当前位置:首页 » 基础知识 » 初一数学代数知识要点
扩展阅读
没了妈妈的孩子怎么教育 2025-01-15 17:37:56
专插本教育机构怎么宣传 2025-01-15 16:50:17

初一数学代数知识要点

发布时间: 2024-09-11 06:10:08

1. 初一数学代数式知识点有哪些

初一数学代数式知识点有:

一、代数式基础

1.代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接所成的式子,叫做代数式。单独的一个数或一个字母也是代数式,代数式中不含“=”、“>”、“<”、“≠”等符号。

2.代数式的书写规范

(1)字母与数字或字母与字母相乘时,通常把乘号写成“· ”或省略不写。

(2)除法运算一般写成分数的形式。

(3)字母与数字相乘时,通常把数字写在字母的前面。

(4)字母前面的数字是分数的,如果既能写成带分数又能写成假分数,一般写成假分数的形式。

(5)如果字母前面的数字是1或-1,“1”通常省略不写,如1×ab写作ab,-1×ab写作-ab。

3.代数式的值

一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值,常用的方法有:(1)直接代入法;(2)整体代入法。

二、整式的概念

1.单项式

表示数与字母或字母与字母的积式子叫单项式,特别地,单独的一个数或一个字母也是单项式。单项式中“只含乘或乘方,不含加减”,单项式中的数字因数叫做这个单项式的系数。圆周率π是常数,单项式中出现π时应看作系数。

一个单项式中,所有字母的指数的和叫做这个单项式的次数,不包括系数的指数,单独一个非零的数是零次单项式。

2.多项式

几个单项式的和叫做多项式,多项式中的每个单项式叫做多项式的项,不含字母的项叫做常数项。多项式中次数最高项的次数,叫做这个多项式的次数。

为便于多项式的运算,可以用加法交换律将多项式中各项按照某个字母的指数的大小顺序重新排列。把一个多项式按某一个字母的指数从大到小的顺序排列起来称为降幂排列;把一个多项式按某一个字母的指数从小到大的顺序排列起来称为升幂排列。

3.整式

单项式与多项式统称为整式,所有的整式的分母中不含字母。

2. 初一数学代数式知识点有哪些

【质数与合数】一个大于1的整数,如果除了它本身和1以外不能被其它正整数所整除,那么这个数称为质数。一个大于1的数,如果除了它本身和1以外还能被其它正整数所整除,那么这个数知名人士为合数,1既不是质数又不是合数。

【相反数】只有符号不同的两个实数,其中一个叫做另一个的相反数。零的相反数是零。

【绝对值】一个正数的绝对值是它本身,一个负数绝对值是它的相反数,零的绝对值为零。从数轴上看,一个实数的绝对值是表示这个数的点离开原点距离。

【倒数】1除以一个非零实数的商叫这个实数的倒数。零没有倒数。

【完全平方数】如果一个有理数a的平方等于有理数b,那么这个有理数b叫做完全平方数。

【方根】如果一个数的n次方(n是大于1的整数)等于a,这个数叫做a的n次方根。

【开方】求一数的方根的运算叫做开方。【算术根】正数a的正的n次方根叫做a的n次算术根,零的算术根是零,负数没有算术根。【代数式】用有限次运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结所得的式子,叫做代数式。

3. 初一数学知识点总结有哪些

学习初一数学是一分耕耘一分收获,想学好数学只有勇敢的付出行动。下面是由我为大家整理银返或的“初一数学知识点总结有哪些”,仅供参考,欢迎大家阅读。

初一数学知识点总结

1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式;数字或字母的乘积叫单项式(单独的一个数字或字母也是单项式)。

2.系数:单项式中的数字因数叫做这个单项式的系数。所有字母的指数之和叫做这个单项式的次数。任何一个非零数的零次方等于1。

3.多项式:几个单项式的和叫多项式。

4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。

5.常数项:不含字母的项叫做常数项。

6.多项式的排列

(1)把一个多项式按某一个字母的指数从大到小的`顺序排列起来,叫做把多项式按这个字母降幂排列。

(2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

7.多项式的排列时注意

(1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。

(2)有两个或两个以上字母的多项式,世扒排列时,要注意:

a.先确认按照哪个字母的指数来排列。

b.确定按这个字母向里排列,还是向外排列。

(3)整式:

单项式和多项式统称为整式。

8.多项式的加法:

多项式的加法,是指多项式的同类项的系数相加(即合并同类项)。

9.同类项:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项。

10.合并同类项:多锋伍项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母与字母的指数不变。

11.掌握同类项的概念时注意

(1)判断几个单项式或项,是否是同类项,就要掌握两个条件:

①所含字母相同。

②相同字母的次数也相同。

(2)同类项与系数无关,与字母排列的顺序也无关。

(3)所有常数项都是同类项。

拓展阅读:初一数学复习方法

适当多做题,养成良好的解题习惯。

要想学好初一数学,做一定量的题目是必需的,刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些初一数学辅导书上的课外习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的初一数学解题规律,熟悉掌握各种题型的解题思路。对于一些易错题,可备有错题集,写出自己错误的解题思路和正确的解题过程,两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中会充分暴露,故在平时养成良好的解题习惯是非常重要的。

细心地挖掘概念和公式

很多初一同学对数学概念和公式不够重视,这类问题反映在三个方面:一是,对初一数学概念的理解只是停留在文字表面,对概念的特殊情况重视不够。二是,对初一数学概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。

总结相似的类型题目

当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了数学这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。

收集自己的典型错误和不会的题目

同学们最难面对的,就是自己的错误和困难。但这恰恰又是最需要解决的问题。同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。

4. 初一数学必考知识点总结归纳

初中数学的必考知识点大都在初一的课程里,所以初一的学生学好数学很重要。以下是我分享给大家的初一数学必考知识点,希望可以帮到你!
初一数学代数初步知识必考知识点
1. 代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.

2.列代数式的几个注意事项:

(1)数与字母相乘,或字母与字母相乘通常使用“· ” 乘,或省略不写;

(2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;

(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;

(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;

(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;

(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .

3.几个重要的代数式:(m、n表示整数)

(1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ;

(2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c;

(3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ;

(4)若b>0,则正数是:a2+b ,负数是: -a2-b ,非负数是: a2 ,非正数是:-a2 .
初一数学有理数必考知识点
1.有理数:

(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;

(2)有理数的分类: ① ②

(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

(4)自然数 0和正整数;a>0 a是正数;a<0 a是负数;

a≥0 a是正数或0 a是非负数;a≤ 0 a是负数或0 a是非正数.

2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.

3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

(3)相反数的和为0 a+b=0 a、b互为相反数.

4.绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(2) 绝对值可表示为:或 ;绝对值的问题经常分类讨论;

(3) ; ;

(4) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|, .

5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.

6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么的倒数是;倒数是本身的数是±1;若ab=1 a、b互为倒数;若ab=-1 a、b互为负倒数.

7. 有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

(3)一个数与0相加,仍得这个数.

8.有理数加法的运算律:

(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).

9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).

10 有理数乘法法则:

(1)两数相乘,同号为正,异号为负,并把绝对值相乘;

(2)任何数同零相乘都得零;

(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.

11 有理数乘法的运算律:

(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac .

12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.

13.有理数乘方的法则:

(1)正数的任何次幂都是正数;

(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .

14.乘方的定义:

(1)求相同因式积的运算,叫做乘方;

(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

(3)a2是重要的非负数,即a2≥0;若a2+|b|=0 a=0,b=0;

(4)据规律 底数的小数点移动一位,平方数的小数点移动二位.

15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.

16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.

17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.

18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.

19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.
初一数学整式的加减必考知识点
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.

2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.

3.多项式:几个单项式的和叫多项式.

4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.

5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.

整式分类为:

6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.

7.合并同类项法则:系数相加,字母与字母的指数不变.

8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.

9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.

10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.

