A. 小升初数学必考知识点
【 #小升初# 导语】小学数学是数学学习的基础阶段,在这个阶段,家长一定要帮助孩子打好基础。下面 无 为大家搜索整理了关于小升初数学必考知识点,欢迎阅读学习,希望对大家有所帮助!
一、小学生数学法则知识归类
(一)笔算两位数加法,要记三条
1、相同数位对齐;
2、从个位加起;
3、个位满10向十位进1。
(二)笔算两位数减法,要记三条
1、相同数位对齐;
2、从个位减起;
3、个位不够减从十位退1,在个位加10再减。
(三)混合运算计算法则
1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;
2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;
3、算式里有括号的要先算括号里面的。
(四)四位数的读法
1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;
2、中间有一个0或两个0只读一个零;
3、末位不管有几个0都不读。
(五)四位数写法
1、从高位起,按照顺序写;
2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写0。
(六)四位数减法也要注意三条
1、相同数位对齐;
2、从个位减起;
3、哪一位数不够减,从前位退1,在本位加10再减。
(七)一位数乘多位数乘法法则
1、从个位起,用一位数依次乘多位数中的每一位数;
2、哪一位上乘得的积满几十就向前进几。
(八)除数是一位数的除法法则
1、从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数;
2、除数除到哪一位,就把商写在那一位上面;
3、每求出一位商,余下的数必须比除数小。
(九)一个因数是两位数的乘法法则
1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;
2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;
3、然后把两次乘得的数加起来。
(十)除数是两位数的除法法则
1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,
2、除到被除数的哪一位就在哪一位上面写商;
3、每求出一位商,余下的数必须比除数小。
(十一)万级数的读法法则
1、先读万级,再读个级;
2、万级的数要按个级的读法来读,再在后面加上一个万字;
3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个零。
(十二)多位数的读法法则
1、从高位起,一级一级往下读;
2、读亿级或万级时,要按照个级数的读法来读,再往后面加上亿或万字;
3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。
(十三)小数大小的比较
比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。
(十四)小数加减法计算法则
计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。
(十五)小数乘法的计算法则
计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。
(十六)除数是整数除法的法则
除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
(十七)除数是小数的除法运算法则
除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。
(十八)解答应用题步骤
1、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;
2、确定每一步该怎样算,列出算式,算出得数;
3、进行检验,写出答案。
(十九)列方程解应用题的一般步骤
1、弄清题意,找出未知数,并用X表示;
2、找出应用题中数量之间的相等关系,列方程;
3、解方程;
4、检验、写出答案。
(二十)同分母分数加减的法则
同分母分数相加减,分母不变,只把分子相加减。
(二十一)同分母带分数加减的法则
带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。
(二十二)异分母分数加减的法则
异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。
(二十三)分数乘以整数的计算法则
分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。
(二十四)分数乘以分数的计算法则
分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。
(二十五)一个数除以分数的计算法则
一个数除以分数,等于这个数乘以除数的倒数。
(二十六)把小数化成百分数和把百分数化成小数的方法
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;
把百分数化成小数,把百分号去掉,同时小数点向左移动两位。
(二十七)把分数化成百分数和把百分数化成分数的方法
把分数化成百分数,通常先把分数化成小数(除不尽通常保留三位小数),再把小数化成百分数;
把百分数化成小数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。
二、小学数学口决定义归类
1、什么是图形的周长?
围成一个图形所有边长的总和就是这个图形的周长。
2、什么是面积?
物体的表面或围成的平面图形的大小叫做他们的面积。
3、加法各部分的关系:
一个加数=和-另一个加数
4、减法各部分的关系:
减数=被减数-差被减数=减数+差
5、乘法各部分之间的关系:
一个因数=积另一个因数
6、除法各部分之间的关系:
除数=被除数商被除数=商除数
7、角
(1)什么是角?
从一点引出两条射线所组成的图形叫做角。
(2)什么是角的顶点?
围成角的端点叫顶点。
(3)什么是角的边?
围成角的射线叫角的边。
(4)什么是直角?
度数为90的角是直角。
(5)什么是平角?
角的两条边成一条直线,这样的角叫平角。
(6)什么是锐角?
小于90的角是锐角。
(7)什么是钝角?
大于90而小于180的角是钝角。
(8)什么是周角?
一条射线绕它的端点旋转一周所成的角叫周角,一个周角等于360.
8、(1)什么是互相垂直?什么是垂线?什么是垂足?
两条直线相交成直角时,这两条线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
(2)什么是点到直线的距离?
从直线外一点向一条直线引垂线,点和垂足之间的距离叫做这点到直线的距离。
9、三角形
(1)什么是三角形?
有三条线段围成的图形叫三角形。
(2)什么是三角形的边?
围成三角形的每条线段叫三角形的边。
(3)什么是三角形的'顶点?
每两条线段的交点叫三角形的顶点。
(4)什么是锐角三角形?
三个角都是锐角的三角形叫锐角三角形。
(5)什么是直角三角形?
有一个角是直角的三角形叫直角三角形。
(6)什么是钝角三角形?
有一个角是钝角的三角形叫钝角三角形。
(7)什么是等腰三角形?
两条边相等的三角形叫等腰三角形。
(8)什么是等腰三角形的腰?
有等腰三角形里,相等的两个边叫做等腰三角形的腰。
(9)什么是等腰三角形的顶点?
两腰的交点叫做等腰三角形的顶点。
(10)什么是等腰三角形的底?
在等腰三角形中,与其它两边不相等的边叫做等腰三角形的底。
(11)什么是等腰三角形的底角?
底边上两个相等的角叫等腰三角形的底角。
(12)什么是等边三角形?
三条边都相等的三角形叫等边三角形,也叫正三角形。
(13)什么是三角形的高?什么叫三角形的底?
从三角形的一个顶点向它的对边引一条垂线,顶点和垂足之间的线段叫做三角形的高,这个顶点的对边叫三角形的底。
(14)三角形的内角和是多少度?
三角形内角和是180.
10、四边形
(1)什么是四边形?
有四条线段围成的图形叫四边形。
(2)什么是平等四边形?
两组对边分别平行的四边形叫做平行四边形。
(3)什么是平行四边形的高?
从平行四边形一条边上的一点到对边引一条垂线,这个点和垂足之间的线段叫做四边形的高。
(4)什么是梯形?
只有一组对边平行的四边形叫做梯形。
(5)什么是梯形的底?
在梯形里互相平等的一组边叫梯形的底(通常较短的底叫上底,较长的底叫下底)。
(6)什么是梯形的腰?
在梯形里,不平等的一组对边叫梯形的腰。
(7)什么是梯形的高?
从上底的一点往下底引一条垂线,这个点和垂足之间的线段叫做梯形的高。
(8)什么是等腰梯形?
两腰相等的梯形叫做等腰梯形。
11、什么是自然数?
用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10是自然数(自然数都是整数)。
12、什么是四舍五入法?
