当前位置:首页 » 基础知识 » 棱台的基础知识大全
扩展阅读
东坝区的教育怎么样 2024-11-26 05:59:33

棱台的基础知识大全

发布时间: 2024-08-12 07:02:34

① 棱台的特征

1、正棱台的侧棱相等,侧面是全等的等腰梯形。各等腰梯形的高相等,它叫做正棱台的斜高;

2、正棱台的两底面以及平行于底面的截面是相似正多边形;

3、正棱台的两底面中心连线、相应的边心距和斜高组成一个直角梯形;两底面中心连线、侧棱和两底面相应的半径也组成一个直角梯形。

4、棱台各棱的反向延长线交于一点。

5、棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台。

6、下底面和上底面:原棱锥的底面和截面 分别叫做棱台的下底面和上底面。

7、侧面:原棱锥的侧面也叫做棱台的侧面(截后剩余部分)。

8、侧棱:原棱锥的侧棱也叫棱台的侧棱(截后剩余部分)。

9、顶点:上底面和侧面,下底面和侧面的公共点叫做棱台的顶点。

棱台的表示:用表示底面的各顶点的字母表示。 如:棱台ABCD-A’B’C’D’。底面是三角形,四边形,五边形----的棱台分别叫三棱台,四棱台,五棱台。

② 高一数学必修一知识提纲

随着年级的不同,所接触的数学课本知识难度也会有所变化,那怎样可以更好应对这一系列的变化,以下是我给大家整理的 高一数学 必修一知识提纲,希望对大家有所帮助,欢迎阅读!

高一数学必修一知识提纲

1、柱、锥、台、球的结构特征

(1)棱柱:

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底 面相 似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如五棱台

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

(4)圆柱:

定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:

定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:

定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:

定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

2、空间几何体的三视图

定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

3、空间几何体的直观图——斜二测画法

斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;

②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

4、柱体、锥体、台体的表面积与体积

(1)几何体的表面积为几何体各个面的面积的和。

(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)

(3)柱体、锥体、台体的体积公式

(4)球体的表面积和体积公式:V=;S=

5、空间点、直线、平面的位置关系

(1)平面

①平面的概念:A.描述性说明;B.平面是无限伸展的;

②平面的表示:通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);也可以用两个相对顶点的字母来表示,如平面BC。

③点与平面的关系:点A在平面内,记作;点不在平面内,记作

点与直线的关系:点A的直线l上,记作:A∈l;点A在直线l外,记作Al;

直线与平面的关系:直线l在平面α内,记作lα;直线l不在平面α内,记作lα。

(2)公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。(即直线在平面内,或者平面经过直线)

应用:检验桌面是否平;判断直线是否在平面内。用符号语言表示公理1:

(3)公理2:经过不在同一条直线上的三点,有且只有一个平面。

推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。

公理2及其推论作用:①它是空间内确定平面的依据②它是证明平面重合的依据

(4)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

符号:平面α和β相交,交线是a,记作α∩β=a。符号语言:

公理3的作用:①它是判定两个平面相交的 方法 。

②它说明两个平面的交线与两个平面公共点之间的关系:交线x共点。

③它可以判断点在直线上,即证若干个点共线的重要依据。

(5)公理4:平行于同一条直线的两条直线互相平行

(6)空间直线与直线之间的位置关系

①异面直线定义:不同在任何一个平面内的两条直线

②异面直线性质:既不平行,又不相交。

③异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线

④异面直线所成角:直线a、b是异面直线,经过空间任意一点O,分别引直线a’∥a,b’∥b,则把直线a’和b’所成的锐角(或直角)叫做异面直线a和b所成的角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。

说明:(1)判定空间直线是异面直线方法:①根据异面直线的定义;②异面直线的判定定理

(2)在异面直线所成角定义中,空间一点O是任取的,而和点O的位置无关。

(3)求异面直线所成角步骤:

A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。

B、证明作出的角即为所求角

C、利用三角形来求角

(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。

(8)空间直线与平面之间的位置关系

直线在平面内——有无数个公共点.

