‘壹’ 初一数学上册知识点总结
= 总结 所学内容,进行学法的理性 反思 ,强化并进行迁移运用,在训练中掌握学法。下面给大家带来一些关于初一数学上册知识点总结,希望对大家有所帮助。
初一数学上册知识点1
正负数
1.正数:大于0的数。
2.负数:小于0的数。
3.0即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数
1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)
2.整数:正整数、0、负整数,统称整数。
3.分数:正分数、负分数。
(三)数轴
1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)
2.数轴的三要素:原点、正方向、单位长度。
3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。
4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
(四)有理数的加减法
1.先定符号,再算绝对值。
2.加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。
3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。
4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。5.a?b=a+(?b)减去一个数,等于加这个数的相反数。
(五)有理数乘法(先定积的符号,再定积的大小)
1.同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
2.乘积是1的两个数互为倒数。
3.乘法交换律:ab=ba
4.乘法结合律:(ab)c=a(bc)
5.乘法分配律:a(b+c)=ab+ac
(六)有理数除法
1.先将除法化成乘法,然后定符号,最后求结果。
2.除以一个不等于0的数,等于乘这个数的倒数。
3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。(七)乘方1.求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。3.同底数幂相乘,底不变,指数相加。
4.同底数幂相除,底不变,指数相减。
(八)有理数的加减乘除混合运算法则
1.先乘方,再乘除,最后加减。
2.同级运算,从左到右进行。
3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
(九)科学记数法、近似数、有效数字。
初一数学上册知识点2
1.有理数:
(1)凡能写成 形式的数,都是有理数,整数和分数统称有理数.
注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;?不是有理数;
(2)有理数的分类: ① ②
(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
(4)自然数? 0和正整数; a>0 ? a是正数; a<0 ? a是负数;
a≥0 ? a是正数或0 ? a是非负数; a≤ 0 ? a是负数或0 ? a是非正数.
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
(3)相反数的和为0 ? a+b=0 ? a、b互为相反数.
(4)相反数的商为-1.
(5)相反数的绝对值相等
4.绝对值:
(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;
注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2) 绝对值可表示为: 或 ;
(3) ; ;
(4) |a|是重要的非负数,即|a|≥0;
5.有理数比大小:
(1)正数永远比0大,负数永远比0小;
(2)正数大于一切负数;
(3)两个负数比较,绝对值大的反而小;
(4)数轴上的两个数,右边的数总比左边的数大;
(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差, 绝对值越小,越接近标准。
6.倒数:乘积为1的两个数互为倒数;
注意:0没有倒数; 若ab=1? a、b互为倒数; 若ab=-1? a、b互为负倒数.
等于本身的数汇总:
相反数等于本身的数:0
倒数等于本身的数:1,-1
绝对值等于本身的数:正数和0
平方等于本身的数:0,1
立方等于本身的数:0,1,-1.
7. 有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
8.有理数加法的运算律:
(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).
9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).
10 有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。
11 有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .(简便运算)
12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, .
13.有理数乘方的法则:(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;
14.乘方的定义:(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
(3)a2是重要的非负数,即a2≥0;若a2+|b|=0 ? a=0,b=0;
(4)据规律 底数的小数点移动一位,平方数的小数点移动二位.
15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.
16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.
17.混合运算法则:先乘方,后乘除,最后加减; 注意:不省过程,不跳步骤。
18.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种 方法 ,但不能用于证明.常用于填空,选择。
初一数学上册知识点3
实数:
—有理数与无理数统称为实数。
有理数:
整数和分数统称为有理数。
无理数:
无理数是指无限不循环小数。
自然数:
表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。
数轴:
规定了圆点、正方向和单位长度的直线叫做数轴。
相反数:
符号不同的两个数互为相反数。
倒数:
乘积是1的两个数互为倒数。
绝对值:
数轴上表示数a的点与圆点的距离称为a的绝对值。一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。
数学定理公式
有理数的运算法则
⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
⑵减法法则:减去一个数,等于加上这个数的相反数。
⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。
角的平分线:从角的一个顶点引出一条射线,能把这个角平均分成两份,这条射线叫做这个角的角平分线。
数学第一章相交线
一、邻补角:两条直线相交所成的四个角中,有公共顶点,并且有一条公共边,这样的角叫做邻补角。邻补角是一种特殊位置关系和数量关系的角,即邻补角一定是补角,但补角不一定是邻补角。
二、对顶角:是两条直线相交形成的。两个角的两边互为反向延长线,因此对顶角也可以说成“把一个角的两边反向延长而形成的两个角叫做对顶角”。
初一数学上册知识点4
多项式除以单项式
一、单项式
1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式
1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数的项的次数,叫做这个多项式的次数。
三、整式
1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减
1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3、几个整式相加减的一般步骤:
(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤:
(1)代数式化简。
(2)代入计算
(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
五、同底数幂的乘法
1、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。
2、底数相同的幂叫做同底数幂。
3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。
4、此法则也可以逆用,即:am+n=am﹒an。
5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。
六、幂的乘方
1、幂的乘方是指几个相同的幂相乘。(am)n表示n个am相乘。
2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n=amn。
3、此法则也可以逆用,即:amn=(am)n=(an)m。
七、积的乘方
1、积的乘方是指底数是乘积形式的乘方。
2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。
3、此法则也可以逆用,即:anbn=(ab)n。
八、三种“幂的运算法则”异同点
1、共同点:
(1)法则中的底数不变,只对指数做运算。
(2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。
(3)对于含有3个或3个以上的运算,法则仍然成立。
2、不同点:
(1)同底数幂相乘是指数相加。
(2)幂的乘方是指数相乘。
(3)积的乘方是每个因式分别乘方,再将结果相乘。
九、同底数幂的除法
1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:am÷an=am-n(a≠0)。
2、此法则也可以逆用,即:am-n=am÷an(a≠0)。
十、零指数幂
1、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。
十一、负指数幂
1、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:
注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。
十二、整式的乘法
(一)单项式与单项式相乘
1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
2、系数相乘时,注意符号。
3、相同字母的幂相乘时,底数不变,指数相加。
4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。
5、单项式乘以单项式的结果仍是单项式。
6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。
(二)单项式与多项式相乘
1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。
2、运算时注意积的符号,多项式的每一项都包括它前面的符号。
3、积是一个多项式,其项数与多项式的项数相同。
4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。
(三)多项式与多项式相乘
1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。即:(m+n)(a+b)=ma+mb+na+nb。
2、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。
3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。
4、运算结果中有同类项的要合并同类项。
5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:(x+a)(x+b)=x2+(a+b)x+ab。
十三、平方差公式
1、(a+b)(a-b)=a2-b2,即:两数和与这两数差的积,等于它们的平方之差。
2、平方差公式中的a、b可以是单项式,也可以是多项式。
3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。
4、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成
(a+b)?(a-b)的形式,然后看a2与b2是否容易计算。
初一数学上册知识点总结相关 文章 :
★ 初一数学上册知识点归纳
★ 初一上册数学知识点归纳整理
★ 初一数学上册重点知识整理
★ 七年级上册数学知识点总结三篇
★ 七年级上册数学月考知识点整理
★ 七年级英语上册各单元知识点汇总
★ 初一年级上册数学的21个热门知识点
★ 初一上册数学知识点手抄报
★ 初一上册数学合并同类项教案
★ 初中七年级上册数学《整式》教案优质范文五篇
‘贰’ 帮忙找一下:初一上学期数学,语文,英语,历史,生物的知识点归纳,谢谢!
