1. 高二化学重要知识点大全
总结 是指对某一阶段的工作、学习或思想中的 经验 或情况加以总结和概括的书面材料,它可以明确下一步的工作方向,少走弯路,少犯错误,提高工作效益,下面是我给大家带来的 高二化学 重要知识点大全,以供大家参考!
高二化学重要知识点大全
1、有机化合物分子的表示法:结构式、投影式;
2、有机化合物中的共价键:碳原子的杂化轨道、σ键和π键;
3、共价键的属性:键长、键角、键能、极性和极化度;
4、有机化合物结构和物理性质的关系,分子间作用力对溶解度、沸点、熔点、比重的影响。
5、烷烃的结构:sp3杂化;同系列;烷基的概念;同分异构现象;伯、仲、叔、季碳原子的概念;烷烃分子的构象:Newmann投影式;
6、烷烃的命名:普通命名法及系统命名法;
7、烷烃的物理性质;
8、烷烃的化学性质:自由基取代反应历程(均裂、链锁反应的概念及能量曲线、过渡态及活化能);
高二化学知识点大全
1、需水浴加热的反应有:
(1)、银镜反应
(2)、乙酸乙酯的水解
(3)苯的硝化
(4)糖的水解
(5)、酚醛树脂的制取
(6)固体溶解度的测定
凡是在不高于100℃的条件下反应,均可用水浴加热,其优点:温度变化平稳,不会大起大落,有利于反应的进行。
2、需用温度计的实验有:
(1)、实验室制乙烯(170℃)
(2)、蒸馏
(3)、固体溶解度的测定
(4)、乙酸乙酯的水解(70—80℃)
(5)、中和热的测定
(6)制硝基苯(50—60℃)
〔说明〕:
(1)凡需要准确控制温度者均需用温度计。
(2)注意温度计水银球的位置。
3、能与Na反应的有机物有:
醇、酚、羧酸等——凡含羟基的化合物。
4、能发生银镜反应的物质有:
醛、甲酸、甲酸盐、甲酸酯、葡萄糖、麦芽糖——凡含醛基的物质。
5、能使高锰酸钾酸性溶液褪色的物质有:
(1)含有碳碳双键、碳碳叁键的烃和烃的衍生物、苯的同系物
(2)含有羟基的化合物如醇和酚类物质
(3)含有醛基的化合物
(4)具有还原性的无机物(如SO2、FeSO4、KI、HCl、H2O2等)
6、能使溴水褪色的物质有:
(1)含有碳碳双键和碳碳叁键的烃和烃的衍生物(加成)
(2)苯酚等酚类物质(取代)
(3)含醛基物质(氧化)
(4)碱性物质(如NaOH、Na2CO3)(氧化还原――歧化反应)
(5)较强的无机还原剂(如SO2、KI、FeSO4等)(氧化)
(6)有机溶剂(如苯和苯的同系物、四氯甲烷、汽油、已烷等,属于萃取,使水层褪色而有机层呈橙红色。)
7、密度比水大的液体有机物有:
溴乙烷、溴苯、硝基苯、四氯化碳等。
8、密度比水小的液体有机物有:
烃、大多数酯、一氯烷烃。
9、能发生水解反应的物质有:
卤代烃、酯(油脂)、二糖、多糖、蛋白质(肽)、盐。
10、不溶于水的有机物有:
烃、卤代烃、酯、淀粉、纤维素
11、常温下为气体的有机物有:
分子中含有碳原子数小于或等于4的烃(新戊烷例外)、一氯甲烷、甲醛。
12、浓硫酸、加热条件下发生的反应有:
苯及苯的同系物的硝化、磺化、醇的脱水反应、酯化反应、纤维素的水解
13、能被氧化的物质有:
含有碳碳双键或碳碳叁键的不饱和化合物(KMnO4)、苯的同系物、醇、醛、酚。大多数有机物都可以燃烧,燃烧都是被氧气氧化。
14、显酸性的有机物有:
含有酚羟基和羧基的化合物。
15、能使蛋白质变性的物质有:
强酸、强碱、重金属盐、甲醛、苯酚、强氧化剂、浓的酒精、双氧水、碘酒、三氯乙酸等。
16、既能与酸又能与碱反应的有机物:
具有酸、碱双官能团的有机物(氨基酸、蛋白质等)
17、能与NaOH溶液发生反应的有机物:
(1)酚:
(2)羧酸:
(3)卤代烃(水溶液:水解;醇溶液:消去)
(4)酯:(水解,不加热反应慢,加热反应快)
(5)蛋白质(水解)
18、有明显颜色变化的有机反应:
1、苯酚与三氯化铁溶液反应呈紫色;
2、KMnO4酸性溶液的褪色;
3、溴水的褪色;
4、淀粉遇碘单质变蓝色。
5、蛋白质遇浓硝酸呈黄色(颜色反应)。
高二化学重点知识点精选大全
汽车的常用燃料——汽油
1.汽油的组成:分子中含有5—11个碳原子的烃的混合物
主要是己烷、庚烷、辛烷和壬烷
2.汽油的燃烧
思考:①汽油的主要成分是戊烷,试写出其燃烧的化学方程式?