求一个数的近似数时,看被省略的尾数位上的数是几,如果是4或者比4小,就把尾数舍去,如果是5或者比5大,去掉尾数后,要在它的前一位加1。这种求近似数的方法,叫做四舍五入法。
13、加法意义和运算定律
(1)什么是加法?
把两个数合并成一个数的运算叫加法。
(2)什么是加数?
相加的两个数叫加数。
(3)什么是和?
加数相加的结果叫和。
(4)什么是加法交换律?
两个数相加,交换加数的位置后,它的和不变,这叫做加法交换律。
14、什么是减法?
已知两个数的和与其中的一个加数,求另一个加数的运算叫做减法。
15、什么是被减数?什么是减数?什么叫差?
在减法中已知的和叫被减数,减去的已知数叫减数,所求的未知数叫差。
16、加法各部分间的关系:
和=加数+加数加数=和-另一加数
17、减法各部分间的关系:
差=被减数-减数减数=被减数-差被减数=减数+差
18、乘法
(1)什么是乘法?
求几个相同加数的和的简便运算叫乘法。
(2)什么是因数?
相乘的两个数叫因数。
(3)什么是积?
因数相乘所得的数叫积。
(4)什么是乘法交换律?
两个因数相乘,交换因数的位置,它们的积不变,这叫乘法交换律。
(5)什么是乘法结合律?
三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变,这叫乘法结合律。
19、除法
(1)什么是除法?
已知两个因数的积与其中的一个因数,求另一个因数的运算叫除法。
(2)什么是被除数?
在除法中,已知的积叫被除数。
(3)什么是除数?
在除法中,已知的一个因数叫除数。
(4)什么是商?
在除法中,求出的未知因数叫商。
20、乘法各部分的关系:
积=因数因数一个因数=积另一个因数
21、(1)除法各部分间的关系:
商=被除数除数除数=被除数商
(2)有余数的除法各部分间的关系:
被除数=商除数+余数
22、什么是名数?
通常量得的数和单位名称合起来的数叫名数。
23、什么是单名数?
只带有一个单位名称的数叫单名数。
24、什么是复名数?
有两个或两个以上单位名称的数叫复名数。
25、什么是小数?
仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几的数叫小数。
26、什么是小数的基本性质?
小数的末尾添上零或者去掉零,小数大小不变,这叫小数的基本性质。
27、什么是有限小数?
小数部分的位数是有限的小数叫有限小数。
28、什么是无限小数?
小数部分的位数是无限的小数叫无限小数。
29、什么是循环节?
一个循环小数的部分依次不断重复出现的数叫做这个数的循环节。
30、什么是纯循环小数?
循环节从小数第一位开始的叫纯循环小数。
31、什么是混循环小数?
循环节不是从小数部分第一位开始的叫做混循环小数。
32、什么是四则运算?
我们把学过的加、减、乘、除四种运算统称四则运算。
33、什么是方程?
含有未知数的等式叫方程。
34、什么是解方程?
求方程解的过程叫解方程。
35、什么是倍数?什么叫约数?
如果a能被b整除,a就是b的倍数,b就叫a的约数(或a的因数)。
36、什么样的数能被2整除?
个位上是0、2、4、6、8的数都能被2整除。
37、什么是偶数?
能被2整除的数叫偶数。
38、什么是奇数?
不能被2整除的数叫奇数。
39、什么样的数能被5整除?
个位上是0或5的数能被5整除。
40、什么样的数能被3整除?
一个数的各位上的和能被3整除,这个数就能被3整除。
41、什么是质数(或素数)?
一个数如果只有1和它本身两个约数,这样的数叫质数。
42、什么是合数?
一个数除了1和它本身还有别的约数,这样的数叫合数。
43、什么是质因数?
每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数。
44、什么是分解质因数?
把一个合数用质因数相乘的形式表示出来叫做分解质因数。
45、什么是公约数?什么叫公约数?
几个数公有的约数叫公约数。其中的一个叫公约数。
46、什么是互质数?
公约数只有1的两个数叫互质数。
47、什么是公倍数?什么是最小公倍数?
几个数公有的倍数叫这几个数的公倍数。其中最小的一个叫这几个数的最小公倍数。
48、分数
(1)什么是分数?
把单位1平均分成若干份,表示这样的一份或者几份的数叫分数。
(2)什么是分数线?
在分数里中间的横线叫分数线。
(3)什么是分母?
分数线下面的部分叫分母。
(4)什么是分子?
分数线上面的部分叫分子。
(5)什么是分数单位?
把单位1平均分成若干份,表示其中的一份叫分数单位。
49、怎么比较分数大小?
(1)分母相同的两个分数,分子大的分数比较大。
(2)分子相同的两个分数,分母小的分子比较大。
(3)什么是真分数?
分子比分母小的分数叫真分数。
(4)什么是假分数?
分子比分母大或者分子和分母相等的分数叫假分数。
(5)什么是带分数?
由整分数和真分数合成的数通常叫带分数。
(6)什么是分数的基本性质?
分数的分子和分母同时乘或除以相同的数(0除外),分数大小不变,这就是分数的基本性质。
(7)什么是约分?
把一个分数化成同它相等,但分子、分母都比较小的数叫做约分。
(8)什么是最简分数?
分子、分母是互质数的分数叫最简分数。
B. 小升初数学知识考点归纳
归纳和梳理教材知识结构,记清概念,基础夯实。数学≠做题,千万不要忽视最基本的概念、公理、定理和公式的记忆。接下来是我为大家整理的小升初数学知识考点归纳,希望大家喜欢!
小升初数学知识考点归纳一
抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:
①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1
观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。
抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:
①k=[n/m ]+1个物体:当n不能被m整除时。
②k=n/m个物体:当n能被m整除时。
理解知识点:[X]表示不超过X的整数。
例[4.351]=4;[0.321]=0;[2.9999]=2;
关键问题:构造物体和抽屉。也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。
小升初数学知识考点归纳二
平均数问题
在小升初奥数中平均数问题,有一些基本的公式和算法需要大家掌握,具体如下:
基本公式:①平均数=总数量÷总份数
总数量=平均数×总份数
总份数=总数量÷平均数
②平均数=基准数+每一个数与基准数差的和÷总份数
基本算法:
①求出总数量以及总份数,利用基本公式①进行计算.