数学知识点:有理数的概念与运算、一元一次方程、二元一次方程组、一元一次不等式、一元一次不等式组、图形认识初步、平面直角坐标系、相交线和平行线等等.
历史知识点:1.主要国家建立情况
国家 建立时间 建立者 亡国者 都城
夏 前2070年 禹 桀 阳城
商 前1600年 汤 纣 亳、殷
西周 前1046年 周武王 周幽王 镐京
秦 前221年 嬴政 咸阳
西汉 前206年 刘邦 长安
魏 220年 曹丕 洛阳
蜀 221年 刘备 成都
吴 222年 孙权 建业
2.古代主要政治制度
禅让制:原始社会首领产生方式; 王位世袭制:从夏禹传子启开始
分封制:西周开始; 中央集权制:秦朝开创,包括皇帝制、三公制、郡县制。
3.春秋五霸:齐桓公、宋襄公、晋文公、秦穆公、楚庄王
4.战国七雄:齐、楚、秦、燕、赵、魏、韩
5.称号与人物
神农氏:炎帝; 中华民族人文始祖:炎帝和黄帝; 大禹:禹
医圣:张仲景; 神医:华佗; 书圣:王羲之
6.人物与成就
李冰:都江堰 张骞:出使西域 蔡伦:改进造纸术 张仲景:《伤寒杂病论》
华佗:麻沸散 司马迁:《史记》 祖冲之:圆周率 贾思勰:《齐民要术》
郦道元:《水经注》 王羲之:《兰亭序》 顾恺之:《女史箴图》、《洛神赋图》
7.战国时期主要的思想流派和代表人物
墨家:墨子 儒家:孟子 道家:庄子 法家:韩非子
每一阶段的学习都有要求我们掌握的基础知识,考前复习时对这些基础知识的梳理十分重要。一学期学下来对于英语基础知识我们常有“剪不断,理还乱”的感觉,但正因为它“乱”,所以梳理才显得必要。我们可以将本学期所学的基础知识作如下梳理:
英语知识点:1. 名词
首先,注意可数名词和不可数名词。A. 数的区别:可数名词有单、复数,其复数形式一般是在其后加上-(e)s。不可数名词只有单数形式,而没有复数的变化。B. 量的表达区别:可数名词前可用a(n)及数词来表示其量,也可借助于其它的可数名词,用of介词来表示其量,此时,表示量的可数名词有单、复数变化,表示事物的可数名词本身则必须用复数。不可数名词前则不可用a(n)及数词来表示其量,只可借助于其它可数名词,表示量的可数名词有单、复数的变化,不可数名词没有数的变化。C. 修饰词的差异:可数名词和不可数名词前都可用some, any来修饰,表示“一些”之意,而表示“很多”之意时,可数名词(复数形式)前应用many或a lot of;不可数名词(只可用单数形式)前应用much 或a lot of。询问可数名词的量用how many, 而询问不可数名词的量则应用how much。
其次,注意名词所有格的用法。有生命事物名词的所有格应在其后加上's。方法:A. 单数名词在其后直接加's。B. 以-s结尾的复数名词,在其后加上’, 而不可加's。C. 以非s结尾的复数名词,需在其后加上's。D. 表示两个或两个以上的人共有某个人或某个事物时,只需将最后一个名词变为所有格,前面的各个名词无需变为所有格。E. 表示两个或两个以上的人分别有某人或某物时,各个名词均需变为所有格形式。注意:表示无生命事物的名词一般应用of介词短语来构成其所有格。
2. 英语限定词的用法
英语名词前一般常会用上a(n), the, some, any等词修饰它,这些词都叫限定词。限定词的使用应注意选择,不可滥用、混用。
首先,注意冠词的用法。a(n)为不定冠词,它常用在单数可数名词前,表示不确定的人或事物。a用在以辅音音素开头的词、数字、字母、符号等前;an用在以元音音素开头的词前。the为定冠词,可用在单数可数名词、不可数名词或复数可数名词前表示确定的人或事物。
其次,注意some和any表示“一些”之意的用法。some一般用于肯定句中,any用于否定句和疑问句中,在表示请求或希望对方作出肯定回答的疑问句中一般用some,而不能用any。
3. 人称代词和物主代词的用法
人称代词是用以代替某个人或某个事物的代词,有主、宾格之分。主格在句中充当主语,宾格则充当宾语。
物主代词用以表示某个人或某个事物属于某个人或某个事物所有,有形容词性物主代词和名词性物主代词之分。形容词性物主代词放在名词或代词前修饰该名词或代词,名词性物主代词本身便代替了某个人或某个事物,其后不可再用名词或代词了。
4. There be句型
There be结构表示 “在某地或某时存在有某物”,be为句子的谓语,后面的名词是句子的主语。 A. 注意其中be的人称和数:后面的名词为单数可数名词或不可数名词时,be用is。后面的名词为可数名词复数时,be用are。如果不可数名词前有可数名词修饰,后面的动词be的人称和数应和可数名词保持一致。而后面的名词不止一个时,be的人称和数应和与其最为靠近的一个名词的人称和数保持一致。B. 注意There be和have (has)的不同用法:There be结构表示“存在”有某人或某物;而have (has)则表示某人或某物归某人“所有”。在表示整体和部分的关系时,There be结构和have (has)常可互换使用。
5. 祈使句
祈使句常用来表示命令、请求、建议等语气,它的主语为you,通常省略,而以动词原形开头。表示命令语气的祈使句一般用降调来朗读,而表示请求或建议语气的祈使句一般用升调来朗读。其否定形式是在实义动词前加上don't,即使动词是be也是如此。
6. 介词(短语)的用法
介词一般用于名词或代词之前,表示主语与介词后面的名词或代词和句子其它成份的关系。介词和其后的名词或代词构成介词短语。介词短语在句中常用作表语、状语、定语等。不同的介词有不同的用法,在此不作赘述。
7. 一般疑问句、特殊疑问句和选择疑问句
一般疑问句一般以动词be或助动词do开头,常用yes或no作回答;特殊疑问句则以特殊疑问词开头,不用yes或no作回答。如果在一般疑问句中有or连接了选择项,则该疑问句便为选择疑问句,选择疑问句也不用yes或no作回答,而应根据具体情况直接作出回答。
8. 注意同义词的辨析