猜你喜欢:

1. 初一数学上册知识点汇总整理

2. 7年级上册数学知识点归纳

3. 初一数学知识点整理

4. 人教版七年级数学复习知识点

5. 初一数学上册知识点汇总归纳

6. 初一数学上册知识点复习

5. 七年级上册数学重点知识点总结

为了方便大家更好的学习以及复习初一上册的数学知识,下面总结了七年级上册数学知识点,供大家参考。

代数式

1.用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。

2.用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。

整式

1.整式:单项式和多项式的统称叫整式。

2.单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。

3.系数;一个单项式中,数字因数叫做这个单项式的系数。

4.次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。

5.多项式:几个单项式的和叫做多项式。

6.项:组成多项式的每个单项式叫做多项式的项。

7.常数项:不含字母的项叫做常数项。

8.多项式的次数:多项式中,次数最高的项的次数叫做这个多项式的次数。

9.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。

10.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

1.角:角是由两条有公共端点的射线组成的几何对象。

2.角的度量单位:度、分、秒

3.顶点:角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点

4.角的比较:

(1)角可以看成是由一条射线绕着他的端点旋转而成的。

(2)平角和周角:一条射线绕着他的端点旋转,当始边和终边成一条直线时,所成的角叫平角。当它又和始边重合的时候,所成的角角周角。平角等于108度,周角等于360度,直角等于90度。

(3)平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

5.余角和补角:

(1)余角:如果两个角的和是90度,那么称这两个角“互为余角”,简称“互余”。

性质:等角的余角相等

(2)补角:如果两个角的和是180度,那么称这两个角“互为补角”,简称“互补”。

性质:等角的补角相等

平行线

1.在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。

2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

3.如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

4.判定两条直线平行的方法:

(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。

(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。

(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。

三角形

1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三角形的分类

3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

7.高线、中线、角平分线的意义和做法

8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

9.三角形内角和定理:三角形三个内角的和等于180°

推论1直角三角形的两个锐角互余;

推论2三角形的一个外角等于和它不相邻的两个内角和;

推论3三角形的一个外角大于任何一个和它不相邻的内角;

三角形的内角和是外角和的一半。

10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

6. 初一数学知识点总结

第一册

第一章 有理数
1.1正数和负数
以前学过的0以外的数前面加上负号“-”的书叫做负数。
以前学过的0以外的数叫做正数。
数0既不是正数也不是负数,0是正数与负数的分界。
在同一个问题中,分别用正数和负数表示的量具有相反的意义

1.2有理数
1.2.1有理数
正整数、0、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
1.2.2数轴
规定了原点、正方向、单位长度的直线叫做数轴。
数轴的作用:所有的有理数都可以用数轴上的点来表达。
注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。
⑵同一根数轴,单位长度不能改变。
一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。
1.2.3相反数
只有符号不同的两个数叫做互为相反数。
数轴上表示相反数的两个点关于原点对称。
在任意一个数前面添上“-”号,新的数就表示原数的相反数。
1.2.4绝对值
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。
在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。
⑵两个负数,绝对值大的反而小。

1.3有理数的加减法
1.3.1有理数的加法
有理数的加法法则:
⑴同号两数相加,取相同的符号,并把绝对值相加。
⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
⑶一个数同0相加,仍得这个数。
两个数相加,交换加数的位置,和不变。
加法交换律:a+b=b+a
三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。
加法结合律:(a+b)+c=a+(b+c)
1.3.2有理数的减法
有理数的减法可以转化为加法来进行。
有理数减法法则:
减去一个数,等于加这个数的相反数。
a-b=a+(-b)
1.4有理数的乘除法
1.4.1有理数的乘法
有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。
两个数相乘,交换因数的位置,积相等。
ab=ba
三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
(ab)c=a(bc)
一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
a(b+c)=ab+ac
数字与字母相乘的书写规范:
⑴数字与字母相乘,乘号要省略,或用“”
⑵数字与字母相乘,当系数是1或-1时,1要省略不写。
⑶带分数与字母相乘,带分数应当化成假分数。
用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,则式子2x+3x是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数。
一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即
ax+bx=(a+b)x
上式中x是字母因数,a与b分别是ax与bx这两项的系数。
去括号法则:
括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号。
括号前是“-”,把括号和括号前的“-”去掉,括号里各项都改变符号。
括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反。
1.4.2有理数的除法
有理数除法法则:
除以一个不等于0的数,等于乘这个数的倒数。
a÷b=a• (b≠0)
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算。乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

