当前位置:首页 » 基础知识 » 数学系统化基础知识
扩展阅读
男生如何称呼同龄女同学 2024-11-25 06:30:10
儿童腰穿多少厘米 2024-11-25 06:30:05

数学系统化基础知识

发布时间: 2024-09-18 18:29:11

1. 数学基础知识有哪些

什么是数学基础知识
众所周知,概念是思维的基本形式之一,是对一切事物进行判断和推理的基础.数学概念是构成数学知识的基础,是基础知识和基本技能教学的核心,正确地理解数学概念是掌握数学知识的前提.因此数学概念的教学是数学教学的一个重要方面,但数学概念的抽象性使得数学概念的教学相对棘手. 概念的产生都有其必然性,我们要抓住概念产生的背景,让学生了解数学概念的产生、发展、演变的原因以及在这些原因中所隐藏着数学概念间的内在联系,将数学概念在数学思想的整体连贯性中的作用体现出来. 因此,教师在讲授新的概念时,可以分析概念产生的背景.找出合适学生理解的、有趣而生动的切入点,让学生更容易理解新概念,更容易对新知识找到共鸣,才能让学生有更多的机会参与发现需要建立新概念的时机并加入到这一创造活动中去,从中感受和谐、连贯、严密、有用的数学之美.下面浅谈一下在概念教学中用到的几种方法. 一、从概念的产生背景着手,层层深入 对数这一概念就是学生在数学学习中遇到的一个非常抽象的概念,直接讲授的方式会使学生难于理解.其实我们分析一下对数产生的背景,可以发现这是数学运算发展到一定的阶段后,必然产生的一种新运算.加法发展到一定程度必然要引入减法,乘方发展到一定阶段必然要出现开方一样,对数也是为了生产生活中的计算需要而必然产生的.如果把这些概念的背景、运算方式列成表格,在对比过程中自然而然形成新的概念,使学生轻松地接受并理解它. 教师可以设置了一个这样的教学引入过程: 首先提出两个问题1、1个细胞一次分裂成两个细胞,请问1个细胞需要分裂多少次以后才能分裂成128个?2、某人原来年薪为a万元,假设他的工资以每年10%的速度增长,请问经过多少年以后他的年薪增长为原来的2倍? 这两个例题中,运用的运算都是解指数方程:1、,2、.但第一题答案是特殊值,不需要引入新运算;第二题答案则不是特殊值了,在现有的运算中,答案算不出来.如何让解决这一问题? 紧接着,教师再提出了几种具有互逆关系的运算进行对比,如:3+x=10 x=10-3、5=8 x=、 . 在接下来的教学中,我们就可以自然的将指数式化成对数式x=,引入新的运算概念.并且指出:指数式与对数式的关系(1)是等价的(2)它们只是写法不一样,读法不一样,a、b、N的名称不一样,所在位置不一样,但代表的数一样,含义一样,数的范围也是一样,只要牢牢记住指数式和对数式中的字母a、b、N交换的方式、交换的位置,就可以自由的将指数式和对数式进行互化.在这个过程中,指数对数与加减、乘除、乘方开方之间关系是相类似的,这些概念之间的对比要贯穿教学始终,以便于学生的理解. 二、从概念的生活背景出发,创设学习情境 很多数学概念是人们在长期的现实生活中对事物进行高度抽象概括的产物,有具体的素材为基础,有生动的现实原型,教师要善于结合生活实际,通过多种方式创造良好的学习情境激发学生的学习兴趣,使学生觉得这些抽象的数学概念仿佛就在自己的身边,伸手可摸. 等比数列这样的概念就是直接源于生活的概念,在讲授的过程中,现实生活中的实例随手可得,如常见的细胞分裂问题,商店打折问题,放射性物质的重量问题,银行利率,为自己家选择合适的还贷方式等等实例可以信手拈来穿插在概念的讲解、巩固的过程中. 为了让学生积极性充分发挥出来,我还设计了一个有趣的问题情境引入等比数列这一概念: 阿基里斯(希腊神话中的善跑英雄)和乌龟赛跑,乌龟在前方1里处,阿基里斯的速度是乌龟的10倍,当......>>
小学数学的基础知识有哪些
小学数学学习概述

数学学习主要是对学生数学思维能力的培养.这要以数学基础知识和基本技能为基础,以数学问题为诱因,以数学思想方法为核心,以数学活动为主线,遵循数学的内在规律和学生的思维规律开展教学.