初一上学期的重点同义词有:a, an和one; no和not; excuse me和sorry; it's和its; who和what; look like和look the same; let's和let us; good, nice; fine, well和all right; look; look at; see和watch; and和or; family, house和home; with和and; what, which和who;one和it; whose和who's; put on, wear和in; other和else; say, speak, talk和tell;get和get to等。
9. 常用口语及话题
初一上学期要求我们掌握的口语有:问候、介绍、告别、打电话、感谢与应答、意愿、道歉与应答、提供帮助及应答、请求允许与应答、表示同意与不同意、喜好与厌恶、表示感情、请求帮助、询问时间等。话题有:谈论家庭、朋友和周围的人、日常生活、兴趣与爱好、文体活动、健康、食品与饮料、服饰、职业等。
通过对上面各个知识点的梳理,能够使整个学期所学习的基础知识在我们头脑中构建起一个知识网络,从而形成一个完整的知识体系。我们在归纳时,对于那些让我们感到模糊不清的知识点一定要查资料、查笔记,特别是《英语通》杂志是你最好的助手,力求弄清、弄懂。
语文知识点主要是培养学生整体阅读能力方面,没有太多要求。
‘叁’ 七年级数学的知识点归纳总结
学习的成功与失败原因是多方面的,要首先从自己身上找原因,才能受到鼓舞,找出努力的方向。每一门科目都有自己的 学习 方法 ,数学其实和语文英语一样,也是要记、要背、要练的。下面是我给大家整理的一些 七年级数学 的知识点,希望对大家有所帮助。
初一下册数学知识点 总结
1、单项式:数字与字母的积,叫做单项式。
2、多项式:几个单项式的和,叫做多项式。
3、整式:单项式和多项式统称整式。
4、单项式的次数:单项式中所有字母的指数的和叫单项式的次数。
5、多项式的次数:多项式中次数的项的次数,就是这个多项式的次数。
6、余角:两个角的和为90度,这两个角叫做互为余角。
7、补角:两个角的和为180度,这两个角叫做互为补角。
8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。
9、同位角:在“三线八角”中,位置相同的角,就是同位角。
10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。
11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。
12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。
13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。
14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。
17、全等图形:两个能够重合的图形称为全等图形。
18、变量:变化的数量,就叫变量。
19、自变量:在变化的量中主动发生变化的,变叫自变量。
20、因变量:随着自变量变化而被动发生变化的量,叫因变量。
21、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。
22、对称轴:轴对称图形中对折的直线叫做对称轴。
初一下册数学知识点总结北师大版
一、同底数幂的乘法
(m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:
a)法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;
b)指数是1时,不要误以为没有指数;
c)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;
二、幂的乘方与积的乘方
三、同底数幂的除法
(1)运用法则的前提是底数相同,只有底数相同,才能用此法则
(2)底数可以是具体的数,也可以是单项式或多项式
(3)指数相减指的是被除式的指数减去除式的指数,要求差不为负
四、整式的乘法
1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。单独的一个数或一个字母也是单项式。单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。
如:bca22-的系数为2-,次数为4,单独的一个非零数的次数是0。
2、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数项的次数叫多项式的次数。
五、平方差公式
表达式:(a+b)(a-b)=a^2-b^2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式
公式运用
可用于某些分母含有根号的分式:
1/(3-4倍根号2)化简:
六、完全平方公式
完全平方公式中常见错误有:
①漏下了一次项
②混淆公式
③运算结果中符号错误
④变式应用难于掌握。
七、整式的除法
1、单项式的除法法则
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
注意:首先确定结果的系数(即系数相除),然后同底数幂相除,如果只在被除式里含有的字母,则连同它的指数作为商的一个因式。
七年级数学学习知识点
一元一次方程
一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.
一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0).