1.5有理数的乘方
1.5.1乘方
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。
负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何正整数次幂都是0。
有理数混合运算的运算顺序:
⑴先乘方,再乘除,最后加减;
⑵同级运算,从左到右进行;
⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行
1.5.2科学记数法
把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。
用科学记数法表示一个n位整数,其中10的指数是n-1。
1.5.3近似数和有效数字
接近实际数目,但与实际数目还有差别的数叫做近似数。
精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。
从一个数的左边第一个非0 数字起,到末位数字止,所有数字都是这个数的有效数字。
对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字。

第二章 一元一次方程
2.1从算式到方程
2.1.1一元一次方程
含有未知数的等式叫做方程。
只含有一个未知数(元),未知数的指数都是1(次),这样的方程叫做一元一次方程。
分析实际问题中的数量关系,利用其中的相等关系列出方程,是数学解决实际问题的一种方法。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
2.1.2等式的性质
等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等。
等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2.2从古老的代数书说起——一元一次方程的讨论⑴
把等式一边的某项变号后移到另一边,叫做移项。

2.3从“买布问题”说起——一元一次方程的讨论⑵
方程中有带括号的式子时,去括号的方法与有理数运算中括号类似。
解方程就是要求出其中的未知数(例如x),通过去分母、去括号、移项、合并、系数化为1等步骤,就可以使一元一次方程逐步向着x=a的形式转化,这个过程主要依据等式的性质和运算律等。
去分母:
⑴具体做法:方程两边都乘各分母的最小公倍数
⑵依据:等式性质2
⑶注意事项:①分子打上括号
②不含分母的项也要乘

2.4再探实际问题与一元一次方程

第三章 图形认识初步
3.1多姿多彩的图形
现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形。
3.1.1立体图形与平面图形
长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。
长方形、正方形、三角形、圆等都是平面图形。
许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。
3.1.2点、线、面、体
几何体也简称体。长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体。
包围着体的是面。面有平的面和曲的面两种。
面和面相交的地方形成线。
线和线相交的地方是点。
几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。

3.2直线、射线、线段
经过两点有一条直线,并且只有一条直线。
两点确定一条直线。
点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。
直线桑一点和它一旁的部分叫做射线。
两点的所有连线中,线段最短。简单说成:两点之间,线段最短。

3.3角的度量
角也是一种基本的几何图形。
度、分、秒是常用的角的度量单位。
把一个周角360等分,每一份就是一度的角,记作1;把1度的角60等分,每份叫做1分的角,记作1;把1分的角60等分,每份叫做1秒的角,记作1。
3.4角的比较与运算
3.4.1角的比较
从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。类似的,还有叫的三等分线。
3.4.2余角和补角
如果两个角的和等于90(直角),就说这两个角互为余角。
如果两个角的和等于180(平角),就说这两个角互为补角。
等角的补角相等。
等角的余角相等。
本章知识结构图

第四章 数据的收集与整理
收集、整理、描述和分析数据是数据处理的基本过程。
4.1喜爱哪种动物的同学最多——全面调查举例
用划记法记录数据,“正”字的每一划(笔画)代表一个数据。
考察全体对象的调查属于全面调查。
4.2调查中小学生的视力情况——抽样调查举例
抽样调查是从总体中抽取样本进行调查,根据样本来估计总体的一种调查。
统计调查是收集数据常用的方法,一般有全面调查和抽样调查两种,实际中常常采用抽样调查的方式。调查时,可用不同的方法获得数据。除问卷调查、访问调查等外,查阅文献资料和实验也是获得数据的有效方法。
利用表格整理数据,可以帮助我们找到数据的分布规律。利用统计图表示经过整理的数据,能更直观地反映数据规律。
4.3课题学习 调查“你怎样处理废电池?”
调查活动主要包括以下五项步骤:
一、 设计调查问卷
⑴设计调查问卷的步骤
①确定调查目的;
②选择调查对象;
③设计调查问题
⑵设计调查问卷时要注意:
①提问不能涉及提问者的个人观点;
②不要提问人们不愿意回答的问题;
③提供的选择答案要尽可能全面;
④问题应简明;
⑤问卷应简短。
二、实施调查
将调查问卷复制足够的份数,发给被调查对象。
实施调查时要注意:
⑴向被调查者讲明哪些人是被调查的对象,以及他为什么成为被调查者;
⑵告诉被调查者你收集数据的目的。
三、处理数据
根据收回的调查问卷,整理、描述和分析收集到的数据。
四、交流
根据调查结果,讨论你们小组有哪些发现和建议?
五、写一份简单的调查报告

