当前位置:首页 » 基础知识 » 六年级数学下册四单元的知识点
扩展阅读
联想qq音乐怎么调歌词 2024-11-25 16:36:06

六年级数学下册四单元的知识点

发布时间: 2024-09-04 12:55:29

❶ d6人教版数学六年级下册第四单元总结怎么写

第四单元 统计

1、统计表:把统计数据填写在一定格式的表格内,用来反映情况、说明问题,这样的表格就叫做统计表。
2、统计种类:
单式统计表:只含有一个项目的统计表。
复式统计表:含有两个或两个以上统计项目的统计表。
百分数统计表:不仅表明各统计项目的具体数量,而且表明比较量相当于标准量的百分比的统计表。
3、统计图:用点线面积等来表示相关的量之间的数量关系的图形叫做统计图。
4、条形统计图优点:很容易看出各种数量的多少。注意:画条形统计图时,直条的宽窄必须相同。复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例。
5、折线统计图不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况。注意:折线统计图的横轴表示不同的年份、月份等时间时,不同时间之间的距离要根据年份或月份的间隔来确定。按照数据的大小描出各点,再用线段顺次连接起来,并注明数量。
6、扇形统计图
(1)用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。
(2)优点:很清楚地表示出各部分同总数之间的关系。
(3)制扇形统计图的一般步骤:
a)先算出各部分数量占总量的百分之几。
b)再算出表示各部分数量的扇形的圆心角度数。c)取适当的半径画一个圆,并按照上面算出的圆心角的度数,在圆里画出各个扇形。
d)在每个扇形中标明所表示的各部分数量名称和所占的百分数,并用不同颜色或条纹把各个扇形区别开。

❷ 小学六年级数学知识点总结(下册)

负数:像-1,-2,-3。。。。叫负数,1,2,3。。。。。是正数,也可写成+1,+2,+3。。。。。。0不是负数也不是正数。
数轴上,负数在0的左边,正数在0的右边。
圆柱与圆锥:圆柱的两个圆面叫做底面,周围的面叫侧面,两个底面之间的距离叫高,长方形的长等于圆柱底面的周长,宽等于圆柱的高。
公式:圆柱表面积=圆柱侧面积+两个底面的面积
圆柱的侧面积=底面周长*高
圆柱的体积=底面积*高
圆锥的体积=等底等高的圆柱的体积*三分之一
比例:表示两比相等的式子叫比例。
组成比例的四个数,叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。
在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。
求比例中的未知项,叫做解比例。
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
图上距离:实际距离=比例尺,数值比例尺是1:10000或一万分之一,线段比例尺是一个线段,图上几厘米表示实际多少。
统计没什么,记住三个统计图,折线,扇形,条形的就行了。
数学广角很简单,只用记住方法。

❸ 六年级下册数学各个单元的重点

一单元,负数,重点:认识负数。难点:了解负数的意义及负数与正数的关系。
二单元,圆柱与圆锥,重点:(1)圆柱体积、表面积的计算,(2)圆锥体积的计算。难点:圆锥体积计算公式的推导。
三单元,比例,重点:比例的意义和正反比例的意义。难点:正确判断正、反比例。
四单元,统计,重点:绘制扇形统计图和折线统计图。难点:根据折线统计图正确描述数量变化情况。
五单元,数学广角,重点:了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。难点:将实际问题抽象为数学问题来解决。
六单元整理和复习,重点:(1)数与代数的知识及解决问题,(2)几何形体的知识及解决问题。难点:(1)对所学知识系统化,融会贯通。(2)综合运用所学知识与技能解决问题,并寻求灵活的途径。

❹ 六年级数学有哪些知识点

上册:
1、第一单元《位置》
2、第二单元《分数乘法》
分数乘法
解决问题
倒数的认识
整理和复习

3、第三单元《分数除法》
分数除法
解决问题
比和比的应用
整理和复习
4、第四单元《圆》
圆的认识
圆的周长
圆的面积
整理和复习
确定起跑线
5、第五单元《百分数》
百分数的意义和写法
百分数和分数、小数的互化
用百分数解决问题
整理和复习
6、第六单元《统计》
扇形统计图
合理存款
7、第七单元《数学广角》
鸡兔同笼
8、第八单元《总复习》
下册:
一、负数
二、圆柱与圆锥
1.圆柱 圆柱的认识 圆柱的表面积 圆柱的体积
2.圆锥 第二单元整理和复习
三、比例
1.比例的意义和基本性质
2.正比例和反比例的意义
3.比例的应用
比例尺
图形的放大与缩小
用比例解决问题
第三单元整理和复习
综合应用:自行车里的数学
四、统计
五、数学广角
综合应用:节约用水
六、整理和复习
1.数与代数
数的认识
数的运算
式与方程
常见的量
比和比例
数学思考
2.空间与图形
图形的认识与测量

❺ 小学六年级下册数学知识点总结

小学六年级下册数学知识点总结

代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学。下面是我整理的关于六年级下册数学知识点总结,欢迎大家参考!