学习类型分析

1.方式性分类

(1)接受学习与发现学习

定义:将学习的内容以定论的形式呈现给学习者的学习方式.

模式:呈现材料—讲解分析—理解领会—反馈巩固

(2)发现学习

定义:向学习者提供一定的背景材料,由学习者独立操作而习得知识的学习方式.

模式:呈现材料—假设尝试—认知整合—反馈巩固.

2.知识性分类一

(1)知识学习 定义:以理解、掌握数学基础知识为主的学习活动.过程:选择—领会—习得——巩固

(2)技能学习

定义:将一连串(内部或外部的)动作经练习而形成熟练的、自动化的反应过程.

过程:演示—模仿—练习—熟练—自动化

(3)问题解决学习

以关心问题解决过程为主、反思问题解决思考过程的一种数学学习活动.

提出问题—分析问题—解决问题—反思过程

3.知识性分类二

(1)概念性(陈述性)知识的学习

把数学中的概念、定义、公式、法则、原理、定律、规则等都称为概念性知识.

概念学习:同化与形成.

利用已有概念来学习相关新概念的方式,称概念同化;依靠直接经验,从大量的具体例子出发,概括出新概念的本质属性的方式,称为概念形成.概念形成是小学生获得数学概念的主要形式.

(2)技能性(程序性)知识的学习

小学数学技能主要是运算技能. 运算技能的形成分为三个阶段:

①认知阶段:“引导式”的尝试错误.从老师演算例题或自学法则中初步了解运算法则,在头脑中形成运算方法的表征.②联结阶段:法则阶段,即按法则一步步地运算,保证算对(使用法则解决问题,陈述性知识提供了基本的操作线索)—程序化阶段(将相关的小法则整合为整体的法则系统,此时概念性知识已退出),能算得比较快速正确.③自动化阶段:更清楚更熟练地应用第二阶段中的程序,通过较多的练习,不再思考程序,达到一定程序的自动化,获得了运算的速度和较高的正确率.

(3)问题解决(策略性知识)的学习

通过重组所掌握的数学知识,找出解决当前问题的适用策略和方法,从而获得解决问题的策略的学习.

小学生解决问题的主要方式,一是尝试错误式(又称试误法),即通过进行无定向的尝试,纠正暂时性

尝试错误,直至解决问题;二是顿悟式(也称启发式),好像答案或方法是突然出现的,而实际上是有一

定的“心向”作基础的,这就是问题解决所依据的规则、原理的评价和识别.

4.任务性分类

(1)记忆操作类学习

如口算、尺规作(画)图和掌握基本的运算法则并能进行准确计算等.

(2)理解性的学习

如认识并掌握概念的内涵、懂得数学原理并能用于解释或说明、理解一个数学命题并能用于推得新命题.

(3)探索性的学习

如需要让学生经过自己探索,发现并提出问题或学习任务,让学生通过自己的探究能总结出一个数学规律或规则,让学生通过自己的探究过程而逐步形成新的策略性知识等.

小学生数学认知学习

一、小学生数学认知学习的基本特征

1.生活常识是小学生数学认知的起点

要在儿童的生活常识和数学知识之间构建一座桥梁,让儿童从生活常识和经验出发,不断通过尝试、探索和反思,从而达到“普通常识”的“数学化”.