一元一次方程的最简形式: ax=b(x是未知数,a、b是已知数,且a≠0).
一元一次方程解法的一般步骤: 整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… (检验方程的解).
列方程解应用题的常用公式:
(1)行程问题:距离=速度·时间;
(2)工程问题:工作量=工效·工时;
(3)比率问题:部分=全体·比率;
(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;
(5)商品价格问题:售价=定价·折·0.1 ,利润=售价-成本;
(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab, C正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abc ,V正方体=a3,V圆柱=πR2h ,V圆锥=1/3πR2h.
七年级数学的知识点归纳总结相关 文章 :
★ 初中七年级数学知识点归纳整理
★ 初一数学知识点归纳梳理
★ 七年级数学知识点整理大全
★ 七年级数学知识点大全
★ 初一数学知识点归纳与学习方法
★ 七年级数学知识点总结
★ 初一数学学习方法指导与学习方法总结
★ 人教版初一数学知识点整理
★ 初一数学上册知识点归纳
★ 初一数学的知识点归纳
‘肆’ 七年级数学下册知识点整理
每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要讲练的。下面是我给大家整理的一些 七年级数学 知识点的学习资料,希望对大家有所帮助。
七年级数学知识点归纳
变量之间的关系
一理论理解
1、若Y随X的变化而变化,则X是自变量Y是因变量。
自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量,数值保持不变的量叫做常量。
3、若等腰三角形顶角是y,底角是x,那么y与x的关系式为y=180-2x.
2、能确定变量之间的关系式:相关公式①路程=速度×时间②长方形周长=2×(长+宽)③梯形面积=(上底+下底)×高÷2④本息和=本金+利率×本金×时间。⑤总价=单价×总量。⑥平均速度=总路程÷总时间
二、列表法:采用数表相结合的形式,运用表格可以表示两个变量之间的关系。列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的对应值。列表法的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。
三.关系式法:关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值。
四、图像注意:a.认真理解图象的含义,注意选择一个能反映题意的图象;b.从横轴和纵轴的实际意义理解图象上特殊点的含义(坐标),特别是图像的起点、拐点、交点
八、事物变化趋势的描述:对事物变化趋势的描述一般有两种:
1.随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大));
2.随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小).
注意:如果在整个过程中事物的变化趋势不一样,可以采用分段描述.例如在什么范围内随着自变量x的逐渐增加(大),因变量y逐渐增加(大)等等.
九、估计(或者估算)对事物的估计(或者估算)有三种:
1.利用事物的变化规律进行估计(或者估算).例如:自变量x每增加一定量,因变量y的变化情况;平均每次(年)的变化情况(平均每次的变化量=(尾数-首数)/次数或相差年数)等等;
2.利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;
3.利用关系式:首先求出关系式,然后直接代入求值即可.
初一数学下册知识点 总结
一元一次方程的解
定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解。
把方程的解代入原方程,等式左右两边相等。
13、解一元一次方程:
1.解一元一次方程的一般步骤
去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化。
2.解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号。
3.在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c。
使方程逐渐转化为ax=b的最简形式体现化归思想。
将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要准确判断符号,a、b同号x为正,a、b异号x为负。
14、一元一次方程的应用
1.一元一次方程解应用题的类型
(1)探索规律型问题;
(2)数字问题;
(3)销售问题(利润=售价﹣进价,利润率=利润进价×100%);
(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);
(5)行程问题(路程=速度×时间);
(6)等值变换问题;
(7)和,差,倍,分问题;
(8)分配问题;
(9)比赛积分问题;
(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).
2.利用方程解决实际问题的基本思路:
首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答。
列一元一次方程解应用题的五个步骤
(1)审:仔细审题,确定已知量和未知量,找出它们之间的等量关系.
(2)设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数.
(3)列:根据等量关系列出方程.
(4)解:解方程,求得未知数的值.
(5)答:检验未知数的值是否正确,是否符合题意,完整地写出答句.
初一数学方法技巧
我们怎样预习呢?
曰:“先 说说 学习的目标:
(1)知道知识产生的背景,弄清知识形成的过程。
(2)或早或晚的知道知识的地位和作用:
(3)总结出认识问题的规律(或说出认识问题使用了以前的什么规律)。
再说具体的做法:(1)对概念的理解。数学具有高度的抽象性。通常要借助具体的东西加以理解。有时借助字面的含义:有时借助其他学科知识。有时借助图形……理解概念的境界是意会。一定要在理解概念上下一番苦功夫后再做题。
(2)对公式定理的预习,公式定理是使用最多的“规律”的总结。如:完全平方公式,勾股定理等。往往公式的推导定理的证明蕴含着丰富的数学方法及相当有用的解题规律。如三角形内角平分线定理的证明。我们应当先自己推导公式或证明定理,若做不成再参考别人的做法。无论是自己完成的,还是看别人的,都要说出这样做是怎样想出来的。
(3)对于例题及习题的处理见上面的(2)及下面的第五条。
七年级数学下册知识点相关 文章 :
★ 初一数学下册知识点归纳总结
★ 初一数学下册知识点
★ 初一数学下册基本知识点总结
★ 七年级下册数学复习提纲
★ 初一下期数学知识点总结
★ 初中数学七年级下册知识点提纲
★ 2021七年级下册数学复习提纲
★ 七年级下数学知识点总结
★ 七年级数学下册知识点及练习题
★ 人教版初一数学下册知识点
‘伍’ 求初一数学语文英语的知识点
per month/week/year 每个月/星期/年
call sb at +号码 打某人……电话
think over=think about=think of 考虑
a single room 一间单人房间
a double-room house 一间双人房
a 3-bedroom house一间3卧室的房间
rent sth from sb. 向某人租….. 求租…
rent sth to sb. 租给某人…... 出租…..
around here 这周围
on the street corner 在街角处
There is something wrong with…….