一、负数

1、在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。

2、初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。

3、能借助数轴初步学会比较正数、0和负数之间的大小。

4、像-16、-500、-3/8、-0.4…这样的数叫做负数。-3/8读作负八分之三。16,200,3/8,6.3…这样的数叫做正数。正数前面可以加“+”号,也可以省去“+”号。+6.3读作正六点三。0既不是正数,也不是负数。

5、16℃读作十六摄氏度,表示零上16℃;-16℃读作负十六摄氏度,表示零下16℃

6、如果2000表示存入2000元,那么-500表示支出了500元。向东走3m记作+3,向西4m记作-4。

7、在数轴上,从左到右的顺序就是数从小到大的顺序。0是正数和负数的分界点,所有的.负数都在0的左边,也就是负数都比0小,而正数都比0大,负数都比正数小。负号后面的数越大,这个数就越小。如:-8<-6。

二、圆柱和圆锥

1、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。

2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。

3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。

4、圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面。

5、圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。

6、圆柱的表面积=圆柱的侧面积+底面积×2即S表=S侧+S底×2或2πr×h+2×π。

7、圆柱的侧面积=底面周长×高即S侧=Ch或2πr×。

8、圆柱的体积=圆柱的底面积×高,即V=sh或πr2×。

进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。

9、圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。

10、从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离)

11、把圆锥的侧面展开得到一个扇形。

12、圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=1/3Sh或πr2×h÷。

13、常见的圆柱圆锥解决问题:①、压路机压过路面面积(求侧面积);②、压路机压过路面长度(求底面周长);③、水桶铁皮(求侧面积和一个底面积);④、厨师帽(求侧面积和一个底面积);通风管(求侧面积)。

;

❻ 六年级下册数学知识点北师大版

打开一本书,就好像轻轻感受到淳淳杨柳风,扑面而来;就好像慢慢感受到蒙蒙杏花雨,从天而降;就似乎全新体验到浩浩竹林带给你的轻松与快感。下面我给大家分享一些六年级下册数学知识北师大版,希望能够帮助大家,欢迎阅读!

六年级下册数学知识北师大版1

1、“点、线、面、体”之间的关系是:

点的运动形成线;线的运动形成面;面的旋转形成体。

2、圆柱的特征:

(1)圆柱的两个底面是半径相等的两个圆,侧面是曲面。

(2)两个底面间的距离叫做圆柱的高。

(3)圆柱有无数条高,且高的长度都相等。

(4)圆柱是由长方形绕长或宽旋转360度得到的立方体,所以沿高线切割后的切面是长方形。

3、圆锥的特征:

(1)圆锥的底面是一个圆,和底 面相 对的位置有一个顶点。

(2)圆锥的侧面是一个曲面。

(3)圆锥只有一条高。

(4)圆锥是由直角三角形绕一条直角边旋转360度得到的立方体,所以沿高线切割后的切面是等腰三角形。

4、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)(如果不是沿高剪开,有可能还会是平行四边形)。

圆柱的侧面积=底面周长×高,用字母表示为:S侧=Ch。

圆柱的侧面积公式的应用:

(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;

(2)已知底面直径和高,求侧面积,可运用公式:S侧=πdh;

(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πrh

圆柱表面积的计算 方法 :如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底 或S表=πdh+πd2/2 或S表=2πrh+2πr2

圆柱表面积的计算方法的特殊应用:

(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。

(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。

5、圆柱的体积:一个圆柱所占空间的大小。

6、圆柱体积公式的推导:

复习六年级上册圆的面积公式的推导:把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。所以圆的面积=π×半径×半径=π×半径2

如同,圆的面积公式的推导,也可以沿着圆柱底面的扇形和圆柱的高把圆柱切开,把它分成若干等份,分得越细越好,再把它拼成一个近似长方体的立体图形,形状改变了,但体积没变,那么就可以发现拼成的这个长方体的底面积与圆柱的底面积是相等的,长方体的高也与圆柱的高相等,而长方体的体积=底面积×高,也就等于圆柱的体积。因此,

