当前位置:首页 » 基础知识 » 数学下册知识点总结与学习点拨
扩展阅读
金融资产价值基础是什么 2024-11-24 16:51:51
上海儿童涂氟哪里好 2024-11-24 16:51:38

数学下册知识点总结与学习点拨

发布时间: 2024-10-12 03:05:25

‘壹’ 小学六年级数学知识点梳理

求学的三个条件是:多观察、多吃苦、多研究。每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,也是要记、要背、要讲练的。下面是我给大家整理的一些 六年级数学 的知识点,希望对大家有所帮助。

六年级数学知识点

分数混合运算

1、分数混合运算的运算顺序与整数混合运算的运算顺序完全相同,都是先算乘除,再算加减,有括号的先算括号里的。

①如果是同一级运算,按照从左到右的顺序依次计算。

②如果是分数连乘,可先进行约分,再进行计算;

③如果是分数乘除混合运算时,要先把除法转换成乘法,然后按乘法运算。

2、解决问题

(1)用分数运算解决“求比已知量多(或少)几分之几的量是多少”的实际问题,方法是:

第①种方法:可以先求出多或少的具体量,再用单位“1”的量加或减去多或少的部分,求出要求的问题。

第②种方法:也可以用单位“1”加或减去多或少的几分之几,求出未知数占单位“1”的几分之几,再用单位“1”的量乘这个分数。

(2)“已知甲与乙的和,其中甲占和的几分之几,求乙数是多少?”

第①种方法:首先明确谁占单位“1”的几分之几,求出甲数,再用单位“1”减去甲数,求出乙数。

第②种方法:先用单位“1”减去已知甲数所占和的几分之几,即得未知乙数所占和的几分之几,再求出乙数。

(3)用方程解决稍复杂的分数应用题的步骤:

①要找准单位“1”。

②确定好其他量和单位“1”的量有什么关系,画出关系图,写出等量关系式。

③设未知量为X,根据等量关系式,列出方程。

④解答方程。

(4)要记住以下几种算术解法解应用题:

①对应数量÷对应分率=单位“1” 的量

②求一个数的几分之几是多少,用乘法计算。

③已知一个数的几分之几是多少,求这个数,用除法计算,还可以用列方程解答。

3、要记住以下的解方程定律:

加数 +加数 = 和;

加数 = 和–另一个加数。

被减数–减数 = 差;

被减数=差+减数;

减数=被减数–差。

因数×因数 = 积;

因数 = 积÷另一个因数。

被除数÷除数 = 商;

被除数=商×除数;

除数=被除数÷商。

4、绘制简单线段图的方法:

分数应用题,分两种类型,一种是知道单位“1”的量用乘法,另一种是求单位“1”的量,用除法。这两种类型应用题的数量关系可以分成三种:(一)一种量是另一种量的几分之几。(二)一种量比另一种量多几分之几。(三)一种量比另一种量少几分之几。绘制时关键处理好量与量之间的关系,在审题确定单位“1”的量。绘制步骤:

①首先用线段表示出这个单位“1”的量,画在最上面,用直尺画。

②分率的分母是几就把单位“1”的量平均分成几份,用直尺画出平均的等分。标出相关的量。

③再绘制与单位“1”有关的量,根据实际是上面的三种关系中的哪一种再画。标出相关的量。

④问题所求要标出“?”号和单位。

5、补充知识点

分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

分数乘法的计算法则

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零.。

分数乘法意义

分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。

分数乘整数:数形结合、转化化归

倒数:乘积是1的两个数叫做互为倒数。

分数的倒数

找一个分数的倒数,例如3/4把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/3。3/4是4/3的倒数,也可以说4/3是3/4的倒数。