……有什么毛病?
get sb to do sth.=ask sb to do sth.= let sb do sth. 让某人做某事.
right now 马上,立刻.
a lot of 许多.
be close to / be near与…接近
be far from 离…很远
keep money 存钱
take trains 乘火车
mail letters 寄信
see the doctor 看病
hear sb doing sth . 听到某人正做某事.
try to do sth. 试着做某事.
such a station 这样的一个车站
move from…to… 从…移到/搬到…
at the end of… 在…末梢
on the right 在右边
The traffic is heavy. 交通拥挤
enjoy doing sth.喜欢做某事
Unit 6 Topic 3
go /walk across =cross 穿过
on the corner of… 在…的拐弯处
(be) across from… 穿过…, 在…对面
on one’s /the way to
在(某人)去某地的路上
get to… 到达…get home /there/here
(be) far away from… 远离…
need to do sth. 需要做某事
need do sth. 需要做某事
change to the No.1 bus.转1路车。
a ticket for speeding(开车时)超速的罚单
thousands of 成千的,好几千的
get hurt=be hurt受伤
in a road accident 在一次交通事故中
make the road safe 使交通安全
obey the traffic rules 遵守交通规则
keep on the right 保持向右行
be clear 安全的/清洁的
It is good to do sth 做某事很好
blind people 盲人
Unit7Topic 1
next / last Saturday 下星期六/ 上星期六
be fun/interesting 有趣
plan to do sth. 计划做某事
want to do sth. 想要做某事
have a birthday party开一次生日晚会
Would you like sth.你想要……
Would you like to do sth. 你想要做某事
You bet./ Of course./ Sure./ Certainly.
当然啦
be born 出生
use sth for doing sth 用于作…
look up 查阅,查找
must be 一定是
Unit7Topic2
perform ballet 跳芭蕾舞
dance the disco跳迪斯科
take photos ( of…) 照相
sing songs for sb.为某人唱歌
take sth./sb. to sw 把某物带到某处
take sth.with sb. 随身带上某物
work out 算出 work on 演算
fly a kite / fly kites 放风筝
one year ago 一年前 two years ago两年前
play table tennis 打乒乓球
be good at (doing)sth 擅长做某事
have a good time 玩得很开心
Something is / was wrong with…
什么有毛病
with the help of ….在……的帮助下
make model planes.制作模型飞机
Unit7Topic3
It’s one’s turn. 轮到某人了
What’s the matter?/What’s wrong?What’s up? 怎么啦?
fall down 跌倒
happen to sb.发生在某人身上
go to a movie =see a film = go to the cinema
去看电影
lie to sb. 对某人说谎
tell a lie (to sb) 说谎 tell- told
talk about 谈论 in fact 事实上
sit around… 围坐在…
make the cards 做卡片
make a silent wish 默默许愿
write a letter to sb. / write to sb.
写信给某人
Unit 8 Topic 1
climb mountains = go climbing爬山
go hiking 踏青
make a snowman(snowmen) 做雪人
in spring / summer / fall / winter
在春/夏/秋/冬
like sth best 最喜欢
like sth better 更喜欢
nice and =very, quite 很,挺
all day 整天
be coming 就要来了
go on sth. 进行某事
go on a trip 进行旅行
go out 出去
take an umbrella 带伞
wear sunglasses 带太阳镜
wear warm clothes 穿暖和的衣服
remember to do sth. 记住要去做某事
remember doing sth. 记住做过某事
(be) the same as 与……一样
travel to sw. 旅游到某地
wear an overcoat 穿一件大衣
come back to life 复苏, 复活
get warm 变暖和
a hopeful season. 一个充满生机的季节。
A harvest season. 一个丰收的季节.
come after 来自……之后
be busy doing sth.忙于做….
last from…to…持续从……到
last for 持续
Unit 8 Topic2
travel around 周游
take pictures/photos of… 拍……的照片
hope to do sth. / hope (that)+句子
希望做某事
next month 下个月
places of interest 名胜
each of us 我们中的每一个人
tell sb sth.about告诉某人关于……某事
take off 拖掉,起飞
point to 指点
touch a child on the head 摸小孩的头
do some touring 观光
do some shopping/cleaning
买东西/做卫生
need to do sth.需做某事
give sth. to sb. /give sb.sth. 给某人某物
pass sth.to sb. /pass sb. sth. 递某物给某人
be friendly to sb 对某人友好
be different from 与……不同
Unit 8 Topic3
make mpings 做饺子
each other 相互,互相
have families get together.举行家庭聚会
on this day 在这一天 good luck 好运
stay up 熬夜 send sth. to sb. 送某人某物
play tricks on sb.= trick on sb 开某人玩笑
pick up摘,捡起 knock at/ on 敲
on the night of 在……夜晚
go touring / shopping 去旅行/ 购物
enjoy a seven-day holiday享受7天的假期
hold dragon boat races举行龙舟赛
the capital of ……的首都,…….的省会
go up 升起
Best wishes to sb.! 致某人最好的祝愿
on the eve of 在……前夕
at midnight 在午夜
put up 挂
with
最令某人高兴的是 To one’s joy
取得很大的进步
在户外in the open air
与某人聊天 chat with
互相 each other =with one another
与某人相聚 have a get-together with
很快,马上 (at)any minute now
及时 in time
匆忙in a hurry
动身,出发 set off
朝回走 head back
朝回家的路走 head back home
有一个美好的未来 have a great future
期望做某事 look forward to doing sth.
给某人一个拥抱 give a hug to sb.
旅途平安 Have a safe flight!
出去散步 go out for a walk
‘陆’ 初一数学单元知识点归纳5篇(精选)
每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要讲练的。下面是我给大家整理的一些初一数学的知识点,希望对大家有所帮助。
初一数学第一单元知识点
1.有理数:
(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)相反数的和为0a+b=0a、b互为相反数.