圆柱的体积=底面积×高如果用V表示圆柱的体积,S表示底面积,h表示高,那么V=Sh 。

例题:填空:圆柱体积公式推导过程是利用(转化)的数学思想,在此过程中(形状)变了,(体积)没变。拼成图形的高于圆柱的(高)相等,他们的底面积(相等)所以圆柱的体积公式为(底面积×高)

圆柱体积公式的应用:

(1)计算圆柱体积时,如果题中给出了底面积和高,可用公式:V=Sh。

(2)已知圆柱的底面半径和高,求体积,可用公式:V=πr2h;

(3)已知圆柱的底面直径和高,求体积,可用公式:V=π(d/2)2h;

(4)已知圆柱的底面周长和高,求体积,可用公式:V=π(C/2π)2h;

圆柱形容器的容积=底面积×高,用字母表示是V=Sh。

6、圆柱形容器公式的应用与圆柱体积公式的应用计算方法相同。

7、圆锥的体积:一个圆锥所占空间的大小。

圆锥的体积=1/3×底面积×高 如果用V表示圆锥的体积,S表示底面积,h表示高,

则字母公式为:1/3Sh

圆锥体积公式的应用:

(1)求圆锥体积时,如果题中给出底面积和高这两个条件,可以直接运用“v= 1/3Sh”这一公式。

(2)求圆锥体积时,如果题中给出底面半径和高这两个条件,可以运用1/3πr?h

(3)求圆锥体积时,如果题中给出底面直径和高这两个条件,可以运用1/3π(d/2)?h

(4)求圆锥体积时,如果题中给出底面周长和高这两个条件,可以运用1/3π(c/2r)?h

六年级下册数学知识北师大版2

1、表示两个比相等的式子叫做比例。

如:3:4=9:12 。

2、比例有四个项,分别是两个内项和两个外项。

在3:4=9:12中,其中3与12叫做比例的外项,4与9叫做比例的内项。比例的四个数均不能为0。

3、比例的基本性质:在一个比例中,两个外项的积等于两个内项的积。

4、比例尺:图上距离与实际距离的比,叫做这幅图的比例尺。

图上距离÷实际距=离比例尺

图上距离=实际距离×比例尺

实际距离=图上距离÷比例尺

5、比例尺的分类:

比例尺根据实际距离是缩小还是扩大,分为缩小比例尺(比例尺<1)和放大比例尺(比例尺>1)。

根据表现形式的不同,比例尺还可分为线段比例尺和数值比例尺。

6、图形的放缩:一幅图放大或缩小,只有按照相同的比来画,画的图才像。

六年级下册数学知识北师大版3

第三单元 图形的运动

本册的图形变换知识在原来基础上进一步加深,要求能在方格纸上画出平移、旋转、轴对称后的图形,具体:

第一种旋转:要说明绕哪个点,顺时针还是逆时针,旋转多少度(90度、180度、270度)。

例如:将图形B绕点O 顺时针/逆时针 旋转 90°得到图形C;

绕中心点旋转的方向:

顺时针:即顺着钟表时针走的方向,从上往右走,再往下,最后向上。

逆时针:和顺时针的方向相反,从上往左走,再往下,最后向上。

第二种平移:要说明向什么方向(上、下、左、右)平移几个。

例如:将图形A 向上/下/左/右 平移 4 格得到图形B;

第三种作对称图形:要说明是关于哪条直线作哪个图形的对称图形。

例如:以直线 MN 为对称轴,作图形C的轴对称图形D。

第四单元 正比例和反比例

1、生活中存在着大量互相依存的变量,一种量变化,另一种量也随着变化。

2、正比例:

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

如果用字母x和y表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以表示为:y/x=k(一定)。

判断两种量是否成正比例:有些相关联的量,虽然也是一种量随着另一种量的变化而变化,但它们相对应的数的比值不一定,就不成正比例,如被减数与差,正方形的面积与边长等。

正比例的图像是一条直线。

3、反比例的意义:

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

如果用字母x和y表示两种相关联的量,用k表示它们的乘积,反比例的关系式可以表示为:x·y=k(一定)。

判断两个量是不是成反比例:要先想这两个量是不是相关联的量;再看这两个量的积是否一定;最后作出结论。

反比例的图像是一条光滑曲线。


六年级下册数学知识点北师大版相关 文章 :

★ 北师大版初一下册数学知识点复习总结

★ 北师大版小学六年级数学练习题及答案

★ 北师大六年级下册数学单元检测题

★ 小学数学三年级人教版知识点汇总(含北师大版数学)