②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②
小升初数学知识考点归纳三
经济问题
利润的百分数=(卖价-成本)÷成本×100%;
卖价=成本×(1+利润的百分数);
成本=卖价÷(1+利润的百分数);
商品的定价按照期望的利润来确定;
定价=成本×(1+期望利润的百分数);
本金:储蓄的金额;
利率:利息和本金的比;
利息=本金×利率×期数;
含税价格=不含税价格×(1+增值税税率);
小升初数学知识考点归纳四
鸡兔同笼
基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;
基本思路:
①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):
②假设后,发生了和题目条件不同的差,找出这个差是多少;
③每个事物造成的差是固定的,从而找出出现这个差的原因;
④再根据这两个差作适当的调整,消去出现的差。
基本公式:
①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)
②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)
关键问题:找出总量的差与单位量的差。
小升初数学知识考点归纳五
量的计算单位及进率归类
1、长度计量单位及进率:
千米(公里)、米、分米、厘米、毫米
1千米=1公里1千米=1000米
1米=10分米1分米=10厘米
1厘米=10毫米
2、面积计量单位及进率:
平方千米、公顷、平方米、平方分米、平方厘米
1平方千米=100公顷
1平方千米=1000000平方米
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
3、体积容积计量单位及进率:
立方米、立方分米、立方厘米、升、毫升
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升1立方厘米=1毫升
4、质量单位及进率:
吨、千克、公斤、克
1吨=1000千克
1千克=1公斤
1千克=1000克
5、时间单位及进率:
世纪、年、月、日、小时、分、秒
1世纪=100年1年=12月
1天=24小时1小时=60分
1分=60秒
(31天的月份有1、3、5、7、8、10、12月份,30天的月份有4、6、9、11月份,平年2月28天,闰年2月29天)
常用计算公式表
1、长方形面积
=长×宽,计算公式S=ab
2、正方形面积
=边长×边长,计算公式S=a×a=a2
3、长方形周长
=(长+宽)×2,计算公式C=(a+b)×2
小升初数学知识考点归纳相关 文章 :
1. 小升初数学考试知识点整理
2. 小升初数学知识点汇总与常见易错点
3. 小升初考试必备数学一到六年级的知识点
4. 小升初数学备考必知:常考知识点大全
5. 小升初数学考试必备知识点与易错点
6. 小升初数学必备常考10大难点汇编
7. 小升初必背100个科普知识考点
8. 小升初数学必须掌握的知识点有哪些
9. 小升初数学必备易错知识点与公式大全
C. 必读小升初数学知识点梳理
必读小升初数学知识点梳理
一、关于数学命题趋势的分析
纵观各级各类考试,数学命题有以下三个方面的趋势:
(一)综合性 主要考查学生的"双基",以及知识的综合运用能力。
如:小学数学的分数、小数的四则混合运算。运算中要注意:小数的相加、相减、相除三类运算中的小数点对齐问题,乘法运算中的乘数与被乘数共有几位小数,所得的积就有几位小数,不够时要补零。分数的加减运算要注意通分(先找出分母的最小公倍数,再将分子、分母同时扩大相同的倍数。)带分数相加减,应将整数、分数部分分别相加减,然后将所得的结果进行合并,如分数部分不够减,要考虑向整数部分"借"。分数运算中"约分"的思想是化繁为简的理论基础,要将它和关系"重新组合"、"拆项"等结合起来,加以训练。
(二)延续性 所谓"延续性"是指相关数学知识在以后的学习中是否会重新"遭遇"。从数学体系的角度来看,"函数"的思想、"立体感"的建立等都是非常重要的。这些内容在小学数学中往往表现为应用题的列式,圆、圆柱、圆锥、长方体、正方体的识图、运算与转化等。
(三)变通性 所谓"变通性"是指学生对相关数学知识的灵活运算的能力。常见的有"发现新规律,定义新运算的能力"、"优化设计(最大、最小)的能力"、"分析推理(执因索果)的能力"、以及"公式的变形与迭代(包括单位换算、数的进制、手表问题等)的能力"。
二、关于数学应用问题的归类
小学数学的应用题往往是概念、公式的应用。
小学数学常用的一些概念、公式,应加以记忆。如:存入银行的钱叫做本金;取款时银行多付的钱叫做利息;购买建设债券和储蓄在实质上是一样的,是支援国家建设的另一种方式,只是债券的利率一般高于定期储蓄;"一成"就是十分之一,改写成百分数就是10%;表示两个比相等的式子叫做比例;比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项;在比例里,两个外项的积等于两个内项的积(比例的基本性质);比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例,解比例要根据比例的基本性质来解。图上距离和实际距离的比叫做比例尺;一种量变化,另一种量也随着变化,这两种量是两种相关联的量;圆的周长公式:C=2Π r或C=ΠD;圆柱的侧面积=底面周长×高;长方体的体积=长×宽×高=底面积×高;长方形的面积=长×宽; 正方形的面积=边长×边长;平行四边形的面积=底×高;三角形的面积=1/2 ×底×高;梯形的面积:= 1/2(上底+下底)×高;圆的面积=∏×R×R;长方体、正方体和圆柱的体积公式可以统一写成:"底面积×高"等等。
(一)分数、百分数的应用题 "分率(百分率、利率、折扣)"的概念是解题的关键,其中标准量"1"的选取是解题突破口。
(二)工程问题 工程问题要弄清工作量、工作效率、工作时间三者之间的关系:工作量=工作效率×工作时间;工作效率= 工作量/工作时间;工作时间=工作量/工作效率 ;总工作量=各分工作量之和
(三)行程问题 从表层意义上是考查学生对路程、时间、速度三者关系的认识,从深层次的角度分析,实际上是检查学生的变通能力,因为需要考虑的不仅仅是"路程=时间×速度;时间=路程 /速度;速度=路程/时间 ",往往还涉及到时间、地点和方向等诸多要素,因此,解这类题目的关键是认准哪些是"变化的条件",如何在解题中准确运用"不变的公式"。
(四)浓度问题 (不作重点要求) 这类题目要求了解的关系式: 溶液=溶质+ 溶剂 ;浓度=溶质 / 溶液;溶液= 溶质 / 浓度;溶质= 溶液×浓度
三、简单的几何问题
面积、体积问题 主要考虑以下内容:
平行四边形面积计算公式怎样得到的?三角形和梯形面积计算公式怎样得到的?圆的面积计算公式呢?思索正方形面积是怎样计算的?为什么?
提示:我们在得到长方形面积计算公式后,可以通过剪、拼等方法,对图形进行转化,从而得出相应图形的面积计算公式。
求表面积就是求立体图形的什么?(所有面的面积总和)长方体表面积是怎样算的?这类题还有什么简便的方法?圆柱体表面积是怎样算的?
提示:立体图形的表面积是所有面的面积的总和,所以要先求各部分的面积,然后相加。长方体和圆柱体的表面积都可以用侧面积加两个底面积。
求长方体和圆柱的体积有什么相同的地方?
