当前位置:首页 » 基础知识 » 每天学点数学的知识
扩展阅读
什么是道德经十大经典 2024-11-25 14:55:26
同学集会祝词内容如何 2024-11-25 14:51:15

每天学点数学的知识

发布时间: 2024-09-07 20:27:07

A. 四年级数学重要的知识点

失败乃成功之母,重复是学习之母。学习,需要不断的重复重复,重复学过的知识,加深印象,其实任何科目的 学习 方法 都是不断重复学习。下面是我给大家整理的 四年级数学 知识点,希望对大家有所帮助。

四年级数学知识

四则运算

1、加法、减法、乘法和除法统称四则运算。

2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。

4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

5、先乘除,后加减,有括号,提前算

关于“0”的运算

1、“0”不能做除数;字母表示:a÷0错误

2、一个数加上0还得原数;字母表示:a+0=a

3、一个数减去0还得原数;字母表示:a-0=a

4、被减数等于减数,差是0;字母表示:a-a=0

5、一个数和0相乘,仍得0;字母表示:a×0=0

6、0除以任何非0的数,还得0;字母表示:0÷a(a≠0)=0

7、0÷0得不到固定的商;5÷0得不到商.(无意义)

四年级上册数学《近似数》知识点

近似数知识点

1、 精确数与近似数的特点。

精确数一般都以“一”为单位,近似数都是省略尾数,以“万”或“亿”为单位。

2、 用四舍五入法保留近似数的方法。

根据题中要求,看到所要保留位数的下一位,如果这一位满5,则向前一位进一;如果不够5则舍去。而不管尾数的后几位是多少。如精确到万位,只看千位,精确到亿位,只看到千万位。最后一定要写出单位名称。

典型练习题

一、填空

1、一个数是由7个千、3个百和5个十组成的,这个数是( )。

2、一个数从右边起,百位是第( )位,第五位是( )位。

3、3465的位是( )位,是( )位数。“6”在( )位上,表示( )。“3”在( )位上,表示( )。

4、100里面有( )十,一千里面有( )百,10个一是( )。

5、的四位数是( ),的三位数是( ),它们的和( ),差是( )。由( )个千、( )个百、( )个一组成3207。

6、万以内数的读法是从( )位起,按照数位顺序读;( )位上是几就读( )千;百位上是几就读( )……;中间有一个或两个0,只读( )个零;末尾不管有几个零都( )。

二、写出下面各数的近似数。

698的近似数是: 2956的近似数是:

3120的近似数是: 2802的近似数是:

1004的近似数是: 5023的近似数是:

四年级数学知识点

1、三位数乘两位数的方法:

先用一个因数的个位与另一个因数的每一位依次相乘,再用这个因数的十位与另一个因数的每一位依次相乘,乘到哪一位,积的个位就与哪一位对齐,哪一位满十就向前一位进“1”,再把两次相乘的积加起来。末尾有0时,把两个因数0前面的数对齐,并将它们相乘,再在积的后面添上没有参加运算的几个0。中间有0时,这个0要参加运算。

2、因数和积的变化规律:一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数。

3、因数是两、三位数的乘法的估算方法:先把两个因数的位后面的尾数省略,求出近似数,再把这两个近似数相乘。

【补充知识点】

1、估算方法:用四舍五入法进行估算。估算是往大估还是往小估?也就是估算的方法问题;

2、利用竖式计算三位数乘两位数。注意,第二步的乘积末尾写在十位上。

3、因数中间或末尾有0的三位数乘两位数。

中间有0也要和因数分别相乘;末尾有0的,要将两个因数0前面数的末位对齐,用0前面的数相乘,乘完之后在落0,有几个0落几个0。

实际生活中的估算:

生活中的实际问题(估算是往大估还是往小估?)

a、350名同学要外出参观,有7辆车,每辆车有56个座位,估一估要几辆车?

b、桥在重量3吨,货物共6箱,每箱重285千克,车重986千克,这辆车能过去吗?

【知识点】

估算的方法及注意事项:要将因数估成整十、整百或整千的数。估算时注意,要符合实际,接近精确值。

四年级 数学学习方法 技巧

把握学习中的小窍门。

1、抓住课堂。理科学习重在平日功夫,不适于突击复习。平日学习最重要的是课堂知识,听讲要聚精会神,思维紧跟老师。同时要说明一点,许多同学容易忽略老师所讲的数学思想、数学方法,而注重题目的解答,其实诸如 “数形结合”等思想方法远远重要于某道题目的解答。

2、高质量完成作业 所谓高质量是指高正确率和高速度。写作业时,有时重复复习同一类型的题目,这时就要有意识的考查自己的解题速度和准确率,并且在每做完一次后能够对这类题目有更深层的思考,诸如它考查的内容,运用的解题思路和技巧等。另外对于老师布置的思考题,也要认真完成。如果不会,决不能轻易放弃,要发扬钉子精神,一有空就静心思考,灵感总是突然来到你身边的。最重要的是,这是一次挑战自我的机会。成功可以带来自信,这对学习数学很重要;即使你失败了,这个问题也会给你留下深刻印象。

3、勤思考,多提问 首先对于老师给出的规律、定理,不仅要知“其然”还要“知其所以然”,做到刨根问底,这便是理解的最佳途径。其次,学习任何学科都应该抱着怀疑的态度,尤其理科。对于老师的讲解,有疑问应及时提出,与老师讨论。总之,思考、提问是肃清学习隐患的最佳道路。

4、 总结 比较,理清思绪。

(1)知识点的总结比较。每学完一章都应将本章内容做一个框架图或在脑中过一遍,整顿出它们的关系。对于相似和混淆的知识点需要进行分类和比较,有时可以用联想法加以区分。

(2)题目的总结比较。同学可以建立自己的题库。如设立两本题集。一本是错题,一本是精题。对于平时的作业,考试出现错误的问题,有选择地写下,并且用红笔在旁边注释注意项目,考试前只需看红笔写内容就可以了。还有一些极其巧妙或者高难度的题记下来,也用红笔批注此题所有的方法和思想。长此以往,自己就能总结出一些类型的解题规律,也用红笔记下这些规律。最后,它们将成为你宝贵的财富,这将有助于你的数学学习。

5、认真地做课外练习。课余时间对我们的学生来说是非常宝贵的,所以我们应该精确和精确地做课外练习。只要我们每天认真地做三两页,随着时间的推移,你就可以在数学学习中实现“建沙塔”,并取得丰硕的成果。学习方法固然重要,但刻苦钻研、精益求精的学习精神更为重要。只要你坚持努力,就一定可以学好数学。相信自己,数学会让你的智慧更加耀眼!

四年级数学重要的知识点相关 文章 :

★ 四年级数学重要知识点

★ 四年级数学上册知识点

★ 做小学四年级数学上册知识点总结

★ 小学四年级数学上册重要知识点

★ 四年级数学知识点整理

★ 四年级数学的知识点归纳

★ 四年级数学知识点总结

★ 四年级数学知识点归纳梳理

★ 四年级数学学习重点知识

★ 部编版四年级数学知识点

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

B. 人教版初二数学知识点总结

知识是一座宝库,而实践就是开启宝库的钥匙。学习任何学科,不仅需要大量的记忆,还需要大量的练习,从而达到巩固知识的效果。下面是我给大家整理的一些初二数学的知识点,希望对大家有所帮助。

初二上学期数学知识点归纳

数据的分析

1、平均数

①一般地,对于n个数x1x2...xn,我们把(x1+x2+???+xn)叫做这n个数的算数平均数,简称平均数记为。

②在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数。

2、中位数与众数

①中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

②一组数据中出现次数最多的那个数据叫做这组数据的众数。

③平均数、中位数和众数都是描述数据集中趋势的统计量。

④计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。

⑤中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息。

⑥各个数据重复次数大致相等时,众数往往没有特别意义。

3、从统计图分析数据的集中趋势

4、数据的离散程度

①实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量。

②数学上,数据的离散程度还可以用方差或标准差刻画。

③方差是各个数据与平均数差的平方的平均数。

④其中是x1,x2.....xn平均数,s2是方差,而标准差就是方差的算术平方根。

⑤一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。

八年级 数学知识点归纳

分组分解法

我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.

如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的 方法 分别分解因式.

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

=(m+n)×(a+b).

学好数学的关键就在于要适时适量地进行 总结 归类,接下来我就为大家整理了这篇人教版八年级数学全等三角形知识点讲解,希望可以对大家有所帮助。

全等三角形的性质:全等三角形对应边相等、对应角相等。

全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL)。

角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等

角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的'边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).

人教版八年级数学全等三角形知识点讲解就为大家介绍到这里了,希望大家都能养成善于总结的好习惯。

这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.