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2)绝对值可表示为:或;绝对值的问题经常分类讨论;
5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.
6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.
7.有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
8.有理数加法的运算律:
(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).
9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).
10.有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.
11.有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac.
12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.
13.有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.
14.乘方的定义:
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.
16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.
17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。
18.混合运算法则:先乘方,后乘除,最后加减。
2数学常用计算公式表(1)长方形面积=长×宽,计算公式s=a b
(2)正方形面积=边长×边长,计算公式s=a × a
(3)长方形周长:(长+宽)× 2,计算公式s=(a+b)× 2
(4)正方形周长=边长× 4,计算公式s= 4a i
(5)平形四边形面积=底×高,计算公式s=a h.
(6)三角形面积=底×高÷2,计算公式s=a×h÷2
(7)梯形面积=(上底+下底)×高÷2,计算公式s=(a+b)×h÷2
(8)长方体体积=长×宽×高,计算公式v=a bh
(9)圆的面积=圆周率×半径平方,计算公式s=лr2
(10)正方体体积=棱长×棱长×棱长,计算公式v=a3
初一下册数学知识点 总结
1.1正数与负数
在以前学过的0以外的数前面加上负号“-”的数叫负数(negativenumber)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positivenumber)(根据需要,有时在正数前面也加上“+”)。
1.2有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rationalnumber)。
通常用一条直线上的点表示数,这条直线叫数轴(numberaxis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(oppositenumber)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
1.3有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。
1.4有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(basenumber),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significantdigit)。
初中 一年级数学 上册知识
整式的加减
一、代数式
1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。
2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。
二、整式
1、单项式:
(1)由数和字母的乘积组成的代数式叫做单项式。
(2)单项式中的数字因数叫做这个单项式的系数。
(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2、多项式
(1)几个单项式的和,叫做多项式。
(2)每个单项式叫做多项式的项。
(3)不含字母的项叫做常数项。
3、升幂排列与降幂排列
(1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。
(2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。
三、整式的加减
1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。
2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
合并同类项:
(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。
(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
(3)合并同类项步骤:
a.准确的找出同类项。
b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
c.写出合并后的结果。
(4)在掌握合并同类项时注意:
a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.
b.不要漏掉不能合并的项。
c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
说明:合并同类项的关键是正确判断同类项。
3、几个整式相加减的一般步骤:
(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
初一数学上册知识点归纳
代数初步知识
1. 代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)
2.列代数式的几个注意事项:
(1)数与字母相乘,或字母与字母相乘通常使用“? ” 乘,或省略不写;
(2)数与数相乘,仍应使用“×”乘,不用“? ”乘,也不能省略乘号;
(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;
(4)带分数与字母相乘时,要把带分数改成假分数形式,如a× 应写成 a;
(5)在代数式中出现除法运算时,一般用 分数线 将被除式和除式联系,如3÷a写成 的形式;
(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .
3.几个重要的代数式:(m、n表示整数)
(1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ;
(2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c;
(3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ;
(4)若b>0,则正数是:a2+b ,负数是: -a2-b ,非负数是: a2 ,非正数是:-a2 .
初一数学 复习方法
考试与作业逻辑不同:
我们的考试不同于作业,有些孩子作业写的还可以,准确率挺高的,但是考试成绩不理想。比如学校上完课,回家就写当天的作业,但是考试不一样,它是阶段性的、综合性的;再比如写作业,可以看资料,不会的可以请教同学,但是考试就得靠自己;还有写作业时格式不一定规范,不一定符合标准,但是考试老师会要求很严格;另外有些孩子考试比较焦虑,考试之前,爸爸妈妈给孩子加油鼓劲,反倒孩子考不好,有些孩子甚至在考试前后一定要上厕所,排解压力,甚至影响到考试成绩。
那具体涉及到数学的复习,我以北师大版为例,可以分4个步骤:
复习方法总结
1回归书本,梳理章节概念公式、性质定理等
就像盖房子,房子的地基是否扎实稳固。比如我们在复习课中,要求孩子们默写公式等,记忆单项式、多项式、整式的概念,以及幂的运算、整式乘除的法则,而且一定要记住平方差和完全平方公式以及变形。有些孩子能够背下完全平方公式,但是一旦用的时候,就偏偏不用,因为不够熟练,怕出错,所以就用最复杂的公式推导一遍,费时费力,还总错,而且重要的公式更加生疏。
比如知识点填空:
知识点填空
我们的孩子在学校大题普遍做的多,考试也能拿到一些分数,但是选择填空老错,考完试下来一看,错就错在概念不清。
比如平行线是怎么定义,性质定理有几条,判定定理有几条?他们之间有什么联系和区别?在这一章中,哪些地方一定要加“同一平面内”这5个字?家长们可以让孩子找找看,捋一捋。
再比如说,三角形一章,涉及到三边关系,角的关系,以及三角形的重要线段和它们的性质,等腰等边三角形的性质,这些一定是期末选择题的备选项。
还有全等的几种证明方法,常见的辅助线做法这是几何证明题的思路。
2题型突破,对各章节常见的 热点 问题归纳练习。
我们的数学、物理这些理科都是要做题型的,而不仅仅是做题,一定要明白思路。
大多数孩子要考的题型和难度,学校每天的作业以及每周的考试卷,你都必须分析一下,对题型归类,你可以用不同的笔标记一下,比如第2题和第8题是一类题,是化简求值还是公式的变形应用?通过这样一遍的分析,孩子们都会发现,其实考来考去,就是那几种题型反复的出,反复的练。这是非常高效的学习方法。
3、熟悉套路、模型
平行线常见的模型:铅笔模型、猪蹄模型,比如我经常和大家说的,遇见拐点,就做平行线。
三角形倒角常见模型:8字型、飞镖型、折角型。
三角形全等模型:角平分线的性质模型,等腰直角三角形模型,三垂直模型,翻折(对称)。
学好这些模型相等于我们是拿着工具箱考试,效率很高,比起其他同学,省去了推导的过程,速度又快,又准确。当然前提要掌握好基础内容,不要本末倒置。
如果孩子们能把前面的步骤都做好了,基本知识点,题型都掌握了,计算也不会出错,那你们考试一定没有问题,除了有些学校本来要求考很难,比如压轴题,不在于做的多,而是在精练,你做完之后不断的复盘,用自己的语言说出思路来,找找看里面的逻辑关系。
4、坚持改错题
把整个学期的试卷装订在一起,每周花半天的时间,订正错题,不会的标记星号,问老师问同学,直到会了为止,下周继续改,看自己是否真的懂了,对于错题,就像骆驼吃草一样,不停地咀嚼,错题也需要孩子们不断反复的看思路,才能在考试的时候避免在同类型的题上反复错。
初一数学单元知识点归纳相关 文章 :
★ 初一数学上册知识点归纳
★ 初一数学第一单元知识点归纳
★ 初一上册数学知识点归纳整理
★ 初一数学上册知识点汇总归纳
★ 初一数学知识点小归纳
★ 初中七年级数学知识点归纳整理
★ 初一数学知识点梳理归纳
★ 初一数学的知识点归纳
★ 初一数学知识点归纳
★ 初一数学知识点归纳与学习方法
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();‘柒’ 初一数学重点知识!!还有英语语法!!!
