Ⅰ 数学建模需要哪些知识
数学建模需要的知识:
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)。
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)。
3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)。
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)。
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)。
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)。
Ⅱ 数学建模需要哪些知识
问题一:学习数模需要具备哪些知识 参加数学建模竞赛需知道的内容
一、全国大学生数学建模竞赛
二、数学建模的方法及一般步骤
三、重要的数学模型及相应案例分析
1、线性规划模型及经济模型案例分析
2、层次分析模型厅明及管理模型案例分析
3、统计回归模型及案例分析
4、图论模型及案例分析
5、微分方程模扮碰告型及案例分析
四、相关软件
1、Matlab软件及编程;2、Lingo软件;3、Lindo软件。
五、数模十大常用算法
1. 蒙特卡罗算法。2. 数据拟合、参数估计、插值等数据处理算法。3. 线性规划、整数规划、多元规划、二次规划等规划类算法。4. 图论算法。5. 动态规划、回溯搜索、分治算法、分支定吵弯界等计算机算法。6. 最优化理论的三大非经典算法。7. 网格算法和穷举法。8. 一些连续数据离散化方法。9. 数值分析算法。10. 图象处理算法。
六、如何查阅资料
七、如何写作论文
八、如何组织队伍:团队精神,配合良好,不断的提出问题和解决问题。
九、如何才能获奖:比较完整,有几处创新点。
十、如何信息处理:WORD、LaTeX,飞秋、QQ。
其实主要看下例子就可以了,知道一些基本的模型,我这里也有很多例子,各个学校的讲座都有要的话直接向我要
问题二:数学建模主要需要哪些知识 推荐你看谢金星编写的那本数学建模书。一本书啃下来,你已经掌握了各种题型的基本方法。做题的时候,题目先是要细细的看,然后,有时候会发现如果所有条件都用上,可能根本就做不出什么来了。所以,你要学会提炼条件。再一个就是通过网上各种资料的搜集,要从别人的文献中找到有用的建模方法,要想成绩特别好的话,就必须有自己的想法。对于美国建模,和国内还是相差挺大的,难度、要求都不一样。必须至少有一人掌握matlab编程。论文一定要写好,语句通顺无错别字。
参加数学建模竞赛是不是需要学习很多知识?
没有必要很系统的学很多数学知识,这是时间和精力不允许的。很多优秀的论文,其高明之处并不是用了多少数学知识,而是思维比较全面、贴合实际、能解决问题或是有所创新。有时候,在论文中可能碰见一些没有学过的知识,怎么办?现学现用,在优秀论文中用过的数学知识就是最有可能在数学建模竞赛中用到的,你当然有必要去翻一翻。
具体说来,大概有以下这三个方面:
第一方面:数学知识的应用能力
归结起来大体上有以下几类:
1)概率与数理统计
2)统筹与线轴规划
3)微分方程;
还有与计算机知识交叉的知识:计算机模拟。
上述的内容有些同学完全没有学过,也有些同学只学过一点概率与数理统计,微分方程的知识怎么办呢?一个词“自学”,我曾听到过数模评卷的负责教师范毅说过“能用最简单浅易的数学方法解决了别人用高深理论才能解决的答卷是更优秀的答卷”。
第二方面:计算机的运用能力
一般来说凡参加过数模竞赛的同学都能熟练地应用字处理软件“Word”,掌握电子表格“Excel”的使用;“Mathematica”软件的使用,最好还具备语言能力。这些知识大部分都是学生自己利用课余时间学习的。
第三方面:论文的写作能力
前面已经说过考卷的全文是论文式的,文章的书写有比较严格的格式。要清楚地表达自己的想法并不容易,有时一个问题没说清楚就又说另一个问题了。评卷的教师们有一个共识,一篇文章用10来分钟阅读仍然没有引起兴趣的话,这一遍文章就很有可能被打入冷宫了。
最后,祝你取得好成绩。
问题三:参加数学建模大赛需要大概要掌握哪些方面的知识 本人曾参加过两次数模大赛。并都获得二等奖以上。
首先,需要弄清楚建模的过程。建议找本数模历年的论文看看,理清思路,步骤等。
其次,看点数学的知识。重点是优化、统计。几乎每年都会有题目是关于优化的。
第三、看一下算法相关的。当然与上面的第二条有所重复了。并用MATLAB maple等实现以下。
第四、学习一下编程的知识,比如C++,MATLAB,lingo等。
第五、找到两个跟你互补的人,组成团队,有人侧重编程,有人侧重论文,有人侧重数学等等。
最后,祝你好运。
问题四:1.什么是数学模型?数学建模的一般步骤是什么? 2.数学建模需要具备哪些能力和知识? 答的好悬赏加 100分 数学建模是利用数学方法解决实际问题的一种实践.即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解.