初二数学 复习方法 总结

一、初中数学中考复习方法:

数学家华罗庚曾经说过:“聪明在于学习,天才在于勤奋”,勤能补拙是良训,一分辛劳一分才。

1.复习一定要做到勤

勤动手:做题不要看,一定要算,不会的知识点写下来,记在 笔记本 上。

勤动口:不会的有疑问的一定要问老师,时间不等人,在没有时间可以浪费。而且学会与同学讨论问题。

勤动耳:老师讲的复习课一定要听,不要认为这道题会,老师讲就可以溜号,须知温故可知新。

勤动脑:善于思考问题,积极思考问题——吸收、储存信息

勤动腿:不要参加过于激烈的运动,防止受伤影响学习,但要运动,每天慢跑30分钟即可,报至状态。

2.初中数学复习还要强调两个要点:

一要:动手,二要:动脑。

动脑就是要学会观察分析问题,学会思考,不要拿到题就做,找到已知和未知之间的联系,多问几个为什么,多体会考的哪个知识点。

动手就是多实践,多做题,要拳不离手曲不离口。同学就是题不离手,这两个要点大家要记住并且要坚持住。动脑又动手,才能地发挥大脑的效率。这也是老师的 经验 。

3.用心做到三个一遍

上课要认真听一遍:听老师讲的方法知识等。

动手算一遍:按照老师的思路算一遍看看是否融会贯通。

认真想一遍:想想为什么这么做题,考的哪个知识。

4.重视简单的学习过程

读好一本教科书它是教学、中考的主要依据;

记好一本笔记方法知识是教师多年经验的结晶,每人自己准备一本错题集;

做好做净一本习题集它是使知识拓宽;

这些看似平凡简单,但是确实老师亲身的体验,用心观察我们的中考、高考状元,其实他们每天重复的不就是老师刚刚说的吗?

没有宝典神功,只有普普通通。最最难能可贵的是坚持。

资源可以的话,找几套往届的期末考试题,是自己县区的,其他县区也可以(考点差不多一样的),在规定时间内,摸摸底,熟悉每个章节考的的题型,练练自己的做题效率。很多同学第一次做练习出错,如果不及时纠正、 反思 ,而仅仅是把答案改正,那么他没有真正地弄明白自己到底错在什么地方,也就没弄明白如何应用这部分知识,最终会导致在今后遇到类似的问题一错再错。


人教版初二数学知识点总结相关 文章 :

★ 初二数学知识点归纳上册人教版

★ 人教版八年级数学上册知识点总结

★ 初二数学人教版知识点总结归纳

★ 初二数学上册知识点总结

★ 八年级数学知识点整理归纳

★ 人教版初二数学上知识点总结

★ 初二数学上册知识点总结人教版

★ 人教版初二数学上学期知识点总结

★ 初二数学知识点人教版

★ 人教版初二上数学知识点

C. 有没有完整的高中数学知识点及公式总结

高中数学知识点总结
1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

中元素各表示什么?

注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。

3. 注意下列性质:

(3)德摩根定律:

4. 你会用补集思想解决问题吗?(排除法、间接法)

的取值范围。

6. 命题的四种形式及其相互关系是什么?
(互为逆否关系的命题是等价命题。)
原命题与逆否命题同真、同假;逆命题与否命题同真同假。
7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?
(一对一,多对一,允许B中有元素无原象。)
8. 函数的三要素是什么?如何比较两个函数是否相同?
(定义域、对应法则、值域)
9. 求函数的定义域有哪些常见类型?

10. 如何求复合函数的定义域?

义域是_____________。

11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?

12. 反函数存在的条件是什么?
(一一对应函数)
求反函数的步骤掌握了吗?
(①反解x;②互换x、y;③注明定义域)

13. 反函数的性质有哪些?
①互为反函数的图象关于直线y=x对称;
②保存了原来函数的单调性、奇函数性;

14. 如何用定义证明函数的单调性?
(取值、作差、判正负)
如何判断复合函数的单调性?

∴……)
15. 如何利用导数判断函数的单调性?

值是( )
A. 0 B. 1 C. 2 D. 3

∴a的最大值为3)
16. 函数f(x)具有奇偶性的必要(非充分)条件是什么?
(f(x)定义域关于原点对称)

注意如下结论:
(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。

17. 你熟悉周期函数的定义吗?

函数,T是一个周期。)

如:

18. 你掌握常用的图象变换了吗?

注意如下“翻折”变换:

19. 你熟练掌握常用函数的图象和性质了吗?

的双曲线。

应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程

②求闭区间[m,n]上的最值。
③求区间定(动),对称轴动(定)的最值问题。
④一元二次方程根的分布问题。

由图象记性质! (注意底数的限定!)

利用它的单调性求最值与利用均值不等式求最值的区别是什么?

20. 你在基本运算上常出现错误吗?

21. 如何解抽象函数问题?
(赋值法、结构变换法)

22. 掌握求函数值域的常用方法了吗?
(二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。)
如求下列函数的最值:

23. 你记得弧度的定义吗?能写出圆心角为α,半径为R的弧长公式和扇形面积公式吗?

24. 熟记三角函数的定义,单位圆中三角函数线的定义

25. 你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗?

(x,y)作图象。

27. 在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围。

28. 在解含有正、余弦函数的问题时,你注意(到)运用函数的有界性了吗?

29. 熟练掌握三角函数图象变换了吗?
(平移变换、伸缩变换)
平移公式:

图象?

30. 熟练掌握同角三角函数关系和诱导公式了吗?

“奇”、“偶”指k取奇、偶数。

A. 正值或负值 B. 负值 C. 非负值 D. 正值

31. 熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗?
理解公式之间的联系:

应用以上公式对三角函数式化简。(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。)
具体方法:

(2)名的变换:化弦或化切
(3)次数的变换:升、降幂公式
(4)形的变换:统一函数形式,注意运用代数运算。

32. 正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形?

(应用:已知两边一夹角求第三边;已知三边求角。)

33. 用反三角函数表示角时要注意角的范围。

34. 不等式的性质有哪些?

答案:C
35. 利用均值不等式:

值?(一正、二定、三相等)
注意如下结论:

36. 不等式证明的基本方法都掌握了吗?
(比较法、分析法、综合法、数学归纳法等)
并注意简单放缩法的应用。

(移项通分,分子分母因式分解,x的系数变为1,穿轴法解得结果。)
38. 用“穿轴法”解高次不等式——“奇穿,偶切”,从最大根的右上方开始

39. 解含有参数的不等式要注意对字母参数的讨论

40. 对含有两个绝对值的不等式如何去解?
(找零点,分段讨论,去掉绝对值符号,最后取各段的并集。)

证明:

(按不等号方向放缩)
42. 不等式恒成立问题,常用的处理方式是什么?(可转化为最值问题,或“△”问题)

43. 等差数列的定义与性质

0的二次函数)

项,即:

44. 等比数列的定义与性质

46. 你熟悉求数列通项公式的常用方法吗?
例如:(1)求差(商)法

解:

[练习]

(2)叠乘法

解:

(3)等差型递推公式

[练习]

(4)等比型递推公式

[练习]

(5)倒数法

47. 你熟悉求数列前n项和的常用方法吗?
例如:(1)裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。

解:

[练习]

(2)错位相减法:

(3)倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。

[练习]

48. 你知道储蓄、贷款问题吗?
△零存整取储蓄(单利)本利和计算模型:
若每期存入本金p元,每期利率为r,n期后,本利和为:

△若按复利,如贷款问题——按揭贷款的每期还款计算模型(按揭贷款——分期等额归还本息的借款种类)
若贷款(向银行借款)p元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,第n次还清。如果每期利率为r(按复利),那么每期应还x元,满足

p——贷款数,r——利率,n——还款期数
49. 解排列、组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。

(2)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一

(3)组合:从n个不同元素中任取m(m≤n)个元素并组成一组,叫做从n个不

50. 解排列与组合问题的规律是:
相邻问题捆绑法;相间隔问题插空法;定位问题优先法;多元问题分类法;至多至少问题间接法;相同元素分组可采用隔板法,数量不大时可以逐一排出结果。
如:学号为1,2,3,4的四名学生的考试成绩

则这四位同学考试成绩的所有可能情况是( )
A. 24 B. 15 C. 12 D. 10
解析:可分成两类:

(2)中间两个分数相等

相同两数分别取90,91,92,对应的排列可以数出来,分别有3,4,3种,∴有10种。
∴共有5+10=15(种)情况
51. 二项式定理

性质:

(3)最值:n为偶数时,n+1为奇数,中间一项的二项式系数最大且为第

表示)

52. 你对随机事件之间的关系熟悉吗?