★ 北师大初中数学知识点下册

★ 北师大初中数学知识点总结七年级下

★ 北师大版小学一年级下册数学教学目标(教师看)

★ 北师大初中数学知识点

★ 北师大版四年级数学知识点及学习方法

★ 新课标北师大版六年级数学上册教学计划

❼ 六年级下册数学重点知识点整理

天下没有免费的午餐,一切成功都要靠自己的努力去争取。机会需要把握,也需要创造。应届毕业生考试网为各位小学生同学整理了六年级下册数学重点知识点整理,供大家参考学习。更多内容请关注应届毕业生考试网。

一、负数:

1、在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。

2、初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。

3、能借助数轴初步学会比较正数、0和负数之间的大小。

二、圆柱和圆锥

1、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。

2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。

3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。

三、比例

1、理解比例的意义和基本性质,会解比例。

2、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。

4、了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。

5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

6、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育

四、统计

1、会综合应用学过的统计知识,能从统计图中准确提取统计信息,能够正确解释统计结果。

2、能根据统计图提供的信息,做出正确的判断或简单预测。

五、数学广角

1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。 2、通过“抽屉原理”的灵活应用感受数学的魅力。

六、整理和复习

1、比较系统地掌握有关整数、小数、分数和百分数、负数、比和比例、方程的基础知识。能比较熟练地进行整数、小数、分数的四则运算,能进行整数、小数加、减、乘、除的估算,会使用学过的简便算法,合理、灵活地进行计算;会解学过的方程;养成检查和验算的习惯。

2、巩固常用计量单位的表象,掌握所学单位间的进率,能够进行简单的改写。

3、掌握所学几何形体的特征;能够比较熟练地计算一些几何形体的周长、面积和体积,并能应用;巩固所学的简单的画图、测量等技能;巩固轴对称图形的认识,会画一个图形的对称轴,巩固图形的平移、旋转的认识;能用数对或根据方向和距离确定物体的位置,掌握有关比例尺的知识,并能应用。

4、掌握所学的统计初步知识,能够看和绘制简单的统计图表,能够根据数据做出简单的判断与预测,会求一些简单事件的可能性,能够解决一些计算平均数的实际问题。

5、进一步感受数学知识间的相互联系,体会数学的作用;掌握所学的常见数量关系和解决问题的思考方法,能够比较灵活地运用所学知识解决生活中一些简单的实际问题。

(一)数的读法和写法

1.整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。

2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

3.小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。

4.小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。

5.分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。

6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。

7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。

8. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。

(二)数的改写

一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。

1.准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。 例如把 1254300000

改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。

2.近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。 例如: 1302490015 省略亿后面的尾数是 13 亿。

3.四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略

345900 万后面的尾数约是 35 万。省略 4725097420 亿后面的尾数约是 47 亿。

4. 大小比较

1.比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。

2. 比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……

3. 比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。

(三)数的互化

1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

2. 分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

3. 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。

4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。

5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。

(四)数的整除

1. 把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。

2. 求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数 。

3. 求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的'公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。

4. 成为互质关系的两个数:1和任何自然数互质 ; 相邻的两个自然数互质; 当合数不是质数的倍数时,这个合数和这个质数互质;

两个合数的公约数只有1时,这两个合数互质。

(五) 约分和通分

约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。

通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

小数

1.小数的意义

把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。

一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。

在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。

2.小数的分类

纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。 带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、5.26 都是带小数。

有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。

无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 …… 3.1415926 ……

无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 例如:∏

循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 …… 0.0333 …… 12.109109 ……

一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是“ 54” 。 纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111 …… 0.5656 ……

混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 …… 0.03333 ……

写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有一个数字,就只在它的上面点一个点。例如: 3.777 …… 简写作 0.5302302 …… 简写作 。

分数

1.分数的意义

把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

2.分数的分类

真分数:分子比分母小的分数叫做真分数。真分数小于1。

假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。 带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。 3 约分和通分

把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。 分子分母是互质数的分数,叫做最简分数。

把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

(四)百分数

1.表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。

比例 表示两个相等的式子叫做比例。在比例里,两个外项的积等于两个内项。这叫做《比例的基本性质》

根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项。求比例中的未知项,叫做解比例

如: x:320=1:10 10x =320×1 x =320÷10 x =32

❽ 北师大六年级下册数学知识点

我为大家收集整理了,供大家学习借鉴参考,希望对你有帮助!