提示:长方体其实也是一个柱体,长方体和圆柱体的体积,其实都是用底面积乘以高。
圆柱(锥) 是由两个完全一样的圆和一个曲面围成的,圆锥是由一个圆和一个曲面围成的。要认识圆柱的`底面、侧面和高;认识圆锥的底面和高。要知道圆柱侧面展开的图形,理解求圆柱的侧面积、表面积的计算方法,会计算圆柱体的侧面积和表面积,能根据实际情况灵活应用计算方法,并认识取近似数的进一法。理解求圆柱、圆锥体积的计算公式,能说明体积公式的推导过程,会运用公式计算体积、容积,解决有关的简单实际问题。
四、简单的统计
简单的统计表、统计图、还学过求平均数和求百分数等都是统计初步知识。
在统计工作中除了对数据进行分类整理用统计表来表示以外,有时还可以用统计图来表示。常见统计图有以下三类:条形统计图;折线统计图;扇形统计图。
要认识统计图,并明确统计图的特点和作用,经历"收集、整理数据和用统计图表示数据、整理结果"过程。能根据绘制出的统计图,分析数据所反映的一些简单事实,能作出一些简单的推理与判断,进一步认识统计是解决实际问题的一种策略和方法。在学习统计知识的同时,感受数学与生活的联系及其在生活中的应用。
求平均数的关键,是要先弄清被平均的数量是什么,总数是多少;以及要求的平均数是按照什么平均的,要平均分成多少份等等。
掌握一些与百分数有关的概念,如:发芽率,出勤率,成活率,利息等。了解有关利息的初步知识,知道"本金"、"利息"、"利率"的含意,会利用利息的计算公式进行一些有关利息的简单计算。理解成数的意义,知道它在实际生产生活中的简单应用,会进行一些简单计算。税收的计算也是百分数的一种具体应用。了解什么是个人所得税,怎样计算个人所得税? 什么是成活率?它的计算公式是什么?
;D. 整数和小数小升初数学必考知识点
整数和小数小升初数学必考知识点
在平时的学习中,大家都没少背知识点吧?知识点就是一些常考的内容,或者考试经常出题的地方。你知道哪些知识点是真正对我们有帮助的吗?以下是我为大家收集的整数和小数小升初数学必考知识点,欢迎阅读,希望大家能够喜欢。
整数和小数小升初数学必考知识点1
1.最小的一位数是1,最小的自然数是0。
2.小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。
3.小数点左边依次是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位……
4.小数的分类:小数、有限小数、无限循环小数、无限小数、无限不循环小数、
5.整数和小数都是按照十进制计数法写出的数。
6.小数的性质:小数的末尾添上0或者去掉0,小数的大小不变。
7.小数点向右移动一位、二位、三位……原来的数分别扩大10倍、100倍、1000倍……
小数点向左移动一位、二位、三位……原来的数分别缩小10倍、100倍、1000倍……
整数和小数小升初数学必考知识点2
1 简单应用题
(1) 简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。
(2) 解题步骤:
a 审题理解题意:了解应用题的内容,知道应用题的条件和问题。读题时,不丢字不添字边读边思考,弄明白题中每句话的意思。也可以复述条件和问题,帮助理解题意。
b选择算法和列式计算:这是解答应用题的中心工作。从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。
C检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。如果发现错误,马上改正。
2 复合应用题
(1)有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。
(2)含有三个已知条件的两步计算的应用题。
求比两个数的和多(少)几个数的应用题。
比较两数差与倍数关系的应用题。
(3)含有两个已知条件的两步计算的应用题。
已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差)。
已知两数之和与其中一个数,求两个数相差多少(或倍数关系)。
(4)解答连乘连除应用题。
(5)解答三步计算的应用题。
(6)解答小数计算的应用题:小数计算的加法、减法、乘法和除法的应用题,他们的数量关系、结构、和解题方式都与正式应用题基本相同,只是在已知数或未知数中间含有小数。
d答案:根据计算的结果,先口答,逐步过渡到笔答。
( 3 ) 解答加法应用题:
a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。
b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。
(4 ) 解答减法应用题:
a求剩余的应用题:从已知数中去掉一部分,求剩下的部分。
-b求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。
c求比一个数少几的数的应用题:已知甲数是多少,,乙数比甲数少多少,求乙数是多少。
(5 ) 解答乘法应用题:
a求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数。
b求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另一个数是多少。
( 6) 解答除法应用题:
a把一个数平均分成几份,求每一份是多少的应用题:已知一个数和把这个数平均分成几份的,求每一份是多少。
b求一个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几份。
C 求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较大数是较小数的几倍。
d已知一个数的几倍是多少,求这个数的应用题。
(7)常见的数量关系:
总价= 单价×数量
路程= 速度×时间
工作总量=工作时间×工效
总产量=单产量×数量
3典型应用题
具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。
(1)平均数问题: 平均数是等分除法的发展。
解题关键:在于确定总数量和与之相对应的总份数。
算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和÷数量的个数=算术平均数。
加权平均数:已知两个以上若干份的平均数,求总平均数是多少。
数量关系式 (部分平均数×权数)的总和÷(权数的和)=加权平均数。
差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。
数量关系式:(大数-小数)÷2=小数应得数最大数与各数之差的和÷总份数=最大数应给数 最大数与个数之差的和÷总份数=最小数应得数。
例:一辆汽车以每小时 100 千米 的速度从甲地开往乙地,又以每小时 60 千米的速度从乙地开往甲地。求这辆车的平均速度。
分析:求汽车的平均速度同样可以利用公式。此题可以把甲地到乙地的路程设为“ 1 ”,则汽车行驶的总路程为“ 2 ”,从甲地到乙地的速度为 100 ,所用的时间为 ,汽车从乙地到甲地速度为 60 千米 ,所用的时间是 ,汽车共行的时间为 + = , 汽车的平均速度为 2 ÷ =75 (千米)
(2) 归一问题: 已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。
根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。
根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。
一次归一问题,用一步运算就能求出“单一量”的归一问题。又称“单归一。”
两次归一问题,用两步运算就能求出“单一量”的归一问题。又称“双归一。”
正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。
反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。
解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。
数量关系式:单一量×份数=总数量(正归一)
总数量÷单一量=份数(反归一)
例 一个织布工人,在七月份织布 4774 米 , 照这样计算,织布 6930 米 ,需要多少天?
分析:必须先求出平均每天织布多少米,就是单一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天)
(3)归总问题: 是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。
特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。
数量关系式:单位数量×单位个数÷另一个单位数量 = 另一个单位数量单位数量×单位个数÷另一个单位数量= 另一个单位数量。
例 修一条水渠,原计划每天修 800 米 , 6 天修完。实际 4 天修完,每天修了多少米?
分析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题”。不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。 80 0 × 6 ÷ 4=1200 (米)
(4) 和差问题: 已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。
解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。
解题规律:(和+差)÷2 = 大数大数-差=小数
(和-差)÷2=小数和-小数= 大数
例 某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人,求原来甲班和乙班各有多少人?
分析:从乙班调 46 人到甲班,对于总数没有变化,现在把乙数转化成 2 个乙班,即 9 4 - 12 ,由此得到现在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在调出 46 人之前应该为 41+46=87 (人),甲班为 9 4 - 87=7 (人)
(5)和倍问题: 已知两个数的和及它们之间的倍数 关系,求两个数各是多少的应用题,叫做和倍问题。
解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。求出倍数和之后,再求出标准的数量是多少。根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。
解题规律:和÷倍数和=标准数标准数×倍数=另一个数
例:汽车运输场有大小货车 115 辆,大货车比小货车的 5 倍多 7 辆,运输场有大货车和小汽车各有多少辆?