的和(并)。

(5)互斥事件(互不相容事件):“A与B不能同时发生”叫做A、B互斥。

(6)对立事件(互逆事件):

(7)独立事件:A发生与否对B发生的概率没有影响,这样的两个事件叫做相互独立事件。

53. 对某一事件概率的求法:
分清所求的是:(1)等可能事件的概率(常采用排列组合的方法,即

(5)如果在一次试验中A发生的概率是p,那么在n次独立重复试验中A恰好发生

如:设10件产品中有4件次品,6件正品,求下列事件的概率。
(1)从中任取2件都是次品;

(2)从中任取5件恰有2件次品;

(3)从中有放回地任取3件至少有2件次品;
解析:有放回地抽取3次(每次抽1件),∴n=103
而至少有2件次品为“恰有2次品”和“三件都是次品”

(4)从中依次取5件恰有2件次品。
解析:∵一件一件抽取(有顺序)

分清(1)、(2)是组合问题,(3)是可重复排列问题,(4)是无重复排列问题。
54. 抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特征是从总体中逐个抽取;系统抽样,常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性。
55. 对总体分布的估计——用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估计总体的期望和方差。
要熟悉样本频率直方图的作法:

(2)决定组距和组数;
(3)决定分点;
(4)列频率分布表;
(5)画频率直方图。

如:从10名女生与5名男生中选6名学生参加比赛,如果按性别分层随机抽样,则组成此参赛队的概率为____________。

56. 你对向量的有关概念清楚吗?
(1)向量——既有大小又有方向的量。

在此规定下向量可以在平面(或空间)平行移动而不改变。
(6)并线向量(平行向量)——方向相同或相反的向量。
规定零向量与任意向量平行。

(7)向量的加、减法如图:

(8)平面向量基本定理(向量的分解定理)

的一组基底。
(9)向量的坐标表示

表示。

57. 平面向量的数量积

数量积的几何意义:

(2)数量积的运算法则

[练习]

答案:

答案:2

答案:
58. 线段的定比分点

※. 你能分清三角形的重心、垂心、外心、内心及其性质吗?
59. 立体几何中平行、垂直关系证明的思路清楚吗?
平行垂直的证明主要利用线面关系的转化:

线面平行的判定:

线面平行的性质:

三垂线定理(及逆定理):

线面垂直:

面面垂直:

60. 三类角的定义及求法
(1)异面直线所成的角θ,0°<θ≤90°

(2)直线与平面所成的角θ,0°≤θ≤90°

(三垂线定理法:A∈α作或证AB⊥β于B,作BO⊥棱于O,连AO,则AO⊥棱l,∴∠AOB为所求。)
三类角的求法:
①找出或作出有关的角。
②证明其符合定义,并指出所求作的角。
③计算大小(解直角三角形,或用余弦定理)。
[练习]
(1)如图,OA为α的斜线OB为其在α内射影,OC为α内过O点任一直线。

(2)如图,正四棱柱ABCD—A1B1C1D1中对角线BD1=8,BD1与侧面B1BCC1所成的为30°。
①求BD1和底面ABCD所成的角;
②求异面直线BD1和AD所成的角;
③求二面角C1—BD1—B1的大小。

(3)如图ABCD为菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB与面PCD所成的锐二面角的大小。

(∵AB∥DC,P为面PAB与面PCD的公共点,作PF∥AB,则PF为面PCD与面PAB的交线……)
61. 空间有几种距离?如何求距离?
点与点,点与线,点与面,线与线,线与面,面与面间距离。
将空间距离转化为两点的距离,构造三角形,解三角形求线段的长(如:三垂线定理法,或者用等积转化法)。
如:正方形ABCD—A1B1C1D1中,棱长为a,则:
(1)点C到面AB1C1的距离为___________;
(2)点B到面ACB1的距离为____________;
(3)直线A1D1到面AB1C1的距离为____________;
(4)面AB1C与面A1DC1的距离为____________;
(5)点B到直线A1C1的距离为_____________。

62. 你是否准确理解正棱柱、正棱锥的定义并掌握它们的性质?
正棱柱——底面为正多边形的直棱柱
正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。

正棱锥的计算集中在四个直角三角形中:

它们各包含哪些元素?

63. 球有哪些性质?

(2)球面上两点的距离是经过这两点的大圆的劣弧长。为此,要找球心角!
(3)如图,θ为纬度角,它是线面成角;α为经度角,它是面面成角。

(5)球内接长方体的对角线是球的直径。正四面体的外接球半径R与内切球半径r之比为R:r=3:1。

积为( )

答案:A
64. 熟记下列公式了吗?

(2)直线方程:

65. 如何判断两直线平行、垂直?

66. 怎样判断直线l与圆C的位置关系?
圆心到直线的距离与圆的半径比较。
直线与圆相交时,注意利用圆的“垂径定理”。
67. 怎样判断直线与圆锥曲线的位置?

68. 分清圆锥曲线的定义

70. 在圆锥曲线与直线联立求解时,消元后得到的方程,要注意其二次项系数是否为零?△≥0的限制。(求交点,弦长,中点,斜率,对称存在性问题都在△≥0下进行。)

71. 会用定义求圆锥曲线的焦半径吗?
如:

通径是抛物线的所有焦点弦中最短者;以焦点弦为直径的圆与准线相切。
72. 有关中点弦问题可考虑用“代点法”。

答案:
73. 如何求解“对称”问题?
(1)证明曲线C:F(x,y)=0关于点M(a,b)成中心对称,设A(x,y)为曲线C上任意一点,设A'(x',y')为A关于点M的对称点。

75. 求轨迹方程的常用方法有哪些?注意讨论范围。
(直接法、定义法、转移法、参数法)
76. 对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。

D. 初三数学知识点归纳上册

许多同学想要了解初三数学的知识点,那么初三数学上册的知识点有哪些呢?下面是由我为大家整理的“初三数学知识点归纳上册”,仅供参考,欢迎大家阅读。

初三数学知识点归纳上册

反比例函数

1.形如y=k/x(k≠0)或y=kx^-1的函数叫做反比例函数,k叫做反比例系数。它的图像是双曲线。^-1表示负一次。

2.在函数y=k/x(k≠0),当k>0时,表达式中的想x、y符号相同,点(x,y)在第一、三象限,所以函数y=k/x(k≠0)的图像位于第一、三象限;当k<0时,表达式中的想x、y符号相反,点(x,y)在第二、四象限,所以函数y=k/x(k≠0)的图像位于第二、四象限。

3.在y=k/x(k≠0)中,当k>0时,在第一象限内,y随着x的增大而减小;若y的值随着x的值的增大而增大,则k的取值范围是k<0。

4.设P(a,b)是反比例函数y=k/x(k≠0)上任意一点,则ab的值等于k。经过反比例函数上的任意一点P,分别向x轴、y轴作垂线段,则所成的矩形面积为k;过P点向x轴或y轴作垂线段,连接OP,则所成的三角形面积为k/2。

二次函数

1.形如y=ax^2+bx+c(a≠0,a、b、c为常数)。的函数叫做二次函数,它的图像是一条抛物线。

2.二次函数y=ax^2+bx+c(a≠0)的顶点坐标为(-b/2a,4ac-b^2/4a),对称轴是直线x=-b/2a。

3.对于二次函数y=ax^2+bx+c(a≠0),当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。图像与y轴的交点的坐标是(0,c)。

4.一元一次方程ax^2+bx+c=0(a≠0)的解,可以看成函数y=ax^2+bx+c(a≠0)的图像与x轴交点的横坐标。

当b^2-4ac>0时,函数图像与x轴有两个交点。

当b^2-4ac=0时,函数图像与x轴有一个交点。

当b^2-4ac<0时,函数图像与x轴没有交点。

5.当a>0,且x=-b/2a时,函数y=ax^2+bx+c(a≠0)取得最小值,这个值等于4ac-b^2/4a;当a<0,且x=-b/2a时,函数y=ax^2+bx+c(a≠0)取得值,这个值等于4ac-b^2/4a。

6.抛物线y=ax^2+c(a≠0)的对称轴是y轴。

7.对于二次函数y=ax^2+bx+c(a≠0),若a,b同号,对称轴在y轴右侧a,b异号,对称轴在y轴左侧。

8.抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大。若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小。

9.对于抛物线y=a(x-m)^2+k,左右平移时,只与m有关,往左是加,往右是减;上下平移时,只与k有关,往上是加,往下是减。

相似三角形

1.如果两个数的比值与另两个数的比值相等,就说这四个数成比例。

2.如果a/b=c/d,那么ad=bc;如果ad=bc,且bd≠0,那么a/b=c/d;如果a/b=c/d,那么(a+b)/b=(c+d)/d。谁都不能为0。为0无意义。