整数的倒数

找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12 ,12是1/12的倒数。

六年级数学知识点归纳

体积和表面积

三角形的面积=底×高÷2。 公式 S= a×h÷2

正方形的面积=边长×边长 公式 S= a2

长方形的面积=长×宽 公式 S= a×b

平行四边形的面积=底×高 公式 S= a×h

梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2

内角和:三角形的内角和=180度。

长方体的表面积=(长×宽+长×高+宽×高 ) ×2 公式:S=(a×b+a×c+b×c)×2

正方体的表面积=棱长×棱长×6 公式: S=6a2

长方体的体积=长×宽×高 公式:V = abh

长方体(或正方体)的体积=底面积×高 公式:V = abh

正方体的体积=棱长×棱长×棱长 公式:V = a3

圆的周长=直径×π 公式:L=πd=2πr

圆的面积=半径×半径×π 公式:S=πr2

圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh

圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2

圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh

圆锥的体积=1/3底面×积高。公式:V=1/3Sh

数量关系计算公式

单价×数量=总价 2、单产量×数量=总产量

速度×时间=路程 4、工效×时间=工作总量

加数+加数=和 一个加数=和+另一个加数

被减数-减数=差 减数=被减数-差 被减数=减数+差

因数×因数=积 一个因数=积÷另一个因数

被除数÷除数=商 除数=被除数÷商 被除数=商×除数

六年级数学必考知识点

1.比和比例的意义

比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式子是叫做比例。比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。因此,比和比例的意义也有所不同。而且,比号没有括号的含义而另一种形式,分数有括号的含义!

2.比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。用于化简比。

3.比例的性质:在比例里,两个外项的乘积等于两个内项的乘积。比例的性质用于解比例。

4.比和比例的联系:

比和比例有着密切联系。比是研究两个量之间的关系,所以它有两项;比例是研究相关联的两种量中两组相对应数的关系,所以比例是由四项组成。比例是由比组成的,成比例的两个比的比值一定相等。

5.比和比例的区别

(1)意义、项数、各部分名称不同。比表示两个数相除;只有两个项:比的前项和后项。如:a:b这是比比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。a:b=3:4这是比例。

(2)比的基本性质和比例的基本性质意义不同、应用不同。联系:比例是由两个相等的比组成。

6.正比例:若A扩大或缩小几倍,B也扩大或缩小几倍(AB的商不变时),则A与B成正比。反比例:若A扩大或缩小几倍,B也缩小或扩大几倍(AB的积不变时),则A与B成反比。比例尺:图上距离与实际距离的比叫做比例尺。

六年级 数学学习方法

良好的学习习惯是一种良好的非智力因素,是学生必备的素质,是学好数学的最基本保证。小学数学学习习惯的培养,需要坚持不懈,持之以恒。

1. 课前预习 的习惯。

有效的预习,能提高学习新知识的目的性和针对性,可以提高学习的质量。通过布置预习提纲的方法来进行,以后逐步过渡到只布置预习内容,让学生自己去读书、去发现问题,让学生课前对新知识有所了解。有些课上没有条件、没有时间做的活动,也可以让学生课前去做。如讲统计表时,就可以让学生课前调查好同组同学的身高、体重等数据。

2.认真听“讲”的习惯。

这里的听“讲”,应包括两方面的意思:一是说课堂上,精力要集中,不做与学习无关的动作,要认真倾听老师的点拨、指导,要抓住新知识的生长点,新旧知识的联系,弄清公式、法则的来龙去脉。二是说要认真地听其他同学的发言,对他人的观点、回答能做出评价和必要的补充。

3.认真完成作业的习惯。

完成作业,是学生最基本、最经常的学习实践活动。要求学生从小就养成:(1)规范书写,保持书写清洁的习惯。作业的格式、数字的书写、数学符号的书写都要规范。(2)良好的行为习惯。要独立思考,独立完成作业,不要跟别人对算式和结果,更不要抄袭别人的作业。(3)认真审题,仔细运算的习惯。(4)验算的习惯。

小学六年级数学知识点梳理相关 文章 :

★ 小学六年级数学知识点总结

★ 小学六年级数学上册知识点总结

★ 六年级数学知识点梳理

★ 小学六年级数学学习方法和技巧大全

★ 六年级数学总复习知识点整理(完整版)