分析:大货车比小货车的 5 倍还多 7 辆,这 7 辆也在总数 115 辆内,为了使总数与( 5+1 )倍对应,总车辆数应( 115-7 )辆 。
列式为( 115-7 )÷( 5+1 ) =18 (辆), 18 × 5+7=97 (辆)
(6)差倍问题: 已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。
解题规律:两个数的差÷(倍数-1 )= 标准数 标准数×倍数=另一个数。
例 甲乙两根绳子,甲绳长 63 米 ,乙绳长 29 米 ,两根绳剪去同样的长度,结果甲所剩的长度是乙绳 长的 3 倍,甲乙两绳所剩长度各多少米? 各减去多少米?
分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的 3 倍,实比乙绳多( 3-1 )倍,以乙绳的长度为标准数。列式( 63-29 )÷( 3-1 ) =17 (米)…乙绳剩下的长度, 17 × 3=51 (米)…甲绳剩下的长度, 29-17=12 (米)…剪去的长度。
(7)行程问题: 关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。
解题关键及规律:
同时同地相背而行:路程=速度和×时间。
同时相向而行:相遇时间=速度和×时间
同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。
同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。
例 甲在乙的后面 28 千米 ,两人同时同向而行,甲每小时行 16 千米 ,乙每小时行 9 千米 ,甲几小时追上乙?
分析:甲每小时比乙多行( 16-9 )千米,也就是甲每小时可以追近乙( 16-9 )千米,这是速度差。
已知甲在乙的后面 28 千米 (追击路程), 28 千米 里包含着几个( 16-9 )千米,也就是追击所需要的时间。列式 2 8 ÷ ( 16-9 ) =4 (小时)
(8)流水问题: 一般是研究船在“流水”中航行的问题。它是行程问题中比较特殊的一种类型,它也是一种和差问题。它的特点主要是考虑水速在逆行和顺行中的不同作用。
船速:船在静水中航行的速度。
水速:水流动的速度。
顺水速度:船顺流航行的速度。
逆水速度:船逆流航行的速度。
顺速=船速+水速
逆速=船速-水速
解题关键:因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答。 解题时要以水流为线索。
解题规律:船行速度=(顺水速度+ 逆流速度)÷2
流水速度=(顺流速度逆流速度)÷2
路程=顺流速度× 顺流航行所需时间
路程=逆流速度×逆流航行所需时间
例 一只轮船从甲地开往乙地顺水而行,每小时行 28 千米 ,到乙地后,又逆水 航行,回到甲地。逆水比顺水多行 2 小时,已知水速每小时 4 千米。求甲乙两地相距多少千米?
分析:此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间。已知顺水速度和水流 速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用 2 小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程。列式为 284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5 (小时) 28 × 5=140 (千米)。
(9) 还原问题: 已知某未知数,经过一定的四则运算后所得的`结果,求这个未知数的应用题,我们叫做还原问题。
解题关键:要弄清每一步变化与未知数的关系。
解题规律:从最后结果 出发,采用与原题中相反的运算(逆运算)方法,逐步推导出原数。
根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推导出原数。
解答还原问题时注意观察运算的顺序。若需要先算加减法,后算乘除法时别忘记写括号。
例 某小学三年级四个班共有学生 168 人,如果四班调 3 人到三班,三班调 6 人到二班,二班调 6 人到一班,一班调 2 人到四班,则四个班的人数相等,四个班原有学生多少人?
分析:当四个班人数相等时,应为 168 ÷ 4 ,以四班为例,它调给三班 3 人,又从一班调入 2 人,所以四班原有的人数减去 3 再加上 2 等于平均数。四班原有人数列式为 168 ÷ 4-2+3=43 (人)
一班原有人数列式为 168 ÷ 4-6+2=38 (人);二班原有人数列式为 168 ÷ 4-6+6=42 (人) 三班原有人数列式为 168 ÷ 4-3+6=45 (人)。
(10)植树问题: 这类应用题是以“植树”为内容。凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。
解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。
解题规律:沿线段植树
棵树=段数+1棵树=总路程÷株距+1
株距=总路程÷(棵树-1) 总路程=株距×(棵树-1)
沿周长植树
棵树=总路程÷株距
株距=总路程÷棵树
总路程=株距×棵树
例 沿公路一旁埋电线杆 301 根,每相邻的两根的间距是 50 米 。后来全部改装,只埋了201 根。求改装后每相邻两根的间距。
分析:本题是沿线段埋电线杆,要把电线杆的根数减掉一。列式为 50 ×( 301-1 )÷( 201-1 ) =75 (米)
(11 )盈亏问题: 是在等分除法的基础上发展起来的。 他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或两次都有余),或两次都不足),已知所余和不足的数量,求物品适量和参加分配人数的问题,叫做盈亏问题。
解题关键:盈亏问题的解法要点是先求两次分配中分配者没份所得物品数量的差,再求两次分配中各次共分物品的差(也称总差额),用前一个差去除后一个差,就得到分配者的数,进而再求得物品数。
解题规律:总差额÷每人差额=人数
总差额的求法可以分为以下四种情况:
第一次多余,第二次不足,总差额=多余+ 不足
第一次正好,第二次多余或不足 ,总差额=多余或不足
第一次多余,第二次也多余,总差额=大多余-小多余
第一次不足,第二次也不足, 总差额= 大不足-小不足
例 参加美术小组的同学,每个人分的相同的支数的色笔,如果小组 10 人,则多 25 支,如果小组有 12 人,色笔多余 5 支。求每人 分得几支?共有多少支色铅笔?
分析:每个同学分到的色笔相等。这个活动小组有 12 人,比 10 人多 2 人,而色笔多出了( 25-5 ) =20 支 , 2 个人多出 20 支,一个人分得 10 支。列式为( 25-5 )÷( 12-10 ) =10 (支) 10 × 12+5=125 (支)。
(12)年龄问题: 将差为一定值的两个数作为题中的一个条件,这种应用题被称为“年龄问题”。
解题关键:年龄问题与和差、和倍、 差倍问题类似,主要特点是随着时间的变化,年岁不断增长,但大小两个不同年龄的差是不会改变的,因此,年龄问题是一种“差不变”的问题,解题时,要善于利用差不变的特点。
例 父亲 48 岁,儿子 21 岁。问几年前父亲的年龄是儿子的 4 倍?