3.一般的,如果三个数a,b,c满足比例式a:b=b:c,则b就叫做a,c的比例中项。(如果是线段的话,只能取正的,如果是数,正负都可以)。

4.黄金分割

把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是(√5-1)/2,取其前三位数字的近似值是0.618。

5.证明三角形相似的方法:

(1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;

(2)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;

(3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;

(4)如果两个三角形的三组对应边的比相等,那么这两个三角形相似;

(5)对应角相等,对应边成比例的两个三角形叫做相似。

一元二次方程

1. 一元二次方程的一般形式: a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c; 其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式。

2. 一元二次方程的解法:一元二次方程的四种解法要求灵活运用, 其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少。

3. 一元二次方程根的判别式: 当ax2+bx+c=0 (a≠0)时,Δ=b2-4ac 叫一元二次方程根的判别式.请注意以下等价命题:

Δ>0 <=> 有两个不等的实根; Δ=0 <=> 有两个相等的实根;Δ<0 <=> 无实根;

4.平均增长率问题--------应用题的类型题之一 (设增长率为x):

(1) 第一年为 a , 第二年为a(1+x) , 第三年为a(1+x)2。

(2)常利用以下相等关系列方程: 第三年=第三年 或 第一年+第二年+第三年=总和。

拓展阅读:初三数学学习方法

上课。课前准备好上课所需的课本、笔记本和其他文具,并抓紧时间简要回忆和复习上节课所学的内容。要带着强烈的求知欲上课,希望在课上能向老师学到新知识,解决新问题。上课时要集中精力听讲,上课铃一响,就应立即进入积极的学习状态,有意识地排除分散注意力的各种因素。听课要抬头,眼睛盯着老师的一举一动,专心致志聆听老师的每一句话。要紧紧抓住老师的思路,注意老师叙述问题的逻辑性,问题是怎样提出来的,以及分析问题和解决问题的方法步骤。上课是理解和掌握基本知识、基本技能和基本方法的关键环节。“学然后知不足”,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可略;什么地方该精雕细刻,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。

上课听讲很重要,45分钟要实效:你不要以为我在开玩笑,上课听讲谁还不会啊!其实并不然,我说的听讲则是完完全全、认认真真、仔仔细细……来听讲。对于课堂上老师所讲的每一个公式,每一条定理都要深究其源,这样即便在考试当中忘了公式,也可以很好的解决问题,不至于内心的慌乱和紧张。另外要充分利用好课堂这短短的45分钟的时间,尽量在课上将所学习的知识吸收,这样回到家后才能进一步展开接下来的学习,节约时间。

全面全力夯实基础:切实掌握选择填空题的解题规律,在历次测验中确保基础部分得满分,也就是把该得的分数确实满分拿到手。在一轮复习中,所有同学都要集中全力闯过选择填空题的基础关,否则在高考中很难越过一百分。现实中,很多同学从一开始便投入到漫无目的的、五花八门的、各式各样的题海中。为了在一轮复习中达到此目的,基础稍差些的同学完全可以主动放弃大型的、复杂的综合体的演练,把节省下来的时间和精力再次投入到选择填空题上来,以此进一步夯实基础;而基础好一些的同学,也不要把太多的、主要的精力大面积地投入到解答题上来,而是要分专题、分阶段每天都少量地但是细致地深入地研究一两道大解答题,在解答题上慢慢地、逐步地积累解题经验和解题规律,切不可把摊子铺大。要知道解答题的解题经验和解题规律积累是一个逐步的、漫漫的由量变到质变的过程,坚持重于冲击。

E. 数学小知识。

1、早在2000多年前,我们的祖先就用磁石制作了指示方向的仪器,这种仪器就是司南。

2、最早使用小圆点作为小数点的是德国的数学家,叫克拉维斯。

4、“七巧板”是我国古代的一种拼板玩具,由七块可以拼成一个大正方形的薄板组成,拼出来的图案变化万千,后来传到国外叫做唐图。

5、传说早在四千五百年前,我们的祖先就用刻漏来计时。

6、中国是最早使用四舍五入法进行计算的国家。

7、欧几里得最着名的着作《几何原本》是欧洲数学的基础,提出五大公设,发展为欧几里得几何,被广泛的认为是历史上最成功的教科书。

8、中国南北朝时代南朝数学家、天文学家、物理学家祖冲之把圆周率数值推算到了第7位数。

9、荷兰数学家卢道夫把圆周率推算到了第35位。

10、有“力学之父”美称的阿基米德流传于世的数学着作有10余种,阿基米德曾说过:给我一个支点,我可以翘起地球。这句话告诉我们:要有勇气去寻找这个支点,要用于寻找真理。

(5)每天学点数学的知识扩展阅读

数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。

在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。

F. 初二数学上册重点知识归纳

初二上册重点知识点同学们总结过吗?如果没有,请来我这里瞧瞧。下面是由我为大家整理的“初二数学上册重点知识归纳”,仅供参考,欢迎大家阅读。

初二数学上册重点知识归纳

初二数学上册知识点总结第11-12章

第十一章 全等三角形

1.全等三角形的性质:全等三角形对应边相等、对应角相等.

2.全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL).

3.角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等

4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上.

5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).

第十二章 轴对称

1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴.

2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.

3.角平分线上的点到角两边距离相等.

4.线段垂直平分线上的任意一点到线段两个端点的距离相等.

5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.

6.轴对称图形上对应线段相等、对应角相等.

7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点.

8.点(x,y)关于x轴对称的点的坐标为(x,-y)

点(x,y)关于y轴对称的点的坐标为(-x,y)

点(x,y)关于原点轴对称的点的坐标为(-x,-y)

9.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”.

10.等腰三角形的判定:等角对等边.

11.等边三角形的三个内角相等,等于60°,

12.等边三角形的判定: 三个角都相等的三角形是等腰三角形.

有一个角是60°的等腰三角形是等边三角形

有两个角是60°的三角形是等边三角形.

13.直角三角形中,30°角所对的直角边等于斜边的一半.

14.直角三角形斜边上的中线等于斜边的一半

初二数学上册知识点总结第13-14章

第十三章 实数

※算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作 .0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根.

※平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根.

※正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根.

※正数的立方根是正数;0的立方根是0;负数的立方根是负数.

数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0

第十四章 一次函数

1.画函数图象的一般步骤:一、列表(一次函数只用列出两个点即可,其他函数一般需要列出5个以上的点,所列点是自变量与其对应的函数值),二、描点(在直角坐标系中,以自变量的值为横坐标,相应函数的值为纵坐标,描出表格中的个点,一般画一次函数只用两点),三、连线(依次用平滑曲线连接各点).

2.根据题意写出函数解析式:关键找到函数与自变量之间的等量关系,列出等式,既函数解析式.

3.若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量).特别地,当b=0时,称y是x的正比例函数.

4.正比列函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线.

5.正比列函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中: 当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小.

6.已知两点坐标求函数解析式(待定系数法求函数解析式):

把两点带入函数一般式列出方程组

求出待定系数

把待定系数值再带入函数一般式,得到函数解析式

7.会从函数图象上找到一元一次方程的解(既与x轴的交点坐标横坐标值),一元一次不等式的解集,二元一次方程组的解(既两函数直线交点坐标值)

初二数学上册知识点总结第15章

第十五章 整式的乘除与因式分解

1.同底数幂的乘法

※同底数幂的乘法法则: (m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:

①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;

②指数是1时,不要误以为没有指数;

③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;

④当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为正数);

⑤公式还可以逆用: (m、n均为正整数)

2.幂的乘方与积的乘方

※1. 幂的乘方法则: (m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.

※2. .

※3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,

如将(-a)3化成-a3

※4.底数有时形式不同,但可以化成相同.

※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零).

※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数).

※7.幂的乘方与积乘方法则均可逆向运用.

3. 整式的乘法

※(1). 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式.

单项式乘法法则在运用时要注意以下几点:

①积的系数等于各因式系数积,先确定符号,再计算绝对值.这时容易出现的错误的是,将系数相乘与指数相加混淆;

②相同字母相乘,运用同底数的乘法法则;

③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;

④单项式乘法法则对于三个以上的单项式相乘同样适用;

⑤单项式乘以单项式,结果仍是一个单项式.

※(2).单项式与多项式相乘

单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.

单项式与多项式相乘时要注意以下几点:

①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;

②运算时要注意积的符号,多项式的每一项都包括它前面的符号;

③在混合运算时,要注意运算顺序.

※(3).多项式与多项式相乘

多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加.

多项式与多项式相乘时要注意以下几点:

①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;

②多项式相乘的结果应注意合并同类项;

③对含有同一个字母的一次项系数是1的两个一次二项式相乘 ,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积.对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得

4.平方差公式

¤1.平方差公式:两数和与这两数差的积,等于它们的平方差,

※即 .