初一数学概念 实数: —有理数与无理数统称为实数。 有理数: 整数和分数统称为有理数。 无理数: 无理数是指无限不循环小数。 自然数: 表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。 数轴: 规定了圆点、正方向和单位长度的直线叫做数轴。 相反数: 符号不同的两个数互为相反数。 倒数: 乘积是1的两个数互为倒数。 绝对值: 数轴上表示数a的点与圆点的距离称为a的绝对值。一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。 数学定理公式 有理数的运算法则 ⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。 ⑵减法法则:减去一个数,等于加上这个数的相反数。 ⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。 ⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。 我不知道你是哪个版的... \ 英语 一、初一英语语法 —— 词法 1、名词 A)、名词的数 我们知道名词可以分为可数名词和不可数名词,而不可数名词它没有复数形式,但可数名词却有单数和复数之分,复数的构成如下: 一)在后面加s。如:fathers, books, Americans, Germans, apples, bananas 二)x, sh, ch, s, tch后加es。如:boxes, glasses, dresses, watches, wishes, faxes 三)1)以辅音字母加y结尾的变y为i再加es 如:baby-babies, family-families, ty-ties, comedy-comedies, documentary-documentaries, story-stories 2)以元音字母加y结尾的直接加s。如:day-days, boy-boys, toy-toys, key-keys, ways 四)以o结尾加s(外来词)。如:radios, photos, 但如是辅音加o的加es:如: tomatoes西红柿, potatoes马铃薯 五)以f或fe结尾的变f为v再加es(s)。如:knife-knives, wife-wives, half-halves, shelf-shelves, leaf-leaves, yourself-yourselves 六)单复数相同(不变的)有:fish, sheep, deer鹿子, Chinese, Japanese 七)一般只有复数,没有单数的有:people,pants, shorts, shoes, glasses, gloves, clothes, socks 八)单词形式不变,既可以是单数也可以是复数的有:police警察局,警察, class班,同学, family家,家庭成员 九)合成的复数一般只加主要名词,多数为后一个单词。如:action movie-action movies, pen pal-pen pals; 但如果是由man或woman所组成的合成词的复数则同时为复数。如:man doctor-men doctors, woman teacher-women teachers 十)有的单复数意思不同。如:fish鱼 fishes鱼的种类, paper纸 papers报纸,卷子,论文, work工作 works作品,工厂, glass玻璃 glasses玻璃杯,眼镜, orange桔子水 oranges橙子, light光线 lights灯, people人 peoples民族, time时间 times时代, 次数, chicken 鸡肉 chickens 小鸡 十一) 单个字母的复数可以有两种形式直接加s或’s。如:Is (I’s), Ks (K’s)。但如是缩略词则只加s。如:IDs, VCDs, SARs 十二) 特殊形式的有:child-children, man-men, woman-women, foot-feet, mouse-mice, policeman-policemen, Englishman-Englishmen B)名词的格 当我们要表示某人的什么东西或人时,我们就要使用所有格形式。构成如下: 一)单数在后面加’s。如:brother’s, Mike’s, teacher’s 二)复数以s结尾的直接在s后加’,如果不是以s结尾的与单数一样处理。如:Teachers’ Day教师节, classmates’; Children’s Day六一节, Women’s Day三八节 三)由and并列的名词所有时,如果是共同所有同一人或物时,只加最后一个’s,但分别拥有时却分别按单数形式处理。如:Mike and Ben’s room迈克和本的房间(共住一间),Mike’s and Ben’s rooms迈克和本的房间(各自的房间) 2、代词 项目 人称代词 物主代词 指示代词 反身代词 人称 主格 宾格 形容词 名词性 第一人称 单数 I me my mine myself 复数we us our ours ourselves 第二人称 单数 you you your yours yourself 复数you you your yours yourselves 第三人称 单数 she her her hers herself he him his his himself it it its its this that itself 复数they them their theirs these those themselves 3、动词 A) 第三人称单数 当动词是第三人称单数时,动词应该像名词的单数变动词那样加s,如下: 一)一般在词后加s。如:comes, spells, waits, talks, sees, dances, trains 二)在x, sh, ch, s, tch后加es。如:watches, washes, wishes, finishes 三)1)以辅音字母加y结尾的变y为i再加es。如:study-studies, hurry-hurries, try-tries 2)以元音字母加y结尾的直接加s。如:plays, says, stays, enjoys, buys 四)以o结尾加es。如:does, goes 五)特殊的有:are-is, have-has B) 现在分词 当我们说某人正在做什么事时,动词要使用分词形式,不能用原形,构成如下: 一)一般在后加ing。如:spell-spelling, sing-singing, see-seeing, train-training, play-playing, hurry-hurrying, watch-watching, go-going, do-doing 二)以不发音e的结尾的去掉e再加ing。如:dance-dancing, wake-waking, take-taking, practice-practicing, write-writing, have-having 三)以重读闭音节结尾且一个元音字母+一个辅音字母(注意除开字母组合如show –showing, draw-drawing)要双写最后的辅音字母再加ing。如:put-putting, run-running, get-getting, let-letting, begin-beginning 四)以ie结尾的变ie为y再加ing。如:tie-tying系 die-dying死 lie-lying 位于 4、形容词的级 我们在对两个或以上的人或物进行对比时,则要使用比较或最高级形式。构成如下: 一) 一般在词后加er或est(如果是以e结尾则直接加r或st)。如:greater-greatest, shorter –shortest, taller –tallest, longer –longest, nicer- nicest, larger -largest 二)以重读闭音节结尾且1个元音字母+1个辅音字母(字母组合除外,如few-fewer fewest)结尾的双写结尾的辅音再加er /est。如:big-bigger biggest, red-redder reddest, hot-hotter hottest 三) 以辅音字母+y结尾的变y为i加er/est。