三种位置关系的符号表示:aαa∩α=Aa∥α

(9)平面与平面之间的位置关系:平行——没有公共点;α∥β相交——有一条公共直线。α∩β=b

6、空间中的平行问题

(1)直线与平面平行的判定及其性质

线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。线线平行线面平行

线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

线面平行线线平行

(2)平面与平面平行的判定及其性质

两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行→面面平行),

(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。(线线平行→面面平行),

(3)垂直于同一条直线的两个平面平行,

两个平面平行的性质定理(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)

(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)

7、空间中的垂直问题

(1)线线、面面、线面垂直的定义

①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。

②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。

(2)垂直关系的判定和性质定理

①线面垂直判定定理和性质定理

判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。

性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

②面面垂直的判定定理和性质定理

判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

8、空间角问题

(1)直线与直线所成的角

①两平行直线所成的角:规定为。

②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。

③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。

(2)直线和平面所成的角

①平面的平行线与平面所成的角:规定为。

②平面的垂线与平面所成的角:规定为。

③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。

求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。

在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,

解题时,注意挖掘题设中两个信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。

(3)二面角和二面角的平面角

①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。

③直二面角:平面角是直角的二面角叫直二面角。两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角

④求二面角的方法

定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角

垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角

9、空间直角坐标系

(1)定义:如图,是单位正方体.以A为原点,分别以OD,O,OB的方向为正方向,

建立三条数轴。这时建立了一个空间直角坐标系Oxyz.

1)O叫做坐标原点2)x轴,y轴,z轴叫做坐标轴.3)过每两个坐标轴的平面叫做坐标面。

(2)右手表示法:令右手大拇指、食指和中指相互垂直时,可能形成的位置。大拇指指向为x轴正方向,食指指向为y轴正向,中指指向则为z轴正向,这样也可以决定三轴间的相位置。

(3)任意点坐标表示:空间一点M的坐标可以用有序实数组来表示,有序实数组叫做点M在此空间直角坐标系中的坐标,记作(x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标)

数学 学习方法 总结

1.基础很重要

是不是感觉数学都能考满分的同学,连书都不用看,其实数学学霸更重视基础。,数学公式,几何图形的性质,函数的性质等,都是数学学习的基础,甚至可以说基础的好坏,直接决定中考数学成绩的高低。

因为一些最基础的知识没有掌握透彻,导致做题的时候没有思路。基础不牢、地动山摇,一个小小的知识漏洞可能导致你在整一个题中都没有思路,非常危险。

2.错题本很重要

在所有科目中,数学这个科目最重要错题本学习法。特别提倡大家整理错题,对于错题本有一些小窍门,那就是平时如果坚持整理错题,最终会导致自己错题本很多很厚,我们可以定期复习,对于一些彻底掌握的,可以做个标记,以后就不用再次复习,这样错题本使用起来就会效率更高。

3.做题要多 反思

数学学习要大量做题去巩固,但做题不要只讲究数量,更要讲究质量,遇到经典题,综合性高的题目时,每道题写完解答过程后,需要进行分析和反思,多问几个为什么,这样才能把题真正做透。

4.数学知识形成体系

课本上的知识都是零散的,建议大家自己画 思维导图 把知识串起来,画思维导图的过程,就是不断理解,让知识变成结构的过程。

数学学习方法

1、基础很重要

是不是感觉数学都能考满分的同学,连书都不用看,其实数学学霸更重视基础。数学公式,几何图形的性质,函数的性质等,都是数学学习的基础,甚至可以说基础的好坏,直接决定中考数学成绩的高低。

因为一些最基础的知识没有掌握透彻,导致做题的时候没有思路。基础不牢、地动山摇,一个小小的知识漏洞可能导致你在整一个题中都没有思路,非常危险。

2、错题本很重要

在所有科目中,数学这个科目最重要错题本学习法。特别提倡大家整理错题,对于错题本有一些小窍门,那就是平时如果坚持整理错题,最终会导致自己错题本很多很厚,我们可以定期复习,对于一些彻底掌握的,可以做个标记,以后就不用再次复习,这样错题本使用起来就会效率更高。

3、做题要多反思

数学学习要大量做题去巩固,但做题不要只讲究数量,更要讲究质量,遇到经典题,综合性高的题目时,每道题写完解答过程后,需要进行分析和反思,多问几个为什么,这样才能把题真正做透。