¤其结构特征是:

①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;

②公式右边是两项的平方差,即相同项的平方与相反项的平方之差.

5.完全平方公式

¤1. 完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,

¤即 ;

¤口决:首平方,尾平方,2倍乘积在中央;

¤2.结构特征:

①公式左边是二项式的完全平方;

②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍.

¤3.在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现 这样的错误.

添括号法则:添正不变号,添负各项变号,去括号法则同样

6. 同底数幂的除法

※1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n).

※2. 在应用时需要注意以下几点:

①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.

②任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义.

③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的; 当a<0时,a-p的值可能是正也可能是负的,如 ,

④运算要注意运算顺序.

7.整式的除法

¤1.单项式除法单项式

单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

¤2.多项式除以单项式

多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号.

8. 分解因式

※1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.

※2. 因式分解与整式乘法是互逆关系.

因式分解与整式乘法的区别和联系:

(1)整式乘法是把几个整式相乘,化为一个多项式;

(2)因式分解是把一个多项式化为几个因式相乘.

拓展阅读:初二学生怎样提高数学成绩

1、聪明和成绩之间没有必然的联系,很多比你成绩好的人,智商肯定没你高。学习成绩好不单纯是由智商决定的,它有很多因素,努力程度是一方面,更重要的是方法!有了事半功倍的方法,不用每天熬夜,不用搞题海战术。

2、告诉你的家人不要用过高的期望值给你增加压力,否则你会不堪重负。我当然知道每个家长都盼望着自己的孩子能够考上北大清华,但并不是所有孩子都有那种能力。即使有那样的潜力,没有被很好的挖掘出来,最终也是被埋没了。

3、家长唠叨他们的,你别受影响,按照你的计划和你的目标.这个年代是靠本事靠实力吃饭,不是靠什么高学历高文凭,那些只说明书呆子程度更重而已。

4、结合我的体会说说提高成绩的方法吧。(1)首先要有明确的计划,是头脑里清晰的那种计划,不一定非要写在纸上.比如今天我要复习哪些内容,解决哪些不明白的地方,要背过多少个单词,做几套模拟卷子.(2)要善于总结,我觉得我中考之前做的题目并没有有的人那么多,但是我把做过的卷子里的错题和重点题经典题标出来,反反复复的琢磨研究.最终达到看一眼就知道是哪种类型了.(3)善于揣摩出题人的思路,这可能有一点难,但并不是不可能,把最近几年的真题反复研究几遍,重点就能看出来一些.重点永远是重点,多复习几遍没坏处 (4)对自己合理的期望值,不要太高,不要寄希望于什么超常发挥,那种情况的极其罕见的.也不用担心会发挥失常,那也是罕见的。只要平和去面对就行了。

5、每个人的人生都只有他自己能够规划,别人是无法替代的,因为别人永远不可能完全了解你的思想你的兴趣。

G. 一二年级数学知识点

数学给予人们的不仅是知识,更重要的是能力,这种能力包括观察实验、收集信息、归纳类比、直觉判断、逻辑推理、建立模型和精确计算。这些能力和培养,将使人终身受益。以下是我整理的相关资料,希望对您有所帮助。



一 二年级数学 知识点

第一单元数据收集整理

1、用画“正”字的 方法 收集数据。

2、用统计图表来表示数据的情况。

3、根据统计图表可以做出一些判断。

4、数据收集---整理---分析表格。

第二单元表内除法(一)

一、平均分

1、平均分的含义:把一些物品分成几份,每份分得同样多,叫平均分。

2、平均分的方法:

(1)把一些物品按指定的份数进行平均分时,可以一个一个的分,也可以几个几个的分,直到分完为止。

(2)把一些物品按每几个一份平均分,分时可以想:这个数可以分成几个这样的一份。

二、除法

1、除法算式的含义:只要是平均分的过程,就可以用除法算式表示。

2、除法算式的读法:通常按照从前往后顺序读,“÷”读作除以,“=”读作等于,其他读法不变。新课标第一网

3、除法算式各部分的名称:在除法算式中,除号前面的数叫被除数,除号后面的数叫除数,所得的数叫商。

三、用2~6的乘法口诀求商

1、求商的方法:

(1)用平均分的方法求商。

(2)用乘法算式求商。

(3)用乘法口诀求商。

2、用乘法口诀求商时,想除数和几相乘等于被除数。

四、解决问题

1、解决有关平均分问题的方法:

总数÷每份数=份数被除数=商×除数

总数÷份数=每份数被除数=商×除数+余数

一个因数=积÷另一个因数数除=被除数÷商

2、用乘法和除法两步计算解决实际问题的方法:

(1)所求问题要求求出总数,用乘法计算;

(2)所求问题要求求出份数或每份数,用除法计算。

第三单元图形的运动(一)

1、轴对称图形:沿一条直线对折,两边完全重合。对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。

成轴对称图形的汉字:

一,二,三,四,六,八,十,大,干,丰,土,士,中,田,由,甲,申,口,日,曰,木,目,森,谷,林,画,伞,王,人,非,菲,天,典,奠,旱,春,亩,目,山,单,杀,美,品,工,天,网,回,喜,莫,罪,夫,黑,里,亚。

2、平移:当物体水平方向或竖直方向运动,并且物体的方向不发生改变,这种运动是平移。只有形状、大小、方向完全相同的图形通过平移才能互相重合。

3、旋转:物体绕着某一点或轴进行圆周运动的现象就是旋转。

一二年级数学知识点 学习方法

养成良好的作业习惯

贪玩是孩子的天性,大多数孩子缺少自我控制能力,所以需要家长们平时多督促孩子认真完成家庭作业,培养他们良好的作业习惯,写字姿势。

家长督促他们写作业,及时检查他们的作业,发现没学会的知识要及时给他们讲解,每天的作业认真完成是学习的基本保障。对于学习相对落后的同学,我总是利用课外时间给他补,但是,课外时间有限,需要补课的学生较多,老师的精力也有限,这就需要家长们的积极配合。

有时候,一个孩子忽然学习进步很大,老师就感到很欣慰,一旦孩子学习退步了,一问原因,一般就是家长最近很忙,没时间管他。学生学习退步老师利用课余时间给他们补课。老师不希望有一个学生掉队。

养成良好的学习方法

孩子每个星期回家做作业时要采取这样的方法:先复习这一星期所学的知识,理通脉络;然后再把这周的作业做出来,并进行检查;最后把下周要学的知识进行预习。如果采用这样的方法并坚持下去,我相信孩子的学习一定会有很大进步的。

一二年级数学知识点学习技巧

养成不懂就问的习惯

有些题目孩子不懂,家长要耐心地解释题目的意思,鼓励孩子不懂就问。但是家长不要直接把答案告诉他,我想只要你把题目解释清楚,孩子是能够自己解答的。

我发现成绩不够理想的孩子,往往依赖性比较强,不愿独立思考,课堂上要么等着老师讲解,要么转来转去指望其他同学。这些同学在家里做作业也肯定很拖拉。家长要注意正确引导。

二年级学生已入学一年,有了一定的学习习惯的基础,但由于年龄特点,在数学学习上容易存在以下几个方面的不足:

一、注意力方面:

学生年龄小,有意识的注意力差,持久性也不长,一节课40分钟,很难坚持到底,往往听了一半就思想就开起了小差,或东张西望,随意说话,或小动作不停。

二、听讲方面:

不能倾听是许多低年级学生的通病。但学生的自我表现欲较强,往往一句话还没有来得及听完整,一知半解时便抢着回答,听不进老师的建议和其他同学的发言。

三、看和写的方面:

粗心马虎,经常把题看不完整、把数左右看颠倒或上下看错行、把运算符号看错,或把图看不全面。写的时候精力不够集中,算对的却抄错,书写不认真,书面不整洁,写完不检查。

四、想的方面:

二年级学生思维发展还不全面,没有系统性,以直观形象思维为主,遇到需要 逻辑思维 或考察空间想象能力的问题,思维跟不上,脑子里转不过来弯,便会不知所措,应付塞责。

五、语言方面:

由于生活 经验 和积累的词汇少,语言单调、直白,即使明白了算理,口头表达时也常常说不清、道不明。

一二年级数学知识点相关 文章 :

★ 二年级数学上册概念知识点整理

★ 人教版二年级数学下册的知识点

★ 小学二年级上册数学知识点归纳

★ 小学二年级上册数学重点知识整理

★ 二年级下册数学书上的知识点

★ 小学生二年级的数学必备知识

★ 人教版二年级数学上册知识点

★ 小学数学知识点顺口溜

★ 二年级数学知识点

★ 小学各年级数学知识点总结

H. 数学一年级下册知识点

没有加倍的勤奋,就没有才能,也没有天才。天才其实就是可以持之以恒的人。勤能补拙是良训,一分辛苦一分才,勤奋一直都是学习通向成功的最好捷径。下面是我给大家整理的一些 一年级数学 的知识点,希望对大家有所帮助。