②汽车产生积碳得原因是什么?
(1)完全燃烧——生成CO2和H2O
(2)不完全燃烧——有CO和碳单质生成
3.汽油的作用原理
汽油进入汽缸后,经电火花点燃迅速燃烧,产生的热气体做功推动活塞往复运动产生动力,使汽车前进。
4.汽油的来源:(1)石油的分馏(2)石油的催化裂化
思考:①汽油的抗爆震的程度以什么的大小来衡量?
②我们常说的汽油标号是什么?
③汽油中所含分子支链多的链烃、芳香烃、环烷烃的比例越高,它的抗爆震性就越好吗?
④常用抗爆震剂是什么?
5.汽油的标号与抗震性
①汽油的抗爆震的程度以辛烷值的大小来衡量。
②辛烷值也就是我们常说的汽油标号。
③汽油中所含分子支链多的链烃、芳香烃、环烷烃的比例越高,它的抗爆震性越好.
④常用抗爆震剂
四乙基铅[Pb(C2H5)4]
甲基叔丁基醚(MTBE).
6、汽车尾气及处理 措施
思考:进入汽缸的气体含有什么物质?进入的空气的多少可能会有哪些危害?
①若空气不足,则会产生CO有害气体;
②若空气过量则产生氮氧化合物NOx,如
N2+O2=2NO,2NO+O2=2NO2
其中CO、NOx,都是空气污染物。
汽车尾气中的有害气体主要有哪些?CO、氮氧化合物、SO2等
如何进行尾气处理?
在汽车的排气管上安装填充催化剂的催化装置,使有害气体CO、NOx转化为CO2和N2,
例如:2CO+2NO=2CO2+N2
措施缺陷:
①无法消除硫的氧化物对环境的污染,还加速了SO2向SO3的转化,使排出的废气酸度升高。
②只能减少,无法根本杜绝有害气体产生。
高二化学重要知识点大全相关 文章 :
★ 高二化学知识点总结大全
★ 高二化学复习:重要知识点总结
★ 高二化学重点知识点归纳
★ 高二化学基本知识点总结
★ 高中化学知识点总结大全
★ 高二化学知识点归纳
★ 人教版高二化学知识点大全
★ 高二化学重点知识点
★ 高中高二化学的重要知识点总结
★ 高二化学知识点总结归纳
2. 一些需要记忆的,有关共价化合物和离子化合物的知识点
化学键的本质是原子周围的电子在成键前后在空间中重新分配,而这种分配使得原子体系的能量降低。
一般情况下原子的最外层电子数是8个时最稳定(H 除外,是2个电子最稳定)
3. 化学键分共价键和离子键
离子键是由于形成离子键的两原子吸引电子的能力有极大的差异,使得电子完全偏向一个离子。如NaCl,Na原子外层电子呈2、8、1分布,Na原子核对最外层的一个电子吸引力很小,使得最外层电子很容易失去,形成2,8饱和状态的Na+。 Cl原子外层电子呈2,8,18,7,最外层电子未达到饱和,Cl原子核对最外层电子的吸引力很强,容易得到电子形成2,8,18,8,8饱和状态的Cl-。
共价键是由于形成共价键的两原子吸引电子的能力差不多,或相同。吸引电子能力完全相同的形成非极性共价键,如O2(氧气)两个氧原子吸引电子能力完全相同,形成非极性共价键,电子完全处于两个原子的中间(当然是非静止的)。
极性共价键就是由两个吸引电子能力差不多的原子之间形成的键,如CO2(二氧化碳)C原子和O原子吸引电子的能力差不多,但O原子吸引力更强一点,C,O原子形成的共价键偏向O原子,使得氧原子呈负价,但实际上O原子未完全获得C原子提供的两个电子。
4.其实也就是说,两个原子对最外层电子的吸引力一样(据我所知是同种元素)就是非极性共价键,吸引力相差不多时,为极性共价键,吸引力强一点就表现为负价,这两种情况下一般都是非金属之间;吸引力相差较多时,就成了离子键,一般是非金属与金属之间。
像你说的AlCl3,这是种特例,一般也只要知道这种就好了,知道有这种情况存在,其他这种金属与非金属之间存在共价键的,题目都会给提示,做为一个考点来考
3. 有关配位键的知识点