分析:父子的年龄差为 48-21=27 (岁)。由于几年前父亲年龄是儿子的 4 倍,可知父子年龄的倍数差是( 4-1 )倍。这样可以算出几年前父子的年龄,从而可以求出几年前父亲的年龄是儿子的 4 倍。列式为: 21( 48-21 )÷( 4-1 ) =12 (年)
(13)鸡兔问题: 已知“鸡兔”的总头数和总腿数。求“鸡”和“兔”各多少只的一类应用题。通常称为“鸡兔问题”又称鸡兔同笼问题
解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数。
解题规律:(总腿数-鸡腿数×总头数)÷一只鸡兔腿数的差=兔子只数
兔子只数=(总腿数-2×总头数)÷2
如果假设全是兔子,可以有下面的式子:
鸡的只数=(4×总头数-总腿数)÷2
兔的头数=总头数-鸡的只数
例 鸡兔同笼共 50 个头, 170 条腿。问鸡兔各有多少只?
兔子只数 ( 170-2 × 50 )÷ 2 =35 (只)
鸡的只数 50-35=15 (只)
整数和小数小升初数学必考知识点3
1.分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
2.分数单位:把单位“1”平均分成若干份,表示其中一份的数,叫做分数单位。
3.分数和除法的联系:分数的分子就是除法中的被除数,分母就是除法中的除数。
分数和小数的联系:小数实际上就是分母是10、100、1000……的分数。
分数和比的联系:分数的分子就是比的前项,分数的分母就是比的后项。
4.分数的分类:分数可以分为真分数和假分数。
5.真分数:分子小于分母的分数叫做真分数。真分数小于1。
假分数:分子大于或等于分母的分数叫做假分数。假分数大于或者等于1。
6.最简分数:分子与分母互质的分数叫做最简分数。
7.分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。
8.这样的分数可以化成有限小数:前提是这
个分数要是最简分数,如果分母只含有2、5这2个质因数,这样的分数就能化成有限小数。
9.百分数:表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫做百分率或者百分比。百分数通常用“%”来表示。
整数和小数小升初数学必考知识点4
升初数学运算法则常考知识点
运算法则
1. 整数加法计算法则:
相同数位对齐,从低位加起,哪位上的数相加满,就向前位进。
2. 整数减法计算法则:
相同数位对齐,从低位加起,哪位上的数不够减,就从它的前位退作,和本位上的数合并
3. 整数乘法计算法则:
先个因数每位上的数分别去乘另个因数各个数位上的数,因数哪位上的数去乘,乘得的数的末尾就对齐哪位,然后把各次乘得的数加起来。
4. 整数除法计算法则:
先从被除数的位除起,除数是位数,就看被除数的前位; 如果不够除,就多看位,除到被除数的哪位,商就写在哪位的上。如果哪位上不够商1,要补“0”占位。每次除得的余数要于除数。
5. 数乘法法则:
先按照整数乘法的计算法则算出积,再看因数中共有位数,就从积的右边起数出位,点上数点;如果位数不够,就“0”补。
6. 除数是整数的数除法计算法则:
先按照整数除法的法则去除,商的数点要和被除数的数点对齐;如果除到被除数的末尾仍有余数,就在余数后添“0”,再继续除。
7. 除数是数的除法计算法则:
先移动除数的数点,使它变成整数,除数的数点也向右移动位(位数不够的补“0”),然后按照除数是整数的除法法则进计算。
8. 同分母分数加减法计算法:同分母分数相加减,只把分相加减,分母不变。
9. 异分母分数加减法计算法:先通分,然后按照同分母分数加减法的的法则进计算。
10. 带分数加减法的计算法:整数部分和分数部分分别相加减,再把所得的数合并起来。
11. 分数乘法的计算法则:分数乘整数,分数的分和整数相乘的积作分,分母不变;分数乘分数,分相乘的积作分,分母相乘的积作分母。
12. 分数除法的计算法则:甲数除以数(0除外),等于甲数乘数的倒数。升初数学整数和数的应知识点整数和数的应
简单应题
(1) 简单应题:只含有种基本数量关系,或步运算解答的应题,通常叫做简单应题。
a 审题理解题意:了解应题的内容,知道应题的条件和问题。读题时,不丢字不添字边读边思考,弄明题中每句话的意思。也可以复述条件和问题,帮助理解题意。
b选择算法和列式计算:这是解答应题的中作。从题中告诉什么,要求什么着,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进解答并标明正确的单位名称。
C检验:就是根据应题的条件和问题进检查看所列算式和计算过程是否正确,是否符合题意。如果发现错误,马上改正。
2 复合应题
(1)有两个或两个以上的基本数量关系组成的,两步或两步以上运算解答的应题,通常叫做复合应题。
(2)含有三个已知条件的两步计算的应题。求两个数的和多(少)个数的应题。较两数差与倍数关系的应题。
(3)含有两个已知条件的两步计算的应题。已知两数相差多少(或倍数关系)与其中个数,求两个数的和(或差)。已知两数之和与其中个数,求两个数相差多少(或倍数关系)。
(4)解答连乘连除应题。
(5)解答三步计算的应题。
(6)解答数计算的应题:数计算的加法、减法、乘法和除法的应题,他们的数量关系、结构、和解题式都与正式应题基本相同,只是在已知数或未知数中间含有数。
(2) 解题步骤:
d答案:根据计算的结果,先答,逐步过渡到笔答。
( 3 ) 解答加法应题:
a求总数的应题:已知甲数是多少,数是多少,求甲两数的和是多少。
b求个数多的数应题:已知甲数是多少和数甲数多多少,求数是多少。
(4 ) 解答减法应题:
a求剩余的应题:从已知数中去掉部分,求剩下的部分。
b求两个数相差的多少的应题:已知甲两数各是多少,求甲数数多多少,或数甲数少多少。
c求个数少的数的应题:已知甲数是多少,,数甲数少多少,求数是多少。
(5 ) 解答乘法应题:
a求相同加数和的应题:已知相同的加数和相同加数的个数,求总数。
b求个数的倍是多少的应题:已知个数是多少,另个数是它的倍,求另个数是多少。
( 6) 解答除法应题:
a把个数平均分成份,求每份是多少的应题:已知个数和把这个数平均分成份的,求每份是多少。
b求个数包含个另个数的应题:已知个数和每份是多少,求可以分成份。
C 求个数是另个数的的倍的应题:已知甲数数各是多少,求较数是较数的倍。
d已知个数的倍是多少,求这个数的应题。
(7)常见的数量关系:
总价= 单价×数量
路程= 速度×时间
作总量=作时间×效
总产量=单产量×数量
;E. 小升初数学:基础知识点整理
小升初数学:基础知识点整理
必背定义、定理公式
三角形的面积=底高2。 公式S= ah2
正方形的面积=边长边长 公式S= aa
长方形的面积=长宽 公式S= ab
平行四边形的面积=底高 公式S= ah
梯形的面积=(上底+下底)高2 公式S=(a+b)h2
内角和:三角形的内角和=180度。
长方体的体积=长宽高 公式:V=abh
长方体(或正方体)的体积=底面积高 公式:V=abh
正方体的体积=棱长棱长棱长 公式:V=aaa
圆的'周长=直径 公式:L=r