小学生一年级下册数学知识点概括

1、加数+加数=和2、被减数减数=差

和=加数+加数差=被减数减数

和加数=另一个加数被减数差=减数

另一个加数=和加数减数=被减数差

差+减数=被减数

被减数=差+减数

3、一个数从右边起第一位是个位,(表示几个一)

第二位是十位.(表示几个十)第三位是百位.(表示几个百)

读数和写数都从高位起.读作是写语文字,写作是写数学字

个的前面写数学字,个的后面写语文字。

4、?在︸下面就是求总数,用加法计算。(+)

?在︸上面就是求部分,用减法计算。(-)

5、求大数比小数多多少,用减法计算。(-)

求小数比大数少多少,用减法计算。(-)

大数=小数+多出来的数小数=大数多出来的数多出来的数=大数小数

6、时针短,分针长。1时=60分60分=1时1刻=15分

分针指着12是整时,时针指着数字几就是几时,

分针指着6是半时,时针过数字几就是几时半。

7、凑十歌:小朋友拍拍手,大家来唱凑十歌,九凑一,八凑二,七凑三来六凑四,两五相凑就满十。

凑十法:拆小数,凑大数。拆大数,凑小数。

8、图文应用题:先找出已知条件和问题,再确定用加法或减法计算。最后要记得写答.

求一共是多少,用加法计算。(+)

求还有、还剩、剩下是多少,用减法计算。(-)

9、1元=10角1角=10分1元=100分

10、交换加数的位置,和不变。

一年级数学知识点

动物乐园(比大小与比多少)

【知识点】:

1、比较动物谁多谁少有两种策略:一是基于“数数”,二是进行“ 配对 ”,从而体验“一一对应”的数学思想。

2、通过比较具体数量多少的数学活动,获得对“>”、“<”、“=”等符号意义的理解,学会写法,并会用这些符号表示10以内的数的大小。

3、体验“同样多”、“多”、“少”、“最多”、“最少”的含义。

高矮(比高矮、比长短)

【知识点】:

1、长短、高矮、厚薄都属于物体长度的比较的问题,只是在实际生活中,人们习惯把水平放的物体的长度比较叫比长短,把垂直摆放的物体达到长度的比较叫比高矮。把扁平的物体上下距离的比较叫比厚薄。它们的比较 方法 是相通的。

2、认识高矮的区别,知道比较高矮、长短、厚薄时要在起点相同的情况下才能正确比较。

3、知道高矮比较的相对性

轻重(比轻重)

【知识点】:

1、经历比较轻重的过程,体验一些具体的比较方法及轻重的相对性。2.初步体会借助工具确定轻重的必要性和解决问题方法的多样性。3.间接比较轻重,渗透了等量对换的思想,对学生说具有一定的难度,不要求所有的学生都能独立完成。

小学一年级 数学 学习方法

第一、认真听老师讲课。这是我取得好成绩的主要原因。听讲时要做到全神贯注,聚精会神,跟着老师的思路走,不能开小差,更切忌一边讲话一边听讲。其次要专心凝听老师讲的每一个字,因为数学是以严谨着称的,一字之差就非同小可,一字之间就隐藏玄机无限。听讲时还要注意记笔记。一次老师讲了一个高难度的几何题,我一时没有听懂,多亏我记下了这道题以及解法,回家后仔细琢磨,终于理解透了,以至在一次竞赛中我轻而易举地解出了类似的一道题,获得了宝贵的10分。上课还要积极举手发言,举手发言的好处可真不少!①可以巩固当堂学到的知识。②锻炼了自己的口才。③那些模糊不清的观念和错误能得到老师的指教。真是一举三得。总之,听讲要做到手到、口到、眼到、耳到、心到。

第二、课外练习。孔子曰:“学而时习之”。课后作业也是学习和巩固数学的重要环节。我很注意解题的精度和速度。精度就是准确度,专心致志地独立完成作业,力求一次性准确,而一旦有了错,要及时改正。而速度是为了锻炼自己注意力集中,有紧迫感。我经常是这样做的,在开始做作业时定好闹钟,放在自己看不见的地方再做作业,这样有助于提高作业速度。考试时,就不会紧张,也不会顾此失彼了。

第三、复习、预习。对数学的复习,预习我定在每天晚上,在完成当天作业后,我将第二天要学的新知识简要地看一看,再回忆一下老师已讲过的内容。睡觉时躺在床上,脑海里再像看电影一样将老师上课的过程“看”一遍,如果有什么疑难,我立即爬起来看书,直到搞懂为止。每个星期天我还作一星期功课的小结复习、预习。这样对学数学有好处,并掌握得牢固,就不会忘记了。

第四、提高。在完成作业和预习、复习之后,我就做一些爬坡题。做这类题,尽可能自己独立思考,努力找出隐藏的条件,这是解题的关键。如果实在想不出来就需要看一看参考书,以及请教师长和同学。总之,要做到多看、多做、多问、虚心、勤奋,保持积极向上的精神这才是关键的关键。


数学一年级下册知识点相关 文章 :

★ 一年级下册数学知识点归纳

★ 一年级数学下册知识点梳理部编版

★ 一年级数学下册知识点部编版

★ 部编小学一年级数学下册知识点

★ 一年级数学下册的知识点

★ 一年级数学下册知识点归纳

★ 人教版一年级下册数学知识点归纳

★ 一年级数学下册知识点

★ 一年级数学下学期知识点

★ 小学一年级数学下册知识点

I. 小学各年级数学知识点总结

贪玩是孩子的天性,大多数孩子缺少自我控制能力,所以需要家长们平时多督促孩子认真完成家庭作业,培养他们良好的作业习惯,写字姿势。家长督促他们写作业,及时检查他们的作业,发现没学会的知识要及时给他们讲解,每天的作业认真完成是学习的基本保障。下面是我为大家整理的关于小学各年级数学知识点 总结 ,希望对您有所帮助。欢迎大家阅读参考学习!

一年级的知识点及重难点

(一)数与计算

(1)20以内数的认识。加法和减法。

数数。数的组成、顺序、大小、读法和写法。加法和减法。连加、连减和加减混合运算。

(2)100以内数的认识。加法和减法。数数。个位、十位。数的顺序、大小、读法和写法。

两位数加、减整十数和两位数加、减一位数的口算。两步计算的加减式题。

(二)量与计量钟面的认识(整时)。人民币的认识和简单计算。

(三)几何初步知识

长方体、正方体、圆柱和球的直观认识。

长方形、正方形、三角形和圆的直观认识。

(四)应用题

比较容易的加法、减法一步计算的应用题。 多和少的应用题(抓有效信息的能力)

(五)实践活动

选择与生活密切联系的内容。例如根据本班男、女生人数,每组人数分布情况,想到哪些数学问题。

一年级 数学 学习 方法

1、要培养学生的学习习惯。学习习惯的一方面就是作业的按时完成,作业格式训练也是学习习惯培养的一个方面。要利用数学练习本让学生练习写数和写算式

2、重视孩子计算能力的培养

口算20以内的加减法是十分重要的基础知识,孩子必须学好,并能够达到熟练计算的程度。由于孩子的基础不同,不同孩子的计算熟练程度和速度也就存在一定差异,要缩小这一差异,仅靠每天一节数学课练习是不客观的,所以要经常性的练习。一年级要多让孩子借助小棒等学具摆一摆、说一说计算思路。

3、依据生活理解数学,让孩子在游戏中成长

有些数学知识较抽象,容易混淆,我们要注意给孩子创造生活情境,让孩子在实际体验中理解知识。如“左右”的认识,分辨左右是孩子本学期学习的一个难点,在生活中强化孩子对左右手的认识,引导孩子借此来分辨物体间的左右关系。同时还要注意一个参照物的问题,如两人面对面时,如何判别对面之人的左右边。

4、重视数学语言发展,让学生养成积极思维的习惯。 在生活中要多为孩子创设说数学的机会,数学是“思维的 体操 ”,如果不积极动脑思考就不可能学好数学。如在学习“10的分与合”时,在复习铺垫的基础上,提问:“10可以分成几和几呢?”引导学生一边涂珠算一边思考,从而自己得出结论。多问几个“为什么”比直接告诉学生“是这样的”要好得多。,学生在相互之间的思维撞击中学会了知识,获得了积极的成功体验。