2.小学生数学认知是一个主体的数学活动过程

数学认知过程要成为一个“做数学”的过程,让儿童从生活常识出发,在“做数学”的过程中,去发现、了解、体验和掌握数学,去认识数学的价值、了解数学的特性、总结数学的规律,去学会用数学、提高数学修养、发展数学能力......>>
小学数学基础知识包括哪几个方面?
数学与计算、量与计量、百分数、比和比例、应用题、代数初步知识、几何初步知识、统计初步知识八大部分
初中数学基础知识点有哪些
初中数学基础知识大全:直角座标系与点的位置

1. 直角座标系中,点A(3,0)在y轴上。

2. 直角座标系中,x轴上的任意点的横座标为0。

3. 直角座标系中,点A(1,1)在第一象限。

4. 直角座标系中,点A(-1,1)在第二象限。

5. 直角座标系中,点A(-1,-1)在第三象限。

6. 直角座标系中,点A(1,-1)在第四象限。

初中数学基础知识大全:特殊三角函数值

1.cos30°=√3/2

2.sin2 60°+ cos2 60°= 1

3.2sin30°+ tan45°= 2

4.tan45°= 1

5.cos60°+ sin30°= 1

初中数学基础知识大全:圆的基本性质

1.半圆或直径所对的圆周角是直角。

2.任意一个三角形一定有一个外接圆.

3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

4.在同圆或等圆中,相等的圆心角所对的弧相等。

5.同弧所对的圆周角等于圆心角的一半。

6.同圆或等圆的半径相等。

7.过三个点一定可以作一个圆。

8.长度相等的两条弧是等弧。

9.在同圆或等圆中,相等的圆心角所对的弧相等。

10.经过圆心平分弦的直径垂直于弦。
数学的基础理论有哪些
“数与代数”领域中主要是最基本的数、式、方程(及不等式)和函数的内容.

⑴在顾及知识的纵向逻辑结构的前提下,突出重点,适当精简整合.

⑵螺旋上升地呈现重要的概念和思想,不断深化对它们的认识,例如:使方程和函数交替出现,即按一次方程“组”,一次函数,二次方程,二次函数的顺序螺旋上升.

⑶联系实际,体现知识的形成和应用过程,突出建立数学模型的思想.
初三数学基础知识有哪些?
方程,平面几何,概率

2. 中国的双基数学教学应该怎样发展如何避免它的异化

“双基”是指基础知识和基本技能。我国的“数学双基教学”,曾经培育了几代人的数学素养。扎实、系统的基础知识和基本技能的训练是中国基础教育中数学教育的一大特色,我国的学生在各种考试中连创佳绩,在国际数学水平测试中名列前茅,这些都应归功于中国传统教学中长抓不懈的“双基”训练。
新课程标准中“双基”的具体目标是:“获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。”新的课程理念要求在发扬传统的基础上,应根据时代发展,与时俱进地认识数学 “双基”,克服“双基异化”的倾向。
1 重新审视“双基”的内涵
社会发展、数学的发展和教育的发展,要求“双基平台”需要跟随时代改建。我们可以从新课程中新增的“双基”内容,以及对原有内容的变化(包括要求和处理两方面)和发展上,思考变化,探索新课程理念下的“双基”教学。
1.1 “双基数学教学”代表一种教学理念
1.2 数学基础知识内容随着时代发展不断更新
1.3 数学基本技能要求和训练手段在丰富和发展着

2 用新课程理念指导数学“双基”教学
随着数学教育改革的展开,无论是教学观念,还是教学方法,都在不断变化着。我们再不能将数学课堂变成教师表演其自编的“教案剧”的场所,而应该用新的课程理念指导数学“双基”教学。
2.1 鼓励学生积极参与教学活动,帮助学生体验数学,认识和理解“双基”
2.2 恰当使用信息技术,改善学生学习方式,加深对“双基”的理解