数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一.
数学建模的一般方法和步骤
建立数学模型的方法和步骤并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性.建模的一般方法:
机理分析:根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义.
测试分析方法:将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型.测试分析方法也叫做系统辩识.
将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法.
在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致如下:
1、 实际问题通过抽象、简化、假设,确定变量、参数;
2、 建立数学模型并数学、数值地求解、确定参数;
3、 用实际问题的实测数据等来检验该数学模型;
4、 符合实际,交付使用,从而可产生经济、社会效益;不符合实际,重新建模.
数学模型的分类:
1、 按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、统计模型等.
2、 按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等.
数学建模需要丰富的数学知识,涉及到高等数学,离散数学,线性代数,概率统计,复变函数等等基本的数学知识.同时,还要有广泛的兴趣,较强的逻辑思维能力,以及语言表达能力等等.
参加数学建模竞赛需知道的内容
一、全国大学生数学建模竞赛
二、数学建模的方法及一般步骤
三、重要的数学模型及相应案例分析
1、线性规划模型及经济模型案例分析
2、层次分析模型及管理模型案例分析
3、统计回归模型及案例分析
4、图论模型及案例分析
5、微分方程模型及案例分析
四、相关软件
1、Matlab软件及编程;2、Lingo软件;3、Lindo软件。
五、数模十大常用算法
1. 蒙特卡罗算法。2. 数据拟合、参数估计、插值等数据处理算法。3. 线性规划、整数规划、多元规划、二次规划等规划类算法。4. 图论算法。5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。6. 最优化理论的三大非经典算法。7. 网格算法和穷举法。8. 一些连续数据离散化方法。9. 数值分析算法。10. 图象处理算法。
六、如何查阅资料
七、如何写作论文
八、如何组织队伍:团队精神,配合良好,不断的提出问题和解决问题。
九、如何才能获奖:比较完整,有几处创新点。
十、如何信息处理:WORD、LaTeX,飞秋、QQ。
其实主要看下例子就可以了,知道一些基本的模型,我这里也有很多例子,各个学校的讲座都有要的话直接向我要...>>
问题五:数学建模需要掌握哪些知识 本人曾参加过两次数模大赛。并都获得二等奖以上。
首先,需要弄清楚建模的过程。建议找本数模历年的论文看看,理清思路,步骤等。
其次,看点数学的知识。重点是优化、统计。几乎每年都会有题目是关于优化的。
第三、看一下算法相关的。当然与上面的第二条有所重复了。并用MATLAB maple等实现以下。第四、学习一下编程的知识,比如C++,MATLAB,lingo等。
第五、找到两个跟你互补的人,组成团队,有人侧重编程,有人侧重论文,有人侧重数学等等。
最后,祝你好运。
问题六:大学生数学建模需要哪些知识 知乎 入门级别:
建模的去看姜启源的数学建模
编程的去学matlab,很简单
写作的学排版
加深学习:
建模的学习机器算法,外带编程
编程的去学R、CAD等辅助性工具
写作的学markdown排版
最后要看你是那个方面的
数学建模分为建模写作编程
你走哪一条就专攻哪一条
Ⅲ 高中阶段学数学竞赛的知识,这对高考有什么帮助吗
高中竞赛(特指全国高中数学联赛)的知识除了高考大纲要求的一些知识以外,另外对平面几何、不等式、数论、图论、组合问题的要求比较高。竞赛试题是前100分与高考的知识点差不多,但要求更高,题目的综合性更大,一般不会考你课本上没学过的东西(除了数列的特征方程)。后面有四道综合题,也就是平面几何(50分),不等式(50分),数论(50分),图论|组合(50分),总分300分。 你可以买《高中数学提优教程》(葛军版),这本书不难,邻介于高考和竞赛之间,你可以选其中高考的内容学,对解题思路的培养很有好处,可以帮助你拿高分,但如果你的数学一般般的话(比如150分的试卷考不到130),不要陷进竞赛太深,会影响你其他学科的学习。另外,学过竞赛对自主招生很有帮助(自主招生难度介于高考和竞赛),特别是数学和物理。本人拿到过高中数学竞赛一等奖,然后自主招生进入理想大学的,以上是给你的一些建议。要不要学竞赛,一定要请教老师,让老师给你一个客观的评价。。。