如:happy-happier happiest, sorry-sorrier sorriest, friendly-friendlier friendliest(more friendly most friendly), busy-busier busiest, easy-easier easiest 四)特殊情况:(两好多坏,一少老远) good/well - better best many/much - more most bad/ill – worse worst little- less least old- older/elder oldest/eldest far- farther/further farthest/furthest 5、数词 (基变序,有规则;一、二、三,自己背;五、八、九、十二;其它后接th;y结尾,变为i, eth跟上去。) first, second, third; fifth, eighth, ninth, twelfth; seventh, tenth, thirteenth, hundredth; twenty-twentieth, forty-fortieth, ninety-ninetieth 二、 初一英语语法 —— 句式 1.陈述句 肯定陈述句 a) This is a book. (be动词) b) He looks very young. (连系动词) c) I want a sweat like this. (实义动词) d) I can bring some things to school. (情态动词) e) There’s a computer on my desk. (There be结构) 否定陈述句 a) These aren’t their books. b) They don’t look nice. c) Kate doesn’t go to No. 4 Middle School. d) Kate can’t find her doll. e) There isn’t a cat here. (=There’s no cat here.) 2. 祈使句 肯定祈使句 a) Please go and ask the man. b) Let’s learn English! c) Come in, please. 否定祈使句a) Don’t be late. b) Don’t hurry. 3. 疑问句 1) 一般疑问句 a) Is Jim a student? b) Can I help you? c) Does she like salad? d) Do they watch TV? e) Is she reading? 肯定回答: a) Yes, he is. b) Yes, you can. c) Yes, she does. d) Yes, they do. e) Yes, she is. 否定回答: a) No, he isn’t. b) No, you can’t. c) No, she doesn’t. d) No, they don’t. e) No, she isn’t. 2) 选择疑问句 Is the table big or small? 回答 It’s big./ It’s small. 3) 特殊疑问句 ① 问年龄 How old is Lucy? She is twelve. ② 问种类 What kind of movies do you like? I like action movies and comedies. ③ 问身体状况 How is your uncle? He is well/fine. ④ 问方式 How do/can you spell it? L-double O-K. How do we contact you? My e-mail address is [email protected]. ⑤ 问原因 Why do you want to join the club? ⑥ 问时间 What’s the time? (=What time is it?) It’s a quarter to ten a.m.. What time do you usually get up, Rick? At five o’clock. When do you want to go? Let’s go at 7:00. ⑦ 问地方 Where’s my backpack? It’s under the table. ⑧ 问颜色 What color are they? They are light blue. What’s your favourite color? It’s black. ⑨ 问人物 Who’s that? It’s my sister. Who is the boy in blue? My brother. Who isn’t at school? Peter and Emma. Who are Lisa and Tim talking to? ⑩ 问东西 What’s this/that (in English)? It’s a pencil case. What else can you see in the picture? I can see some broccoli, strawberries and hamburgers. 11问姓名 What’s your aunt’s name? Her name is Helen./She’s Helen. What’s your first name? My first name’s Ben. What’s your family name? My family name’s Smith. 12 问哪一个 Which do you like? I like one in the box. 13 问字母 What letter is it? It’s big D/small f. 14 问价格 How much are these pants? They’re 15 dollars. 15 问电话号码 What’s your phone number? It’s 576-8349. 16 问谓语(动作) What’s he doing? He’s watching TV. 17 问职业(身份) What do you do? I’m a teacher. What’s your father? He’s a doctor. 三、 初一英语语法 —— 时态 1、一般现在时 表示普遍、经常性的或长期性的动作时使用一般现在时,它有: Be 动词:She’s a worker. Is she a worker? She isn’t a worker. 情态动词:I can play the piano. Can you play the piano? I can’t play the piano. 行为动词:They want to eat some tomatoes. Do they want to eat any tomatoes? They don’t want to eat any tomatoes. Gina has a nice watch. Does Gina have a nice watch? Gina doesn’t have a watch. 2、现在进行时 表示动词在此时正在发生或进行就使用进行时态,结构为sb be v-ing sth + 其它. I’m playing baseball. Are you playing baseball? I’m not playing baseball. Nancy is writing a letter. Is Nancy writing a letter? Nancy isn’t writing a letter. They’re listening to the pop music. Are they listening the pop music? They aren’t listening to the pop music. 追问: 数学方程概念 语法 概念我看不懂 回答: 方程多做点题 语法 在于积累 你硬看语法,死记反正我不提倡 因为记不住啊 我大学了,我感觉就是具体题里去积累 不要死记东西 追问: o