★ 六年级数学期末复习知识点汇总

★ 小学六年级数学知识点、难点及学习方法

★ 六年级数学知识点归纳

★ 六年级数学期末复习知识点汇总

★ 六年级上册数学知识点整理归纳

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

‘贰’ 初中三角函数的知识点有哪些,怎么学习

初中数学锐角三角函数通常作为选择题,填空题和应用题压轴题出现,考察同学们灵活运用公式和定理能力,是中考一大难点之一。初中数学锐角三角函数知识点一览:锐角三角函数定义,正弦(sin),余弦(cos)和正切(tan)介绍,锐角三角函数公式(特殊三角度数的特殊值,两角和公式半角公式,和差化积公式),锐角三角函数图像和性质,锐角三角函数综合应用题。
一、锐角三角函数定义
锐角三角函数是以锐角为自变量,以此值为函数值的函数。如图:我们把锐角∠A的正弦、余弦、正切和余切都叫做∠A的锐角函数。
锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。初中数学主要考察正弦(sin),余弦(cos)和正切(tan)。
正弦(sin)等于对边比斜边;sinA=a/c
余弦(cos)等于邻边比斜边;cosA=b/c
正切(tan)等于对边比邻边;tanA=a/b
余切(cot)等于邻边比对边;cotA=b/a
二、锐角三角函数公式
关于初中三角函数公式,在考试中用的最多的就是特殊三角度数的特殊值。如:
sin30°=1/2
sin45°=√2/2
sin60°=√3/2
cos30°=√3/2
cos45°=√2/2
cos60°=1/2
tan30°=√3/3
tan45°=1
tan60°=√3[1]
cot30°=√3
cot45°=1
cot60°=√3/3
其次就是两角和公式,这是在初中数学考试中问答题中容易用到的三角函数公式。两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
除了以上常考的初中三角函数公示之外,还有半角公式和和差化积公式也在选择题中用到。所以同学们还是要好好掌握。
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))
ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB - ctgA+ctgBsin(A+B)/sinAsinB 三、锐角三角函数图像和性质
四、锐角三角函数综合应用题
已知:一次函数y=-2x+10的图象与反比例函数y=k/x(k>0)的图象相交于A,B两点(A在B的右侧).
(1)当A(4,2)时,求反比例函数的解析式及B点的坐标;
(2)在(1)的条件下,反比例函数图象的另一支上是否存在一点P,使△PAB是以AB为直角边的直角三角形若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.
(3)当A(a,-2a+10),B(b,-2b+10)时,直线OA与此反比例函数图象的另一支交于另一点C,连接BC交y轴于点D.若BC/BD=5/2,求△ABC的面积.
考点:
反比例函数综合题;待定系数法求一次函数解析式;反比例函数与一次函数的交点问题;相似三角形的判定与性质.
解答:
解:(1)把A(4,2)代入y=k/x,得k=4×2=8.
∴反比例函数的解析式为y=8/x.
解方程组y=2x+10
y=8/x,得x=1 y=8
或x=4 y=2,
∴点B的坐标为(1,8);
(2)①若∠BAP=90°,
过点A作AH⊥OE于H,设AP与x轴的交点为M,如图1,
对于y=-2x+10,
当y=0时,-2x+10=0,解得x=5,
∴点E(5,0),OE=5.
∵A(4,2),∴OH=4,AH=2,
∴HE=5-4=1.
∵AH⊥OE,∴∠AHM=∠AHE=90°.
又∵∠BAP=90°,
∴∠AME+∠AEM=90°,∠AME+∠MAH=90°,
∴∠MAH=∠AEM,
∴△AHM∽△EHA,
∴AH/EH=MH/AH,
∴2/1=MH/2,
∴MH=4,
∴M(0,0),
可设直线AP的解析式为y=mx
则有4m=2,解得m=1/2,
∴直线AP的解析式为y=1/2x,
解方程组y=1/2x,
y=8/x,得x=4 y=2
或x=?4 y=?2,
∴点P的坐标为(-4,-2).
②若∠ABP=90°,
同理可得:点P的坐标为(-16,-1/2).
综上所述:符合条件的点P的坐标为(-4,-2)、(-16,-1/2);
(3)过点B作BS⊥y轴于S,过点C作CT⊥y轴于T,连接OB,如图2,
则有BS∥CT,∴△CTD∽△BSD,
∴CD/BD=CT/BS.
∵BC/BD=5/2,
∴CT/BS=CD/BD=3/2.
∵A(a,-2a+10),B(b,-2b+10),
∴C(-a,2a-10),CT=a,BS=b,
∴a/b=3/2
,即b=2/3a.
∵A(a,-2a+10),B(b,-2b+10)都在反比例函数y=k/x的图象上,
∴a(-2a+10)=b(-2b+10),
∴a(-2a+10)=2/3
a(-2×2/3a+10).
∵a≠0,
∴-2a+10=2/3
(-2×2/3a+10),
解得:a=3.
∴A(3,4),B(2,6),C(-3,-4).
设直线BC的解析式为y=px+q,
则有2p+q=6
?3p+q=?4,
解得:p=2q=2,
∴直线BC的解析式为y=2x+2.
当x=0时,y=2,则点D(0,2),OD=2,
∴S△COB=S△ODC+S△ODB=1/2
ODCT+1/2ODBS=1/2×2×3+1/2×2×2=5.
∵OA=OC,
∴S△AOB=S△COB,
∴S△ABC=2S△COB=10. 以上就是初中数学锐角三角函数知识点总结,小编推荐同学继续浏览《初中数学知识点专题汇总》。对于想要通过参加初中数学补习班来获得优质的数学学习资源和学习技巧,使自身成绩有所提升的同学,昂立新课程推荐以下课程:

初二数学双师定向尖子班

初二数学名师网络辅导课

初三数学定向尖子班
初三数学名师网络辅导课

中考数学自招名师网课
(以上课程是热门推荐课程,更多相关课程,可登陆官网浏览。)
初中数学学习课程分网络和面授,有小班制,大班制,1对1,1对3形式,授课校区分布在上海各个地域,面授班课时以昂立新课程官网颁布课时为主,具体费用可咨询在线客服或拨打热线4008-770-970。

‘叁’ 苏教版五年级数学下册知识点整理

我觉得这个可能是青岛版
1.理解分数的意义以及单位“1”的含义;
2.理解

的意义和求一个数是另一个数的几分之几的实际意义和解题思路;
3.理解和掌握分数与除法的关系,会把
化成整数或

4.掌握分数与小数的互化方法。
(六)难点点拨:
1.掌握分数的意义和

分数的意义这个概念并不难,关键是能够抽象出单位“1”,在学习时要明确每个分数分别是把什么平均分的,由此知道:一个物体、一个
或由许多物体组成的一个整体都可以用
1来表示,通常把它叫做单位“1”。在结合了分数的意义的基础上,理解表示其中一份的数,叫做

2.区分


以对
的理解为基础,通过涂色的操作,感受到有的分数分子比分母大,有的分数分子比分母小,还有的分数分子和分母相等,经历了这些比较分类的过程,进一步明确
和假分数的概念
真分数:分子比分母小的分数
假分数:分子比分母大或者分子和分母相等的分数
3.解决一个数是另一个数的几分之几的实际问题:
借助
形,利用分数的意义初步探索并理解求一个数是另一个数的几分之几的实际问题,关键是要明确把哪个量看作单位“1”进行平均分。
4.理解分数与除法的关系
出示具体情境后先根据除法的意义列出除法算式,再借助直观动手操作和生活经验,明确可以用分数表示结果,得出a÷b= ab ,在整数除法中,除数不能为0,则在分数中分母也不为0,明确b≠0;同时在进行假分数化成整数或
时,可以利用对分数与除法的关系的理解探索转化方法;
5.分数与小数的互化
通过分数与小数的比较,自然而然的意识到需要将分数和小数转化成统一的
以方便进行比较,在转化时大多数情况是要将分数化成小数比较方便,出现除不尽的情况时根据题目要求保留数位,如果题目中没有明确数位,一般保留
;在进行排列大小时,可以先在草稿纸上统一成小数比较,最后还是要用
进行排序比较。