1

第一单元 圆

1、使学生认识圆的特征:圆的半径、直径、圆心。认识在同圆内半径和直径的关系。知道圆是轴对称图形,有无数条对称轴,而这些对称轴都过圆心。知道生活中有了圆才使我们的生活更美好。

2、认识同心圆、等圆。知道圆的位置由圆心决定,圆的大小由半径或直径决定。等圆的半径相等,位置不同;而同心圆的半径不同,位置相同。

3、使学生知道圆的周长和圆周率的含义,掌握圆的周长的计算公式,能够正确地计算圆的周长.介绍祖冲之在圆周率研究上的成就,渗透爱国主义教育。在运用上,要能根据圆的周长算直径或半径,会算半圆的周长:圆的周长×1/2+直径。会求组合图形的周长。

4、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。

5、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。会灵活运用圆的面积公式。已知圆的周长会算圆的面积,会求组合图形的面积。会算圆环的面积,并且知道在周长相等的情况下,正方形、长方形、圆三种图形中,圆的面积最大。

6、在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。

第二单元 百分数的应用

本单元重点讲解百分数在生活中的应用,知识点为: 1、知道百分数的意义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。百分数通常不写成分数形式,而用百分号“%”表示;百分数有时也定义为分母是100的分数,但百分数与分数是有区别的:分数既可表示具体的量,又可表示两个数量间的倍比关系;然而百分数只能表示两个数量间的倍比关系;所以是不名数,也就是不能带单位的数。

2、在具体情景中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。

3、能解决有关“增加百分之几”或“减少百分之几”的实际问题,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联络。

4、知道出勤率、出粉率、成活率等百分数的意义及在实际生活中的应用,会计算这种百分数。

5、知道成数、打折的含义。表示一个数是另一个数十分之几、百分之几的数,叫做成数。打折就是按原价的百分之几十、十分之几出售。八五折就是按原价的85%出售。成数和折扣数不能用小数表示。

6、能解决“比一个数增加百分之几的数是多少”或“比一个数减少百分之几的数是多少”的实际问题。

7、进一步加强对百分数的意义的理解,并能根据百分数的意义列方程解决实际问题,会解含有百分数的方程。

8、能利用百分数的有关知识,解决一些与储蓄有关的实际

5、能运用比的意义解决按照一定的比进行分配的实际问题,提高解决实际问题的能力。

拓展能力:能用求比值的方法化简比。

第五单元 统计

1、知道复式条形统计图、复式折线统计图的特点,理解单式与复式统计图的异同,并能在有纵轴、横轴的图上用复式条形统计图、复式折线统计图表示相应的资料,体会资料的作用。

2、能看懂复式条形统计图,并能根据复式条形统计图中的有关资料作简单的分析,判断和预测。

3、会进行资料的收集与整理。并通过资料分析发现问题,从而决定用什么什么统计图来描述资料。

第六单元 观察物体

1、能正确辨认从不同方向***正面、侧面、上面***观察到的立体图形***5个小正方体组合***的形状,并能画出草图。 2、能根据从正面、侧面、上面观察到的平面图形还原立体图形,进一步体会从三个方面观察就可以确定立体图形的形状,能根据给定的两个方向观察到的平面图形的形状,确定搭成这个立体图形所需要的正方体的数量范围。

问题,提高解决实际问题的能力。知道利息是本金存入银行过一段时间取出后多出来的钱;本金是存入银行的钱;利率就是某段时间中利息占本金的百分比;利息税是国家银行规定的针对利息收入的税收。会计算利息。利息=本金×利率×时间

9、结合储蓄等活动,学习合理理财,逐步养成不乱花钱的好习惯。

第三单元 图形的变换

1、通过观察、操作、想象,知道一个简单图形是怎样经过平移或旋转制作复杂图形的过程,体验图形的变换,发展空间观念。并能借助方格纸上的操作和分析,有条理地表达图形的平移或旋转的变换过程。

2、能利用七巧板在方格纸上变换各种图形。能运用图形的变换在方格纸上设计美丽的图案,进一步体会平移、旋转和轴对称在设计图案中的作用。

3、欣赏图案,感受图形世界的神奇。通过生活中有趣而美丽的图案,认识数学的美,体会图形世界神奇。

第四单元 比的认识

1、能从具体情境中抽象出比的过程,理解比的意义。

2、能正确读写比,会求比值,理解比与除法、分数的关系。 3、能利用比的知识解释一些简单的生活问题,感受比在生活中的广泛存在。

4、理解化简比的必要性,能运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。

2

圆柱和圆锥

一、 面的旋转

1.“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。

2.圆柱的特征:

