方分米 容积单位: 1升=1000毫升 质量单位:
1吨=1000千克 1千克=1000克 三、统计
1、扇形统计图:以一个圆作为整体,把各部分所占的百分比表现在这个圆中。 2、条形统计图、扇形统计图、折线统计图的不同特点: 条形统计图便于看出数据的多少;
扇形统计图能清楚地看出整体与部分之间的关系; 折线统计图能看出数据的变化趋势(或变化情况)。
3、中位数和众数
将一组数据从小到大(或从大到小)排列,中间的数称为这组数据的中位数。 一组数据中出现次数最多的数称为这组数据的众数。 4、中位数和众数的求法。
将一组数据按大小的顺序排列,如果是奇数个数据,中间的数就为这组数据的中位数,如果是偶数个数据,中间两个数的平均数为这组数据的中位数。众数,就是一组数据中出现次数最多的。
四、重点题目
㈨ 浜斿勾绾т笅鍐屾暟瀛﹀繀鑳岀煡璇嗙偣链夊摢浜
浜斿勾绾т笅鍐屾暟瀛﹀繀椤绘帉鎻$殑鐭ヨ瘑镣瑰寘𨰾锛1. 鍊嶆暟镄勭壒镐э细涓涓鏁扮殑鍊嶆暟鏄镞犻檺镄勶纴链灏忕殑鍊嶆暟鏄瀹冩湰韬锛屾病链夋渶澶х殑鍊嶆暟銆傚悓镞讹纴濡傛灉鍑犱釜鏁伴兘鏄镆愪釜鏁扮殑鍊嶆暟锛岄偅涔堣繖鍑犱釜鏁扮殑鍜屼篃鏄璇ユ暟镄勫嶆暟銆2. 鏁存暟闄ゆ硶涓镄勫嶆暟鍜屽洜鏁帮细鍦ㄦ暣鏁伴櫎娉曚腑锛屽傛灉鍟嗘槸鏁存暟涓旀病链変綑鏁帮纴闾d箞琚闄ゆ暟鏄闄ゆ暟镄勫嶆暟锛岄櫎鏁版槸琚闄ゆ暟镄勫洜鏁般3. 锅舵暟鍜屽囨暟镄勮〃绀猴细涓鑸镄勶纴濡傛灉a鏄鏁存暟锛屽伓鏁板彲浠ョ敤2a琛ㄧず锛屽囨暟鍙浠ョ敤2a+1琛ㄧず銆4. 锅舵暟鍜屽囨暟镄勫畾涔夛细镊铹舵暟涓锛岃兘琚2鏁撮櫎镄勬暟绉颁负锅舵暟锛0涔熸槸锅舵暟锛夛纴涓嶈兘琚2鏁撮櫎镄勬暟绉颁负濂囨暟銆傛渶灏忕殑锅舵暟鏄0锛屾渶灏忕殑濂囨暟鏄1銆5. 璐ㄦ暟镄勫畾涔夛细涓涓鏁帮纴濡傛灉鍙链1鍜屽畠链韬涓や釜锲犳暟锛岃繖镙风殑鏁扮О涓鸿川鏁帮纸鎴栫礌鏁帮级锛1涓嶆槸璐ㄦ暟锛屼篃涓嶆槸钖堟暟銆
㈩ 五年级数学下册的重点
五年级下册数学知识要点:
第一单元:图形的变换
1. 轴对称图形:一个图形沿一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。这条直线叫做它的对称轴。
2. 轴对称图形的特征:1、对称点到对称轴的距离相等;2、对应点连线与对称轴互相垂直。
3. 旋转:图形或物体绕着一个点或一条轴运动的现象叫做旋转。
第二单元:因数与倍数
1. 因数和倍数:在整数乘法里,如果a×b=c,那么a和b是c的因数,c是a和b的倍数。
2. 为了方便,在研究因数和倍数的时候,我们所说的数指的是整数(一般不包括0)。但是0也是整数。
3. 一个数的最小因数是1,最大因数是它本身。一个数的因数的个数是有限的。
4. 一个数的最小倍数是它本身,没有最大的倍数。 一个数的倍数的个数是无限的。
5. 个位上是0、2、4、6、8的数都是2的倍数。个位上是0、5的数都是5的倍数。一个数,每个数位上的数的和是3的倍数,这个数就是3的倍数。
6. 自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
7. 最小的奇数是1,最小的偶数是0。最小的质数是2,最小的合数是4。
8.