第二册

第五章 相交线与平行线
5.1相交线
5.1.1相交线
有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。
两条直线相交有4对邻补角。
有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。
两条直线相交,有2对对顶角。
对顶角相等。
5.1.2
两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
注意:⑴垂线是一条直线。
⑵具有垂直关系的两条直线所成的4个角都是90。
⑶垂直是相交的特殊情况。
⑷垂直的记法:a⊥b,AB⊥CD。
画已知直线的垂线有无数条。
过一点有且只有一条直线与已知直线垂直。
连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

5.2平行线
5.2.1平行线
在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。
在同一平面内两条直线的关系只有两种:相交或平行。
平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
5.2.2直线平行的条件
两条直线被第三条直线所截,在两条被截线的同一方,截线的同一旁,这样的两个角叫做同位角。
两条直线被第三条直线所截,在两条被截线之间,截线的两侧,这样的两个角叫做内错角。
两条直线被第三条直线所截,在两条被截线之间,截线的同一旁,这样的两个角叫做同旁内角。
判定两条直线平行的方法:
方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。
方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。
方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。
5.3平行线的性质
平行线具有性质:
性质1 两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。
性质2 两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。
性质3 两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。
同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。
判断一件事情的语句叫做命题。
5.4平移
⑴把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。
图形的这种移动,叫做平移变换,简称平移。

第六章 平面直角坐标系
6.1平面直角坐标系
6.1.1有序数对
有顺序的两个数a与b组成的数对,叫做有序数对。
6.1.2平面直角坐标系
平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴取2向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。
平面上的任意一点都可以用一个有序数对来表示。
建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。
6.2坐标方法的简单应用
6.2.1用坐标表示地理位置
利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:
⑴建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;
⑵根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;
⑶在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
6.2.2用坐标表示平移
在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b))。
在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。

第七章 三角形
7.1与三角形有关的线段
7.1.1三角形的边
由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。相邻两边组成的角,叫做三角形的内角,简称三角形的角。
顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC”。
三角形两边的和大于第三边。
7.1.2三角形的高、中线和角平分线
7.1.3三角形的稳定性
三角形具有稳定性。
7.2与三角形有关的角
7.2.1三角形的内角
三角形的内角和等于180。
7.2.2三角形的外角
三角形的一边与另一边的延长线组成的角,叫做三角形的外角。
三角形的一个外角等于与它不相邻的两个内角的和。
三角形的一个外角大于与它不相邻的任何一个内角。
7.3多边形及其内角和
7.3.1多边形
在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
n边形的对角线公式:
各个角都相等,各条边都相等的多边形叫做正多边形。
7.3.2多边形的内角和
n边形的内角和公式:180(n-2)
多边形的外角和等于360。
7.4课题学习 镶嵌

第八章 二元一次方程组
8.1二元一次方程组
含有两个未知数,并且未知数的指数都是1的方程叫做二元一次方程
把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。
使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解
二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
8.2消元
由二元一次方程组中的一个方程,将一个未知数用含有另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。
两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。这种方法叫做加减消元法,简称加减法。
8.3再探实际问题与二元一次方程组

第九章 不等式与不等式组
9.1不等式
9.1.1不等式及其解集
用“<”或“>”号表示大小关系的式子叫做不等式。
使不等式成立的未知数的值叫做不等式的解。
能使不等式成立的未知数的取值范围,叫做不等式解的集合,简称解集。
含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。
9.1.2不等式的性质
不等式有以下性质:
不等式的性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变。
不等式的性质2 不等式两边乘(或除以)同一个正数,不等号的方向不变。
不等式的性质3 不等式两边乘(或除以)同一个负数,不等号的方向改变。
9.2实际问题与一元一次不等式
解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为x<a(或x>a)的形式。
9.3一元一次不等式组
把两个不等式合起来,就组成了一个一元一次不等式组。
几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集。解不等式就是求它的解集。
对于具有多种不等关系的问题,可通过不等式组解决。解一元一次不等式组时。一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集。
9.4课题学习 利用不等关系分析比赛