***1***圆柱的两个底面是半径相等的两个圆。 ***2***两个底面间的距离叫做圆柱的高。

***3***圆柱有无数条高,且高的长度都相等。

3.圆锥的特征:

***1***圆锥的底面是一个圆。 ***2***圆锥的侧面是一个曲面。 ***3***圆锥只有一条高。

二、 圆柱的表面积

1.沿圆柱的高剪开,圆柱的侧面展开图是一个长方形***或正方形***。

***如果不是沿高剪开,有可能还会是平行四边形***

2.圆柱的侧面积=底面周长×高,用字母表示为:S侧=ch。

3.圆柱的侧面积公式的应用:

***1***已知底面周长和高,求侧面积,可运用公式:

S侧=ch;

***2***已知底面直径和高,求侧面积,可运用公式:

S侧=dh;

***3***已知底面半径和高,求侧面积,可运用公式:

S侧=2rh

4.圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:

S表=S侧+2S底2或S表=dh+d/2=2或S表=2rh+2r

5.圆柱表面积的计算方法的特殊应用:

***1***圆柱的表面积只包括侧面积和一个底面积的,

例如无盖水桶等圆柱形物体。

***2***圆柱的表面积只包括侧面积的,例如烟囱、油

管等圆柱形物体。

三、 圆柱的体积

1. 圆柱的体积:一个圆柱所占空间的大小。

2. 圆柱的体积=底面积×高。如果用V表示圆柱的体积,S表示底面积,h表示高,那么V=Sh。

3. 圆柱体积公式的应用:

***1*** 计算圆柱体积时,如果题中给出了底面积和高,可用公式:V=Sh。

***2*** 已知圆柱的底面半径和高,求体积,可用公式:V2=rh;

***3*** 已知圆柱的底面直径和高,求体积,可用公式:V2=***d/2***h;

***4*** 已知圆柱的底面周长和高,求体积,可用公式:V2=***C/2***h;

圆柱形容器的容积=底面积×高,用字母表示是V=Sh。

5.圆柱形容器公式的应用与圆柱体积公式的应用计算方法相同。

四、 圆锥的体积

1. 圆锥只有一条高。

2. 圆锥的体积=1/3×底面积×高。

如果用V表示圆锥的体积,S表示底面积,h表示高,则字母公式为:1/3Sh 3. 圆锥体积公式的应用:

***1***求圆锥体积时,如果题中给出底面积和高

这两个条件,可以直接运用“v= 1/3 Sh”这一公式。

***2***求圆锥体积时,如果题中给出底面半径和

高这两个条件,可以运用1/3πr²h

***3***求圆锥体积时,如果题中给出底面直径和

高这两个条件,可以运用1/3π***d/2***²h

***4***求圆锥体积时,如果题中给出底面周长和

高这两个条件,可以运用1/3π***c/2r***²h

正比例和反比例

一、 变化的量

生活中存在着大量互相依存的变数,一种量变化,另一种量也随着变化。

二、 正比例

1. 正比例的意义:两种相关联的量,一种量变化,

另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。如果用字母x和y表示两种相关联的量,用字母k表示它们的比值***一定***,正比例关系可以表示为:y/x=k***一定***。

2. 应用正比例的意义判断两种量是否成正比例:有

些相关联的量,虽然也是一种量随着另一种量的变化而变化,但它们相对应的数的比值不一定,就不成正比例,如被减数与差,正方形的面积与边长等。

三、 画一画

正比例的影象是一条直线。 四、 反比例

1. 反比例的意义:两种相关联的量,一种量变化,

另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。如果用字母x和y表示两种相关联的量,用k表示它们的乘积,反比例的关系式可以表示为:x·y=k***一定***。 2. 判断两个量是不是成反比例:要先想这两个量是

不是相关联的量;再运用数量关系式进行判断,看这两个量的积是否一定;最后作出结论。

五、 观察与探究

当两个变数成反比例关系时,所绘成的影象是一条光滑曲线。

六、 图形的放缩

一幅图放大或缩小,只有按照相同的比来画,画的图才像。

七、 比例尺

1. 比例尺:图上距离与实际距离的比,叫做这幅图

的比例尺。图上距离=实际距离×比例尺 实际距离=图上距离÷比例尺 2. 比例尺的分类:比例尺根据实际距离是缩小还是

扩大,分为缩小比例尺和放大比例尺。根据表现形式的不同,比例尺还可分为线段比例尺和数值比例尺。

3. 比例尺的应用:

***1***、已知比例尺和图上距离,求实际距离

比例尺=图上距离÷实际距离 图上距离=实际距离×比例尺 实际距离=图上距离÷比例尺 2 / 2

❾ 六年级下册数学知识点归纳

知识是人生旅途中的资粮。从而,只要我们有了更多的知识,哪怕是最可怕,最艰难的任何事,我们多有了力量去克服,有了知识我们就有了向前走的勇气,勇往直前。下面我给大家分享一些六年级下册数学知识点,希望能够帮助大家,欢迎阅读!