4、把数学知识形成体系

课本上的知识都是零散的,建议大家自己画思维导图把知识串起来,画思维导图的过程,就是不断理解,让知识变成结构的过程。


高一数学必修一知识提纲相关 文章 :

★ 高中数学高一数学必修一知识点

★ 高中数学必修一复习提纲

★ 高一数学必修一知识点汇总

★ 高一数学必修一知识点梳理

★ 高一数学必修1知识点归纳

★ 高中数学必修一知识点总结

★ 高一数学必修一的知识点

★ 人教版高中数学必修一知识点

★ 高一数学必修一知识整理

★ 2021高中数学必修一复习提纲

③ 棱柱.棱锥.棱台.圆柱.圆锥.圆台.球体的定义和几何特征

立体几何
数学上,立体几何(solid geometry)是3维欧氏空间的几何的传统名称— 因为实践上这大致上就是我们生活的空间。一般作为平面几何的后续课程。立体测绘(Stereometry)处理不同形体的体积的测量问题:圆柱,圆锥, 圆台, 球, 棱柱,棱锥等等。
毕达哥拉斯学派就处理过球和正多面体,但是棱锥,棱柱,圆锥和圆柱在柏拉图学派着手处理之前人们所知甚少。
尤得塞斯(Eudoxus)建立了它们的测量法,证明锥是等底等高的柱体积的三分之一,可能也是第一个证明球体积和其半径的立方成正比的。
[编辑本段]立体几何基本课题
包括:
- 面和线的重合
- 两面角和立体角
- 方块, 长方体, 平行六面体
- 四面体和其他棱锥
- 棱柱
- 八面体, 十二面体, 二十面体
- 圆锥,圆柱
- 球
- 其他二次曲面: 回转椭球, 椭球, 抛物面 ,双曲面
公理
立体几何中有4个公理
公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.
公理2 过不在一条直线上的三点,有且只有一个平面.
公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
公理4 平行于同一条直线的两条直线平行.
立方图形
立体几何公式
名称 符号 面积S 体积V
正方体 a——边长 S=6a^2V=a^3
长方体 a——长 S=2(ab+ac+bc) V=abc
b——宽
c——高
棱柱S——底面积 V=Sh
h——高
棱锥 S——底面积 V=Sh/3
h——高
棱台 S1和S2——上、下底面积 V=h[S1+S2+√(S1^2)/2]/3
h——高
拟柱体 S1——上底面积 V=h(S1+S2+4S0)/6
S2——下底面积
S0——中截面积
h——高
圆柱 r——底半径 C=2πrV=S底h=Πrh
h——高
C——底面周长
S底——底面积 S底=πR^2
S侧——侧面积 S侧=Ch
S表——表面积 S表=Ch+2S底
S底=πr^2
空心圆柱 R——外圆半径
r——内圆半径
h——高 V=πh(R^2-r^2)
直圆锥 r——底半径
h——高 V=πr^2h/3
圆台 r——上底半径
R——下底半径
h——高 V=πh(R^2+Rr+r^2)/3
球 r——半径
d——直径 V=4/3πr^3=πd^2/6
球缺 h——球缺高
r——球半径
a——球缺底半径 a^2=h(2r-h) V=πh(3a^2+h^2)/6 =πh2(3r-h)/3
球台 r1和r2——球台上、下底半径
h——高 V=πh[3(r12+r22)+h2]/6
圆环体 R——环体半径
D——环体直径
r——环体截面半径
d——环体截面直径 V=2π^2Rr^2 =π^2Dd^2/4
桶状体 D——桶腹直径
d——桶底直径
h——桶高 V=πh(2D^2+d2^)/12 (母线是圆弧形,圆心是桶的中心)
V=πh(2D^2+Dd+3d^2/4)/15 (母线是抛物线形)
注:初学者会认为立体几何很难,但只要打好基础,立体几何将会变得很容易。学好立体几何最关键的就是建立起立体模型,把立体转换为平面,运用平面知识来解决问题,立体几何在高考中肯定会出现一道大题,所以学好立体是非常关键的。