总之,一年级学生由于特殊的年龄特征,所以要重视培养学生良好书写、思维的学习习惯。

二年级的知识点和重难点

(一)数与计算

(1)两位数加、减两位数。 ? 两位数加、减两位数。加、减法竖式。两步计算的加减式题。

(2)表内乘法和表内除法。 ? 乘法的初步认识。乘法口诀。乘法竖式。除法的初步认识。用乘法口诀求商。除法竖式。有余数除法。两步计算的式题。

(3)万以内数的读法和写法。 ? 数数。百位、千位、万位。数的读法、写法和大小比较。

(4)加法和减法。 ?加法,减法。连加法。加法验算,用加法验算减法。

(5)混合运算。 ? 先乘除后加减。两步计算式题。小括号。

(二)量与计量

时、分、秒的认识。

米、分米、厘米的认识和简单计算。

千克(公斤)的认识

(三)几何初步知识

直线和线段的初步认识。 ? 角的初步认识。直角。

(四)应用题

加法和减法一步计算的应用题。 ? 乘法和除法一步计算的应用题。 ?比较容易的两步计算的应用题。

(五)实践活动

与生活密切联系的内容。例如调查家中本周各项消费的开支情况,想到哪些数学问题。

二年级数学 学习方法

小学生是以具体形象思维为主,根据二年级学生的特点,应该:

第一:要适度应用学具,例如:在教学乘法的初步认识时,用摆小棒的方法,应按照从一般到特殊的规律,先摆出两堆不同数目的小棒,再摆出两份数目相同的,让学生觉得加法的累赘,再介绍乘法,学生就很容易理解乘法的意义,并且乐意学乘法了。

第二:利用 生活知识 教学。

例如:小红做了18朵纸花,送给同学们12朵,还剩下多少朵。这是两位数减两位数,如果在生活中做一做,学生就明白意思了,所以说,有一些应用题,能从实际生活出发,先用学生的生活 经验 来解答,再用数学知识来解答,就可以使学生理解题意。

第三:利用社会环境提高数学实际应用能力。例如:在学习统计时,可以带学生到商城或社会中,利用新学的统计知识,通过观察、计量、比较,从而收集到有用的信息和知识。

第四:为学生创造机会,使学生去思、去想、去问。比如,二年级教材学习了“角的认识”,对于什么叫角,角各部分名称,“角的大小与边的长短无关”这些内容,学生已经知道了

“还有什么问题吗?”学生答道“没问题”。真的没问题了吗?“那我来问个问题”我提出了一个问题:“角的大小为什么与边的长短无关呢?”经过讨论,大家明白了,角的边是射线,射线是没有长短的,所以,角的大小与边的长短无关。角的大小决定于两条边张开的程度。教师从学生的角度示范提问题,久而久之,也就让学生有了提问题的意识,在引导学生提问题的同时,也培养了学生积极思考问题和解决问题的能力。

三年级知识点和重难点

(一)数与计算

(1)一位数的乘、除法。一个乘数是一位数的乘法(另一个乘数一般不超过三位数)。0的乘法。连乘。除数是一位数的除法。0除以一个数。用乘法验算除法。连除。

(2)两位数的乘、除法。一个乘数是两位数的乘法(另一个乘数一般不超过三位数)。乘数末尾有0的简便算法。乘法验算。除数是两位数的除法。连乘、连除的简便算法。

(3)四则混合运算。两步计算的式题。小括号的使用。

(4)分数的初步认识。分数的初步认识,读法和写法。看图比较分数的大小。简单的同分母分数加、减法。

(二)量与计量千米(公里)、毫米的认识和简单计算。吨、克的认识和简单计算。

(三)几何初步知识长方形和正方形的特征。长方形和正方形的周长。平行四边形的直观认识。周长的含义。长方形、正方形的周长。

(四)应用题常见的数量关系。解答两步计算的应用题。

(五)实践活动联系周围接触到的事物组织活动。例如记录10天内的天气情况,分类整理,并作简单分析。

三年级数学 学习方法

小学三年级学生学习数学的三种数学能力中,影响程度最大的是运用数概念的能力,其次是空间关系的知觉能力,再次是基本能力(概括和推理)。

第一,加强小学三年级学生运用“数概念”的能力培养。

有不少小学数学的教学中,常只重算法,忽视数概念的掌握和算理的理解。因而只能机械地应用学过的东西,或简单地模仿做过的例题,不能在变化了情况下迁移;或者只知道一些定义,而不能全面掌握属于这一概念的东西。

例如,学生能说出什么是圆的半径,但在作图或解题时又常常只能举出垂直方向上的半径,不能反转过来去解决逆向问题,没有纳入到一般的范畴或嵌入数概念体系的认知结构中去。所以在小学数学教学中,不仅要重视算法和演算过程,尤其要重视数概念的掌握和算理的理解,加强小学生运用数概念的能力培养。三年级数学中,会出现长度单位的认识,什么千米、毫米、厘米,很多孩子总是无法记清楚,怎么办呢?请大家伸出自己的右手,手心面向自己,从小拇指到大拇指,依次为:毫米、厘米、分米、米、千米。两指之间的距离大小表示进率的大小。你们看,小指、无名指、中指、食指每相临的两指间的距离相等,也就表示毫米、厘米、分米、米每相临两个单位间的进率相等,都是10。而毫米与分米、厘米与米间的进率为100,毫米与米之间的进率为1000,食指与大拇指之间的距离较大,也是1000。记住单位对应的拇指,这个换算就变得十分简单而且准确了。

第二,重视和加强发展小学三年级学生“空间关系”的知觉能力。

数和形是不可分开的。因此,学生掌握空间关系的知觉能力也是小学数学能力的重要组成部分。例如三年级下册如用圆圈图(韦恩图)向学生直观的渗透集合概念。让他们感知圈内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合。

第三,观察活动:

所谓观察是指学生对客观事物或某种现象的仔细察看,因而是一种有意注意。培养的途径是:教师提供的“客观事物或某种现象”特征有序、背景鲜明,而且要给出一些观察的思考题。这样有助于学生明确观察目标,进而使他们边观察,边思考,边议论,边作观察记录,以发现数学规律、本质。

“乘法分配律”的教学,根据例证得到三个等式:

(5+3)×2=5×2+3×2

(6+4)×30=6×30+4×30

(25+9)×4=25×4+9×4

教师要求学生结合下面的两个思考题观察上面的三个等式都具有什么相同点(即规律)。①竖里观察,等式的左边都有什么特点?等式右边又有什么特征?②横里观察,等式的左边与右边有怎样的关系?

教师再要求学生把记录的文字:两个加数的和与一个数相乘,两个积的和,两个加数分别与一个数相乘……整理一下就得到了“乘法分配律”。

四年级知识点和重难点

(一)数与计算

(1)亿以内数的读法和写法。

计数单位“十万”、“百万”、“千万”。相邻计数单位间的十进关系。读法和写法。数的大小比较。以万作单位的近似数。

(2)加法和减法。

加法,减法。

接近整十、整百数的加、减法的简便算法。

加、减法算式中各部分之间的关系。求未知数x。

(3)乘、除数是三位数的乘、除法。

乘数是三位数的乘法。积的变化。除数是三位数的除法。商不变的性质。被除数和除数末尾有0的简便算法。

_乘、除计算的简单估算。

乘数接近整十、整百的简便算法。

乘、除法算式中各部分之间的关系。求未知数x。

(4)四则混合运算。

中括号。三步计算的式题。

(5)整数及其四则运算的关系和运算定律。

自然数与整数。十进制计数法。读法和写法。

四则运算的意义。加法与减法、乘法与除法之间的关系。整除和有余数的除法。

运算定律。简便运算。

(6)小数的意义、性质,加法和减法。

小数的意义、性质。小数大小的比较。小数点移位引起小数大小的变化。小数的近似值

加法和减法。加法运算定律推广到小数。

(注:小数如果分段教学,可以把小数的初步认识安排在前面的适当年级)。

(二)量与计量

年、月、日。平年、闰年。世纪。24时计时法。

角的度量。

面积单位。

(三)几何初步知识。

直线的测定。测量距离(工具测、步测、目测)。

射线。直角、锐角、钝角、平角、_周角。垂线。画垂线。平行线。画平行线。

三角形的特征。_三角形的内角和。

(四)统计初步知识

简单数据整理。简单统计图表的初步认识。平均数的意义。求简单的平均数。

(五)应用题列综合算式解答比较容易的三步计算的应用题。

四年级数学 学习方法

四年级的学生思维正处在从直观思维向抽象 逻辑思维 过渡的阶段,因此,通过练习巩固所学知识只是其中的一个方面,而通过比较、概括、推理、综合等思维方法的学习运用发展其逻辑思维是这个年龄段学生的一个重要任务,除了注意学生思维方法的掌握,最明显的表现是培养学生画概念图和线段图,促进其知识系统化和思维能力的发展。)