六年级下册数学知识点1

第一单元 负数

1、负数的由来:

为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的0 1 3.4 2/5……是远远不够的。所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负

2、负数:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。

若一个数小于0,则称它是一个负数。

负数有无数个,其中有(负整数,负分数和负小数)

负数的写法:

数字前面加负号“-”号,不可以省略

例如:-2,-5.33,-45,-2/5

正数:

大于0的数叫正数(不包括0),数轴上0右边的数叫做正数

若一个数大于0,则称它是一个正数。正数有无数个,其中有(正整数,正分数和正小数)

正数的写法:数字前面可以加正号“+”号,也可以省略不写。

例如:+2,5.33,+45,2/5

4、0 既不是正数,也不是负数,它是正、负数的分界限

6、比较两数的大小:

①利用数轴:

负数<0<正数 或 左边<右边

②利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。负数之间比较大小,数字大的反而小,数字小的反而大

六年级下册数学知识点2

第二单元 百分数二

(一)、折扣和成数

1、折扣:用于商品,现价是原价的百分之几,叫做折扣。通称“打折”。

几折就是十分之几,也就是百分之几十。

解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题 方法 进行解答。

商品现在打八折:现在的售价是原价的80﹪

商品现在打六折五:现在的售价是原价的65﹪

2、成数:

几成就是十分之几,也就是百分之几十。

解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。

这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10﹪

今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪

(二)、税率和利率

1、税率

(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

(2)纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、 教育 、 文化 和国防安全等事业。

(3)应纳税额:缴纳的税款叫做应纳税额。

(4)税率:应纳税额与各种收入的比率叫做税率。

(5)应纳税额的计算方法:

应纳税额=总收入×税率

收入额=应纳税额÷税率

2、利率

(1)存款分为活期、整存整取和零存整取等方法。

(2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。

(3)本金:存入银行的钱叫做本金。

(4)利息:取款时银行多支付的钱叫做利息。

(5)利率:利息与本金的比值叫做利率。

(6)利息的计算公式:

利息=本金×利率×时间

利率=利息÷时间÷本金×100%

(7)注意:如要上利息税(国债和教育储藏的利息不纳税),则:

税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)

税后利息=本金×利率×时间×(1-利息税率)

购物策略:

估计费用:根据实际的问题,选择合理的估算策略,进行估算。

购物策略:根据实际需要,对常见的几种优惠策略加以分析和比较,并能够最终选择最为优惠的方案

学后 反思 :做事情运用策略的好处

六年级下册数学知识点3

第三单元 圆柱和圆锥

一、圆柱

1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。

圆柱也可以由长方形卷曲而得到。

两种方式:

1.以长方形的长为底面周长,宽为高;

2.以长方形的宽为底面周长,长为高。

其中,第一种方式得到的圆柱体体积较大。

2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的

3、圆柱的特征:

(1)底面的特征:圆柱的底面是完全相等的两个圆。

(2)侧面的特征:圆柱的侧面是一个曲面。

(3)高的特征 :圆柱有无数条高

4、圆柱的切割:

①横切:切面是圆,表面积增加2倍底面积,即S 增 =2πr?

②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh

5、圆柱的侧面展开图:

①沿着高展开,展开图形是长方形,如果h=2πr,则展开图形为正方形

②不沿着高展开,展开图形是平行四边形或不规则图形

③无论怎么展开都得不到梯形

6、圆柱的相关计算公式:

底面积 :S底=πr?

底面周长:C底=πd=2πr

侧面积 :S侧=2πrh

表面积 :S表=2S底+S侧=2πr?+2πrh

体积 :V柱=πr?h

考试常见题型:

①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长

②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积

③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积

④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积

⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积

以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算

无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积

烟囱通风管的表面积=侧面积

只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装

侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、 游泳 池

侧面积+两个底面积:油桶、米桶、罐桶类

二、圆锥

1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。圆锥也可以由扇形卷曲而得到。

2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高

3、圆锥的特征:

(1)底面的特征:圆锥的底面一个圆。

(2)侧面的特征:圆锥的侧面是一个曲面。

(3)高的特征:圆锥有一条高。

4、圆锥的切割:

①横切:切面是圆

②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,

即S增=2rh

5、圆锥的相关计算公式:

底面积:S底=πr?