圆的面积=半径半径 公式:S=r2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=rh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2r2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面积高。公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
;F. 小升初考试必备数学一到六年级的知识点
小升初数学考的知识点是一到六年级的知识点,整理出不同年级的小学数学重要知识点,对于备考很有用,我在这里整理了相关资料,希望能帮助到那您。
一年级的知识重点
1数与计算
(1)20以内数的认识,加法和减法。
数数。数的组成、顺序、大小、读法和写法。加法和减法。连加、连减和加减混合式题
(2)100以内数的认识。
加法和减法。数数。个位、十位。数的顺序、大小、读法和写法。
两位数加、减整十数和两位数加、减一位数的口算。两步计算的加减式题。
2量与计量
钟面的认识(整时)。人民币的认识和简单计算。
3几何初步知识
长方体、正方体、圆柱和球的直观认识。
长方形、正方形、三角形和圆的直观认识。
4应用题
比较容易的加法、减法一步计算的应用题。多和少的应用题(抓有效信息的能力)
5实践活动
选择与生活密切联系的内容。例如根据本班男、女生人数,每组人数分布情况,想到哪些数学问题。
二年级的知识重点
1数与计算
(1)两位数加、减两位数。两位数加、减两位数。加、减法竖式。两步计算的加减式题。
(2)表内乘法和表内除法。乘法的初步认识。乘法口诀。乘法竖式。除法的初步认识。用乘法口诀求商。除法竖式。有余数除法。两步计算的式题。
(3)万以内数的读法和写法。数数。百位、千位、万位。数的读法、写法和大小比较。
(4)加法和减法。加法,减法。连加法。加法验算,用加法验算减法。
(5)混合运算。先乘除后加减。两步计算式题。小括号。
2量与计量
时、分、秒的认识。
米、分米、厘米的认识和简单计算。
千克(公斤)的认识。
3几何初步知识
直线和线段的初步认识。角的初步认识。直角。
4应用题
加法和减法一步计算的应用题。乘法和除法一步计算的应用题。比较容易的两步计算的应用题。
5实践活动
与生活密切联系的内容。例如调查家中本周各项消费的开支情况,想到哪些数学问题。
三年级的知识重点
1数与计算
(1)一位数的乘、除法。
一个乘数是一位数的乘法(另一个乘数一般不超过三位数)。0的乘法。连乘。除数是一位数的除法。0除以一个数。用乘法验算除法。连除。
(2)两位数的乘、除法。
一个乘数是两位数的乘法(另一个乘数一般不超过三位数)。乘数末尾有0的简便算法。乘法验算。除数是两位数的除法。连乘、连除的简便算法。
(3)四则混合运算。
两步计算的式题。小括号的使用。
(4)分数的初步认识。
分数的初步认识,读法和写法。看图比较分数的大小。简单的同分母分数加、减法。
2量与计量
千米(公里)、毫米的认识和简单计算。吨、克的认识和简单计算。
3几何初步知识
长方形和正方形的特征。长方形和正方形的周长。平行四边形的直观认识。周长的含义。长方形、正方形的周长。
4应用题常见的数量关系。
解答两步计算的应用题。
5实践活动
联系周围接触到的事物组织活动。例如记录10天内的天气情况,分类整理,并作简单分析。
四年级的知识重点
1数与计算
(1)亿以内数的读法和写法。
计数单位“十万”、“百万”、“千万”。相邻计数单位间的十进关系。读法和写法。数的大小比较。以万作单位的近似数。
(2)加法和减法。
加法,减法。
接近整十、整百数的加、减法的简便算法。
加、减法算式中各部分之间的关系。求未知数x。
(3)乘、除数是三位数的乘、除法。
乘数是三位数的乘法。积的变化。除数是三位数的除法。商不变的性质。被除数和除数末尾有0的简便算法。
乘、除计算的简单估算。
乘数接近整十、整百的简便算法。
乘、除法算式中各部分之间的关系。求未知数x。
(4)四则混合运算。
中括号。三步计算的式题。
(5)整数及其四则运算的关系和运算定律。
自然数与整数。十进制计数法。读法和写法。
四则运算的意义。加法与减法、乘法与除法之间的关系。整除和有余数的除法。
运算定律。简便运算。
(6)小数的意义、性质,加法和减法。
小数的意义、性质。小数大小的比较。小数点移位引起小数大小的变化。小数的近似值加法和减法。加法运算定律推广到小数。
2量与计量
年、月、日。平年、闰年。世纪。24时计时法。
角的度量。
面积单位。
3几何初步知识
直线的测定。测量距离(工具测、步测、目测)。
射线。直角、锐角、钝角、平角、*周角。垂线。画垂线。平行线。画平行线。
三角形的特征。
三角形的内角和。
4统计初步知识
简单数据整理。简单统计图表的初步认识。平均数的意义。求简单的平均数。
5应用题列综合算式
解答比较容易的三步计算的应用题。
五年级的知识重点
1计算
小数乘法,小数除法,简易方程,观察物体,多边形的面积,统计与可能性,数学广角和数学综合运用等。
在前面学习整数四则运算和小数加、减法的基础上,继续培养学生小数的四则运算能力。
2方程
用字母表示数、等式的性质、解简单的方程、用方程表示等量关系进而解决简单的实际问题等内容,进一步发展学生的抽象思维能力,提高解决问题的能力。
3空间与物体
在空间与图形方面,这一册教材安排了观察物体和多边形的面积两个单元。在已有知识和经验的基础上,通过丰富的现实的数学活动,让学生获得探究学习的经历,能辨认从不同方位看到的物体的形状和相对位置。
4图形的转换
探索并体会各种图形的特征、图形之间的关系,及图形之间的转化,掌握平行四边形、三角形、梯形的面积公式及公式之间的关系,渗透平移、旋转、转化的数学思想方法,促进学生空间观念的进一步发展。
5统计与概率
教材让学生学习有关可能性和中位数的知识。通过操作与实验,让学生体验事件发生的等可能性以及游戏规则的公平性,学会求一些事件发生的可能性。
6平均数
理解平均数和中位数各自的统计意义、各自的特征和适用范围;进一步体会统计和概率在现实生活中的作用。
7实际应用
通过观察、猜测、实验、推理等活动向学生渗透初步的数字编码的数学思想方法,体会运用数字的有规律排列可以使人与人之间的信息交换变得安全、有序、快捷,给人们的生活和工作带来便利,感受数学的魅力。
六年级的知识重点
1数与计算
(1)分数的乘法和除法,分数乘法的意义,分数乘法,乘法的运算定律推广到分数,倒数,分数除法的意义,分数除法。
(2)分数四则混合运算,分数四则混合运算。
(3)百分数,百分数的意义和写法,百分数和分数、小数的互化。
2比和比例
比的意义和性质,比例的意义和基本性质,解比例,成正比例的量和成反比例的量。
3几何初步知识
圆的认识,圆周率,画圆,圆的周长和面积,扇形的认识,轴对称图形的初步认识,圆柱的认识,圆柱的表面积和体积,圆锥的认识,圆锥的体积,球和球的半径、直径的初步认识。
4统计初步知识
统计表,条形统计图,折线统计图,扇形统计图。
5应用题
分数四则应用题(包括工程问题),百分数的实际应用(包括发芽率、合格率、利率、税率等的计算),比例尺,按比例分配。
6实践活动
联系学生所接触到的社会情况组织活动,例如就家中的卧室,画一个平面图。
G. 小升初数学基础知识:什么叫约分
小升初数学基础知识:什么叫约分
在长沙的备考过程中,数学科目需要记忆的知识虽然不多,但往往差之毫厘失之千里。所以在备考数学的过程中,大家一定要把基础知识和公式准确的.记忆下来。整理了长沙阶段数学必背的基础知识,供学生参考。
什么叫约分?