3. 如何系统的学习数学

首先很高兴能为您解答问题,希望我的回答可以帮助到您,我最近正在为高三的一个学生和沈阳大学的一个学生补习功课,下面的是我的个人经验希望可以对您有所帮助.
高等数学是高等学校一门重要的基础课,学好它对每一个大学生都是极为重要的。
这里,就学好这门课的学习方法提一点建议供同学们参考:
一,把握三个环节,提高学习效率
一课前预习:了解老师即将讲什么内容,相应地复习与之相关内容。
二认真上课:注意老师的讲解方法和思路,其分析问题和解决问题的过程,记好课堂笔记,听课是一个全身心投入----听,记,思相结合的过程。
三课后复习:当天必须回忆一下老师讲的内容,看看自己记得多少;
然后打开笔记,教材,完善笔记,沟通联系;最后完成作业。
二,在记忆的基础上理解,在完成作业中深化,在比较中构筑知识结构的框架。
三,按"新=陈+差异"思路理解深化学习知识。
四, "三人行,则必有我师",参加老师的辅导,向同学请教并相互讨论。
五,处理数学问题的基本方法:
一分割求和法;
二以直求曲法;
三恒等变形法:
①等量加减法;②乘除因子法;③积分求导法;
④三角代换法;⑤数形结合法;⑥关系迭代法;
⑦递推公式法;⑧相互沟通法;⑨前后夹击法;
⑩反思求证法;⑾构造函数法;⑿逐步分解法。
六,阶段复习与全面巩固相结合。
学习方法五原则
学习方法与学习的过程,阶段,心理条件等有着密切的联系,它不但蕴含着对学习规律的认识,而且也反映了对学习内容理解的程度。在一定意义上,它还是一种带有个性特征的学习风格。学习方法因人而异,但正确的学习方法应该遵循以下几个原则:循序渐进,熟读精思,自求自得,博约结合,知行统一。
1。"循序渐进"——就是人们按照学科的知识体系和自身的智能条件,系统而有步骤地进行学习。它要求人们应注重基础,切忌好高骛远,急于求成。循序渐进的原则体现为:一要打好基础。二要由易到难。三要量力而行。
2。"熟读精思"——就是要根据记忆和理解的辩证关系,把记忆与理解紧密结合起来,两者不可偏废。我们知道记忆与理解是密切联系,相辅相成的。一方面,只有在记忆的基础上进行理解,理解才能透彻;另一方面,只有在理解的参与下进行则启拿记忆,记忆才会牢固,"熟读",要做到"三到":心到,眼到,口到。"精思",要善于提出问题和解决问题,用"自我诘难法"和"众说诘难法"去质疑问难。
3。"自求自得"——就是要充分发挥学习的主动性和积极性,尽可能挖掘自我内在的学习潜力,培养和提高自学能力。自求自得的原则要求不要为读书而读书,应当把所学的知识加以消化吸收,变成自己的东西。
4。"博约结合"——就是要根据广搏和精研的旁岁辩证关系,把广博和精研结合起来,众所周知,博与约的关系是在博的基础上去约,在约的指导下去博,博约结合,相互促进。坚持博约结合,一是要广泛阅读。二是精读。
5。"知行统一"——就是要根据认识与实践的辩证关系,把学习和实践结合起来,切忌学而不用。"知者行之始,行者知之成",以知为指导的行才能行之有效,脱离知的行则是盲动。同样,以行验证的知才是真知灼见,脱离行的知则是空知。因此,知行统一要注重实践:一是要善于在实践中学习,边实践,边学习,边积累。二是躬行实践,即把学习得来的知识,用在孙搭实际工作中,解决实际问题。
数学学习方法
●全面复习,把书读薄
●突出重点,精益求精
●基本训练,反复进行
学习数学,要做一定数量的题,把基本功练熟练透,但我们不主张"题海"战术,而是提倡精练,即反复做一些典型的题,做致电一题多解,一题多变。要训练抽象思维能力,对些基本定理的证明,基本公式的推导,以及一些基本练习题,要作到不用书写,就象棋手下"盲棋"一样,只需用脑子默想,即能得到下确答案。这就是我们在前言中提到的,在20分钟内完成10道客观题。其中有些是不用动笔,一眼就能乍出答案的题,这样才叫训练有素,"熟能生巧",基本功扎实的人,遇到难题办法也多,不易被难倒。相反,作练习时,眼高手低,总找难题作,结果,上了考场,遇到与自己曾经作过的类似的题目都有可能不会;不少考生把会作的题算错了,归为粗心大意,确实,人会有粗心的,但基本功扎实的人,出了错立即会发现,很少会"粗心"地出错。