底面周长:C底=πd=2πr

体积:V锥=1/3πr?h

考试常见题型:

①已知圆锥的底面积和高,求体积,底面周长

②已知圆锥的底面周长和高,求圆锥的体积,底面积

③已知圆锥的底面周长和体积,求圆锥的高,底面积

以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算

三、圆柱和圆锥的关系

1、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。

2、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。

3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。

4、圆柱与圆锥等底等高 ,体积相差2/3Sh

题型 总结

①直接利用公式:分析清楚求的的是表面积,侧面积、底面积、体积

分析清楚半径变化导致底面周长、侧面积、底面积、体积的变化

分析清楚两个圆柱(或两个圆锥)半径、底面积、底面周长、侧面积、表面积、体积之比

②圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体,长方体与圆柱圆锥之间)

③横截面的问题

④浸水体积问题:(水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度)容积是圆柱或长方体,正方体

⑤等体积转换问题:一个圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的 问题,注意不要乘以1/3

六年级下册数学知识点4

第四单元 比例

1、比的意义(1)两个数相除又叫做两个数的比

(2)“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。

(5)比的后项不能是零。

(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

2、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

3、求比值和化简比:

求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。

4、按比例分配:

在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。

方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

5、比例的意义:表示两个比相等的式子叫做比例。

组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

6、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。这叫做比例的基本性质。

7、比和比例的区别

(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。

(2)比有基本性质,它是化简比的依据;比例也有基本性质,它是解比例的依据。

8、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

用字母表示x/y=k(一定)

9、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。

用字母表示x×y=k(一定)

10、判断两种量成正比例还是成反比例的方法:

关键是看这两个相关联的量中相对就的两个数的商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例。

11、比例尺:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

12、比例尺的分类

(1)数值比例尺和线段比例尺 (2)缩小比例尺和放大比例尺

13、图上距离:

图上距离/实际距离=比例尺

实际距离×比例尺=图上距离

图上距离÷比例尺=实际距离

14、应用比例尺画图的步骤:

(1)写出图的名称、

(2)确定比例尺;

(3)根据比例尺求出图上距离;

(4)画图(画出单位长度)

(5)标出实际距离,写清地点名称

(6)标出比例尺

15、图形的放大与缩小:形状相同,大小不同。

16、用比例解决问题:

根据问题中的不变量找出两种相关联的量,并正确判断这两种相关联的量成什么比例关系,并根据正、反比例关系式列出相应的方程并求解。

17、常见的数量关系式:(成正比例或成反比例)

单价×数量=总价

单产量×数量=总产量

速度×时间=路程

工效×工作时间=工作总量

18、

已知图上距离和实际距离可以求比例尺。

已知比例尺和图上距离可以求实际距离。

已知比例尺和实际距离可以求图上距离。

计算时图距和实距单位必须统一。

19、播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?

答:每天播种的公顷数×天数=播种的总公顷数

已知播种的总公顷数一定,就是每天播种的公顷数和要用的天数的积是一定的,所以每天播种的公顷数和要用的天数成反比例。

六年级下册数学知识点5

第五单元 数学广角-鸽巢问题

1、鸽巣原理是一个重要而又基本的组合原理, 在解决数学问题时有非常重要的作用

②利用公式进行解题:

物体个数÷鸽巣个数=商……余数

至少个数=商+1

2、摸2个同色球计算方法。

①要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多1。

物体数=颜色数×(至少数-1)+1

②极端思想: 用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都能保证一定有两个球是同色的。

③公式:

两种颜色:2+1=3(个)

三种颜色:3+1=4(个)

四种颜色:4+1=5(个)


六年级下册数学知识点归纳相关 文章 :

★ 六年级数学期末复习知识点汇总

★ 人教版六年级数学(下册)期末知识要点

★ 六年级数学下册必背知识点总结

★ 六年级上册数学知识点整理归纳

★ 六年级数学几何的初步知识知识点总结

★ 小学六年级数学知识点总结

★ 小升初考试必备数学一到六年级的知识点

★ 小升初一至六年级数学知识点整理

★ 小学六年级数学学习方法和技巧大全

★ 小学六年级数学知识点盘点