意义:把一个分数化成和它相等,但分子、分母都比较小的分数,叫做约分(rection of a fraction)。 (即把一个分数的分子、分母同时除以公因数,分数的值不变,这个过程叫约分。)
最简分数:分子、分母是互质数(分母不是1)的分数,叫做最简分数(又叫既约分数)。
注意:约分时尽量用口算,一般用分子和把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分.分母的公约数(1除外) 去除分数的分子和分母;通常要除到得出最简分数为止。
(除过的数均划掉,如本例中的6、12、30、15)
约分是一定要注意要找它的公约数,也就是分子和分母的公约数,不能只把分母化简或者分子化简,双数的公约数肯定有2,所以你可以先除以2,在慢慢除,然后将你所有除的数加起来就是他们的最大公约数。
把分数化成最简分数的过程就叫约分。
;H. 小升初一至六年级数学知识点整理
水滴石穿,绳锯木断。备考小升初考试 ,也需要一点点积累才能到达好的效果,下面是我为大家带来的有关小升初一至 六年级数学 知识点整理,希望大家喜欢。
▼▼目录▼▼
1-6年级数学知识体系
必背定义、定理公式
小升初算术知识点
数量关系计算公式方面
一般运算规则
● 小升初数学知识点: 1-6年级知识体系
小学一年级九九乘法口诀表。学会基础加减乘。
小学二年级完善乘法口诀表,学会除混合运算,基础几何图形。
小学三年级学会乘法交换律,几何面积周长等,时间量及单位。路程计算,分配律,分数小数。
小学四年级线角自然数整数,素因数梯形对称,分数小数计算。
小学五年级分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。
小学六年级比例百分比概率,圆扇圆柱及圆锥。
>>>
● 小升初数学知识点: 必背定义、定理公式
三角形的面积=底×高÷2。公式S=a×h÷2
正方形的面积=边长×边长公式S=a×a
长方形的面积=长×宽公式S=a×b
平行四边形的面积=底×高公式S=a×h
梯形的面积=(上底+下底)×高÷2公式S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh
长方体(或正方体)的体积=底面积×高公式:V=abh
正方体的体积=棱长×棱长×棱长公式:V=aaa
圆的周长=直径×π公式:L=πd=2πr
圆的面积=半径×半径×π公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
>>>
● 小升初数学知识点: 算术方面
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5
6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。
21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
>>>
● 小升初数学知识点: 数量关系计算公式方面
1、单价×数量=总价
2、单产量×数量=总产量
3、速度×时间=路程
4、工效×时间=工作总量
5、加数+加数=和
一个加数=和+另一个加数
被减数-减数=差
减数=被减数-差
被减数=减数+差
因数×因数=积
一个因数=积÷另一个因数
被除数÷除数=商
除数=被除数÷商
被除数=商×除数
有余数的除法:被除数=商×除数+余数
一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)
6、1公里=1千米1千米=1000米
1米=10分米
1分米=10厘米
1厘米=10毫米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1吨=1000千克
1千克=1000克=
1公斤=1市斤
1公顷=10000平方米。
1亩=666.666平方米。
1升=1立方分米=1000毫升1毫升=1立方厘米
7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
9、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k(k一定)或kx=y
12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y=k(k一定)或k/x=y
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
15、要学会把小数化成分数和把分数化成小数的化发。
16、公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的公约数。(或几个数公有的约数,叫做这几个数的公约数。其中的一个,叫做公约数。)
17、互质数:公约数只有1的两个数,叫做互质数。
18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用公约数)
21、最简分数:分子、分母是互质数的分数,叫做最简分数。
分数计算到最后,得数必须化成最简分数。
个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。
22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3.141414
32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。
如3.141592654
33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3.141592654……
34、什么叫代数?代数就是用字母代替数。
35、什么叫代数式?用字母表示的式子叫做代数式。如:3x=ab+c
>>>
● 小升初数学知识点: 一般运算规则
1每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
21倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6加数+加数=和
和-一个加数=另一个加数
7被减数-减数=差
被减数-差=减数差+减数=被减数
8因数×因数=积
积÷一个因数=另一个因数
9被除数÷除数=商
被除数÷商=除数商×除数=被除数
四、小学数学图形计算公式
1正方形
C周长S面积a边长
周长=边长×4C=4a
面积=边长×边长S=a×a
2正方体
V:体积a:棱长
表面积=棱长×棱长×6S表=a×a×6
体积=棱长×棱长×棱长V=a×a×a
3长方形
C周长S面积a边长
周长=(长+宽)×2C=2(a+b)
面积=长×宽S=ab
4长方体
V:体积s:面积a:长b:宽h:高
表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)
体积=长×宽×高V=abh
5三角形
s面积a底h高
面积=底×高÷2s=ah÷2
三角形高=面积×2÷底三角形底=面积×2÷高
6平行四边形
s面积a底h高
面积=底×高s=ah
7梯形
s面积a上底b下底h高
面积=(上底+下底)×高÷2s=(a+b)×h÷2
8圆形
S面积C周长∏d=直径r=半径
周长=直径×∏=2×∏×半径C=∏d=2∏r
面积=半径×半径×∏
9圆柱体
v:体积h:高s;底面积r:底面半径c:底面周长
侧面积=底面周长×高表面积=侧面积+底面积×2
体积=底面积×高体积=侧面积÷2×半径
10圆锥体
v:体积h:高s;底面积r:底面半径
体积=底面积×高÷3
>>>
小升初一至六年级数学知识点整理相关 文章 :
★ 小升初一至六年级数学知识点整理
★ 小升初考试必备数学一到六年级的知识点
★ 六年级数学知识点梳理
★ 小升初数学考试知识点整理
★ 小升初数学知识考点归纳
★ 小升初数学知识点总结
★ 六年级数学知识点整理
★ 小升初数学考试必备知识点与易错点
★ 小升初数学知识点讲解:数量关系计算公式+数学知识点整理
★ 攻克小升初数学必考的知识点
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();