四则运算中的奇偶规律:
奇数+奇数=偶数 奇数-奇数=偶数 奇数×奇数=奇数
偶数+偶数=偶数 偶数-偶数=偶数 偶数×偶数=偶数
奇数+偶数=奇数 奇数-偶数=奇数 奇数×偶数=偶数
偶数-奇数=奇数
9. 一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数);如果除了1和它本身还有别的因数,这样的数叫做合数。
10. 1既不是质数,也不是合数。
11. 自然数按照因数的个数多少,可以分为1、质数、合数;按是否是2的倍数,可以分为奇数、偶数。
12. 100以内的质数表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
第三单元:长方体和正方体
1. 正方体也叫立方体。
2. 长方体的特征是:①长方体有6个面;②每个面都是长方形(特殊情况下有两个相对的面是正方形);③相对的面完全相同;④有12条棱;⑤相对的棱长度相等;⑥有8个顶点。
3. 相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
4. 正方体可以看成是长、宽、高都相等的长方体。正方体是特殊的长方体。
5. 正方体的特征是:①正方体有6个面;②每个面都是正方形;③所有的面都完全相同;④有12条棱;⑤所有的棱长度都相等;⑥有8个顶点。
6. 长方体的棱长总和=(长+宽+高)×4
7. 正方体的棱长总和=棱长×12
8. 长方体六个面的面积总和叫做长方体的表面积。
9. 上面或下面面积=长×宽;前面或后面面积=长×高;左面或右面面积=宽×高。
10. 长方体的表面积=(长×宽+长×高+宽×高)×2
11. 正方体的表面积=棱长2×6
12. “有两个相对的面是正方形”的长方体表面积=正方形面的面积×2+长方形面的面积×4
13. 长方体的侧面积=底面周长×高
14. 物体所占空间的大小,叫做物体的体积。
15. 常用的体积单位有立方厘米,立方分米和立方米,可以分别写成cm3,dm3,和m3。
16. 棱长是1cm的正方体,体积是1cm3;棱长是1dm的正方体,体积是1dm3;棱长是1m的正方体,体积是1m3。
17. 长方体的体积=长×宽×高;用字母表示是V=abh
18. 正方体的体积=棱长3;用字母表示是V=a3
19. 长方体(或正方体)的体积=底面积×高=横截面积×长
20. 在工程上,1立方米简称1方。
21. 1个长方体或正方体,如果所有的棱长都扩大n倍,那么棱长总和也扩大n倍,表面积扩大n2倍,体积扩大n3倍。
22. 棱长总和相等的长方体或正方体,正方体的体积最大。
23. 1立方米=1000立方分米;1立方分米=1000立方厘米。
24. 每相邻两个长度单位间的进率是10;每相邻两个面积单位之间的进率是100;每相邻两个体积单位之间的进率是1000。
25. 容器所能容纳物体的体积,通常叫做它们的容积。计量容积,一般就用体积单位。
26. 计量液体的体积,常用的容积单位是升和毫升,也可以写成L和ml。
27. 1升相当于1立方分米,1毫升相当于1立方厘米,所以1升=1000毫升。
28. 长方体或正方体容器容积的计算方法,跟体积的计算方法相同,但要从容器里面量长、宽、高。所以容器的容积比体积要小一些。
29. 浸没在水中的物体的体积=现在水的体积-原来水的体积=容器的长×容器的宽×水面上升的高度
30. 怎样测量一个不规则的物体的体积呢?先在量杯里装上适量的水,记下水面对应的刻度,再把物体浸没在水中,再记下新的水面对应刻度。两次刻度的差,就是这个不规则物体的体积。
第四单元:分数的意义和性质
1. 一个物体或是几个物体组成的一个整体都可以用自然数1来表示,我们通常把它叫做单位“1”。
2. 把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。例如3/7表示把单位“1”平均分成7份,取其中的3份。
3. 5/8米按分数的意义,表示:把1米平均分成8份,取其中的5份。按分数与除法的关系,表示:把5米平均分成8份,取其中的1份。
4. 把单位“1”平均分成若干份,表示其中一份的数叫分数单位。
5. 分数和除法的关系是:分数的分子相当于除法中的被除数,分数的分数线相当于除法中的除号,分数的分母相当于除法中的除数,分数的分数值相当于除法中的商。
6. 把一个整体平均分成若干份,求每份是多少,用除法。总数÷份数=每份数。
7. 求一个数量是另一个数量的几分之几,用除法。一个数量÷另一个数量=几分之几(几倍)。
8. 分子比分母小的分数叫真分数。真分数小于1。
9. 分子比分母大或分子和分母相等的分数叫做假分数。假分数大于1或等于1。
10. 带分数包括整数部分和分数部分,分数部分应当是真分数。带分数大于1。
11. 把假分数化成带分数的方法是用分子除以分母,商是整数部分,余数是分子,分母不变。把带分数化成假分数的方法是用整数部分乘分母的积加原来的分子作分子,分母不变。
12. 整数可以看成分母是1的假分数。例如5可以看成是5/1。
13. 分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。
14. 几个数公有的因数叫做这几个数的公因数,其中最大的公因数叫作它们的最大公因数。最小公因数一定是1。
15. 几个数公有的倍数叫做这几个数的公倍数,其中最小的公倍数叫作它们的最小公倍数。没有最大的公倍数。
16. 求最大公因数或最小公倍数可以用列举法,也可以用短除法分解质因数。
17. 公因数只有1的两个数叫做互质数。分子和分母是互质数的分数叫做最简分数。最简分数不一定是真分数。
18. 除法计算的结果可以用分数表示,比较方便。如果计算结果可以约分的话,要化简成最简分数。
19. 如果两个数是倍数关系,那么它们的最大公因数是较小的数,最小公倍数是较大的数。
20. 如果两个数是互质关系,那么它们的最大公因数是1,最小公倍数是它们的积。
21. 数A×数B=它们的最大公因数×它们的最小公倍数。
22. 两个数是互质数的几种特殊情况有:1、1和任何数都是互质数;2、两个相邻的自然数一定是互质数;3、两个相邻的奇数一定是互质数;4、两个不同的质数一定是互质数;5、一个质数和一个不是它倍数的合数一定是互质数。
23. 把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。把几个异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
24. 把分数化成小数的方法是用分子除以分母;把小数化成分数的方法是先写成分母是10、100……的分数,然后再进行约分。
25. 如果一个最简分数的分母除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数。
26. 两个数的最大公因数等于两个数公有的质因数的积;两个数的最小公倍数等于两个数公有的质因数×它们各自独有的质因数。
27. 两个数的公因数,都是这两个数的最大公因数的因数;两个数的公倍数,都是这两个数的最小公倍数的倍数。
希望我的回答能对你有所帮助咯。。。(*^__^*) 嘻嘻……