配位键,又称配位共价键,是一种特殊的共价键。当共价键中共用的电子对是由其中一原子独自供应时,就称配位键。配位键形成后,就与一般共价键无异。成键的两原子间共享的两个电子不是由两原子各提供一个,而是来自一个原子。例如氨和三氟化硼可以形成配位化合物:图片式中→表示配位键。在N和B之间的一对电子来自N原子上的孤对电子。 详细信息配位键是极性键,电子总是偏向一方,根据极性的强弱,或接近离子键,或接近极性共价键。在一些配合物中,除配体向受体提供电子形成普通配位键外,受体的电子也向配体转移形成反馈配键 。例如Ni(CO)4中CO中碳上的孤对电子向镍原子配位形成σ配位键 ,镍原子的d电子则反过来流向CO的空π*反键轨道,形成四电子三中心d-pπ键,就是反馈配键。非金属配位化合物中也可能存在这种键。配位键可用以下3种理论来解释:
①价键理论。认为配体上的电子进入中心原子的杂化轨道。例如钴(Ⅲ)的配合物。〔CoF6〕3-中F的孤对电子进入Co3+的sp3d2杂化轨道,这种配合物称为外轨配合物或高自旋配合物,有4个未成对电子,因而是顺磁性的。〔Co(NH3)-6〕3+中NH3的孤对电子进入Co3+的d2sp3杂化轨道 ,这种配合物称为内轨配合物或低自旋配合物,由于所有电子都已成对,因而没有顺磁性而为抗磁性。
②晶体场理论。将配体看作点电荷或偶极子,同时考虑配体产生的静电场对中心原子的原子轨道能级的影响[1]。例如,把中心原子引入位于正八面体6个顶角上的6个配体中,原来五重简并的d轨道就分裂成一组二重简并的eg(-y2、dz2)轨道和一组三重简并的t2g(dxy、dxz、dyz)轨道 。eg和t2g轨道的能量差 ,称为分离能Δ0,Δ0≡10Dq,Dq称为场强参量。在上述钴(Ⅲ)配合物中,6个F-产生的场不强,Δ0较小,d电子按照洪德规则排布,有四个未成对电子,因而〔CoF6〕3-为弱场配合物或高自旋配合物 。6个NH3产生的场较强,Δ0较大,d电子按照能量最低原则和泡利原理排布,没有未成对电子 ,因而〔Co(NH3)6〕3+为强场配合物或低自旋配合物。
③分子轨道理论 。假定电子是在分子轨道中运动,应用群论或根据成键的基本原则就可得出分子轨道能级图。再把电子从能量最低的分子轨道开始按照泡利原理逐一填入,即得分子的电子组态。分子轨道分为成键轨道和反键轨道。分子的键合程度取决于分子中成键电子数与反键电子数之差。
配位键的形成:(1) O原子可以提供一个空的2p轨道,接受外来配位电子对而成键,如在有机胺的氧化物R3NO中。
(2) O原子既可以提供一个空的2p轨道,接受外来配位电子对而成键,也可以同时提供二对孤电子对反馈给原配位原子的空轨道而形成反馈键,如在H3PO4中的反馈键称为d-p 键,P≡O键仍只具有双键的性质。
配位化合物是一类比较复杂的分子间化合物,其中含有一个复杂离子,它是一个稳定的结构单元,可以存在于晶体中,也可以存在于溶液中,可以是正离子,也可以是负离子。例如:
CuSO4+4NH3 [Cu(NH3)4]SO4 [Cu(NH3)4]2++SO42-
3NaF+AlF3 Na3[AlF6] 3Na++[AlF6]3-
配位共价键简称“配位键”是指两原子的成键电子全部由一个原子提供所形成的共价键[6],其中,提供所有成键电子的称“配位体(简称配体)”、提供空轨道接纳电子的称“受体”。常见的配体有:氨气(氮原子)、一氧化碳(碳原子)、氰根离子(碳原子)、水(氧原子)、氢氧根(氧原子);受体是多种多样的:有氢离子、以三氟化硼(硼原子)为代表的缺电子化合物、还有大量过渡金属元素。对配位化合物的研究已经发展为一门专门的学科,配位化学。
路易斯酸碱对
参见“路易斯酸”、“路易斯碱”
从上面的内容可以看出,“氢氧根”属于配体、而“氢离子”属于受体,这表明,氢离子与氢氧根发生的酸碱中和反应可以看成是氢离子与氢氧根形成配位键的过程。化学家路易斯从这一点出发,提出了“路易斯酸”与“路易斯碱”的概念,认为凡是在配位键成键过程中,能给出电子的,都称为“碱”;能接纳电子的,都称为“酸”。路易斯的酸碱理论把酸和碱的范围扩大了,路易斯酸碱对不仅包括所有的的阿伦尼乌斯酸碱对,还包括一些中性甚至是根本不溶于水的物质[7]。
其实,路易斯酸的本质是配位键中的“受体”;路易斯碱的本质是配位键中的“配体”,二者是等同的。(注:载自于网络)嘿嘿~希望这答案能帮助您。-0.0-