在数学知识中,数学概念又是数学知识的基础,数学原理、数学方法也是由数学概念构成。概念的清晰性、稳定性、可辨性以及概念之间的关联性极大地影响数学知识的质量。概念图包括节点、连线、层级和命题四个基本要素。根据小学四年级学生思维发展水平,引导学生思考如何更好建构自己的概念图,掌握这种方法。数学知识就像~张纵横交错的网,每个知识点都是一个网点,网点上的一条条知识,连接起了一个个的网点,从而形成一张密密的“知识网”。培养学生自己去“织网”能力应该是新课改对教师的要求之一,而且对于小学四年级的教师来说,在学生思维折的关键时期,有意识地通过让学生画概念图的方法来培养思维能力也是行之有效的法之一。

“线段图”是指由有一定意义的线段、箭头、数字符号等构成的图式,它的特点是形象直观,能够引起学生的注意和兴趣。利用线段图将题中蕴涵的抽象的数量关系以形象、直观的方式表达出来,化 抽象思维 为形象思维,符合小学生特别是中高年级学生的认知特点。小学数学各种类型的应用题:如分数应用题、行程问题、工程问题等用线段图扳书分析数量关系,易化繁为简,化抽象思维为形象思维。四年级教材中的路程问题(第七册59—61页),很容易通过例题中的线段图理解问题。对于第七册第64页的习题5,学生们也能轻松地把情景图用线段图表示出来;第八册“解方程一”(第95页)的练习2,即使学困生也很容易列出方程,我所教的两个班的学生能把一些方程用线段图画出来,比如97页的练习l、2,通过这种 思维训练 ,学生的表征能力得到提高,实现《标准》提出的“能从具体情境中抽象出数量关系和变化规律,并用符号来表示:理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。”

五年级知识点和重难点

小数乘法,小数除法,简易方程,多边形的面积,统计与可能性等是本册教材的重点教学内容。

在数与代数方面,这一册教材安排了小数乘法、小数除法和简易方程。小数的乘法和除法在实际生活中和数学学习中都有着广泛的应用,是小学生应该掌握和形成的基础知识和基本技能。这部分内容是在前面学习整数四则运算和小数加、减法的基础上进行教学,继续培养学生小数的四则运算能力。简易方程是小学阶段集中教学代数初步知识的单元,在这一单元里安排了用字母表示数、等式的性质、解简单的方程、用方程表示等量关系进而解决简单的实际问题等内容,进一步发展学生的抽象思维能力,提高解决问题的能力。

在空间与图形方面,这一册教材安排了观察物体和多边形的面积两个单元。在已有知识和经验的基础上,通过丰富的现实的数学活动,让学生获得探究学习的经历,能辨认从不同方位看到的物体的形状和相对位置;探索并体会各种图形的特征、图形之间的关系,及图形之间的转化,掌握平行四边形、三角形、梯形的面积公式及公式之间的关系,渗透平移、旋转、转化的数学思想方法,促进学生空间观念的进一步发展。

在统计与概率方面,本册教材让学生学习有关可能性和中位数的知识。通过操作与实验,让学生体验事件发生的等可能性以及游戏规则的公平性,学会求一些事件发生的可能性;在平均数的基础上教学中位数,使学生理解平均数和中位数各自的统计意义、各自的特征和适用范围;进一步体会统计和概率在现实生活中的作用。

在用数学解决问题方面,教材一方面结合小数乘法和除法两个单元,教学用所学的乘除法计算知识解决生活中的简单问题;另一方面,安排了“数学广角”的教学内容,通过观察、猜测、实验、推理等活动向学生渗透初步的数字编码的数学思想方法,体会运用数字的有规律排列可以使人与人之间的信息交换变得安全、有序、快捷,给人们的生活和工作带来便利,感受数学的魅力。培养学生的符号感,及观察、分析、推理的能力,培养他们探索数学问题的兴趣和发现、欣赏数学美的意识。

五年级数学 学习方法

(一)数与代数

1、第一单元“倍数与因数”:结合具体情境,经历探索数的有关特征的活动,认识自然数,认识倍数和因数,能在100以内的自然数中找出10以内某个自然数的所有倍数,能找出100以内某个自然数的所有因数,知道质数、合数;经历 2、3、5的倍数特征的探索过程,知道2、3、5的倍数的特征,知道奇数和偶数;能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展初步的合情推理能力;

2.第三单元“分数”:进一步理解分数的意义,能正确用分数描述图形或简单的生活现象;认识真分数、假分数与带分数,理解分数与除法的关系,会进行分数的大小比较;能找出10以内两个自然数的公倍数和最小公倍数,能找出两个自然数的公因数和最大公因数,会正确进行约分和通分;初步了解分数在实际生活中的应用,能运用分数知识解决一些简单的实际问题。

3.第四单元“分数加减法”:理解异分母分数加减法的算理,并能正确计算;能理解分数加减混合运算的顺序,并能正确计算;能把分数化成有限小数,也能把有限小数化成分数;能结合实际情境,解决简单分数加减法的实际问题。

(二)在学习《空间与图形》可采用数、形结合的方式,以及类比法等教学

1.第二单元“图形的面积(一)”:知道比较面积大小方法的多样性;经历探索平行四边形、三角形、梯形面积计算方法的过程,并能运用计算的方法解决生活中一些简单的问题;在探索图形面积的计算方法中,获得探索问题成功的体验。

2.第五单元“图形的面积(二)”:在探索活动中,认识组合图形,并会运用不同的方法计算组合图形的面积;能正确运用计算组合图形面积的方法,解决相应的实际问题;能估计不规则图形的面积大小,并能用不同方法计算面积。

六年级数学

(一)数与计算

(1)分数的乘法和除法。分数乘法的意义。分数乘法。乘法的运算定律推广到分数。倒数。分数除法的意义。分数除法。

(2)分数四则混合运算。分数四则混合运算。

(3)百分数。百分数的意义和写法。百分数和分数、小数的互化。

(二)比和比例

比的意义和性质。比例的意义和基本性质。解比例。成正比例的量和成反比例的量。

(三)几何初步知识

圆的认识。圆周率。画圆。圆的周长和面积。_扇形的认识。轴对称图形的初步认识。圆柱的认识。圆柱的表面积和体积。圆锥的认识。圆锥的体积。球和球的半径、直径的初步认识。

(四)统计初步知识

统计表。条形统计图,折线统计图,_扇形统计图。

(五)应用题

分数四则应用题(包括工程问题)。百分数的实际应用(包括发芽率、合格率、利率、税率等的计算)。比例尺。按比例分配。

(六)实践活动

联系学生所接触到的社会情况组织活动。例如就家中的卧室,画一个平面图。

(七)整理和复习

六年级数学学习方法:

进入小学高年级后,科目稍微增加、内容拓宽、知识深化……学生认知结构发生根本变化,许多同学容易忽略老师所讲的数学思想、数学方法,而注重题目的解答,其实诸如“化归”、“数形结合”等思想方法远远重要于某道题目的解答。

总结比较,理清思绪

知识点的总结比较。每学完一章都应将本章内容做一个框架图或在脑中过一遍,整理出它们的关系。对于相似易混淆的知识点应分项归纳比较,有时可用联想法将其区分开。题目的总结比较。同学们可以建立自己的题库。

在学习《位置》在用数对确定点的位置,这部分渗透了数形结合的思想,和一一对应的思想。学生可在方格纸上画画。

学习分数乘法的意义:1、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。2、分数乘分数是求一个数的几分之几是多少。

例:一小时刷一面墙的1/4,1/5小时刷一面墙的多少?实际上是求1/5的1/4是多少?

这种题型可以利用数形结合的数学思想,画一画,折一折。再就是利用:工作效率_工作时间=工作总量

在学习分数除法这一节时,例如:分数、除法和小数之间的关系和区别,以及分数除法应用题无论是 折纸 实验,还是画线段图,都是用图形语言揭示分数除法计算过程的几何意义。分数乘除法,比的知识,运用了类比的数学。(相似和变式)

在学习圆这一节时,用逐渐逼近的转化思想。把一个园等分(偶数份)成的份数越多,拼成的图像越接近长方形。体现化圆为方,化曲为直的思想,应用转化思想。在应用中,我们还知道面积相同时,长方形的周长最长,正方形居中,圆周长最短。周长一定时,圆面积最大,正方形居中,长方形面积最小。这题蕴含着一个数学规律,即在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积最大,而长方形的面积则最小。

在学习数学广角这一章节中,例如,研究古代鸡兔同笼的问题,就应用了假设法来教学。这种 思维方式 就是划归法。