当前位置:首页 » 基础知识 » 初二上册数学各单元重点知识
扩展阅读
黑白af1哪个经典 2024-11-26 05:32:05
生命教育缺乏什么原因 2024-11-26 05:15:15
受伤的心去到哪里歌词 2024-11-26 05:09:41

初二上册数学各单元重点知识

发布时间: 2024-08-09 21:16:30

‘壹’ 八年级数学重点知识点总结

失败乃成功之母,重复是学习之母。学习,需要不断的重复重复,重复学过的知识,加深印象,其实任何科目的 学习 方法 都是不断重复学习。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。

八年级上册数学知识

1、全等三角形的对应边、对应角相等

2、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

4、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等

5、边边边公理(SSS)有三边对应相等的两个三角形全等

6、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

7、定理1在角的平分线上的点到这个角的两边的距离相等

8、定理2到一个角的两边的距离相同的点,在这个角的平分线上

9、角的平分线是到角的两边距离相等的所有点的集合

10、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

11、推论1等腰三角形顶角的平分线平分底边并且垂直于底边

12、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

13、推论3等边三角形的各角都相等,并且每一个角都等于60°

14、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

15、推论1三个角都相等的三角形是等边三角形

16、推论2有一个角等于60°的等腰三角形是等边三角形

17、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

18、直角三角形斜边上的中线等于斜边上的一半

19、定理线段垂直平分线上的点和这条线段两个端点的距离相等

20、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

21、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

22、定理1关于某条直线对称的两个图形是全等形

23、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

24、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

25、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

26、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

27、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形

28、定理四边形的内角和等于360°

29、四边形的外角和等于360°

八年级数学知识点 总结

函数及其相关概念

1、变量与常量

在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。

2、函数解析式

用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点

(1)解析法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法

用图像表示函数关系的方法叫做图像法。

4、由函数解析式画其图像的一般步骤

(1)列表:列表给出自变量与函数的一些对应值

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来

初二数学 学习 经验 心得

1学好初中数学课前要预习

初中生想要学好数学,那么就要利用课前的时间将课上老师要讲的内容预习一下。初中数学课前的预习是要明白老师在课上大致所讲的内容,这样有利于和方便初中生整理知识结构。

初中生 课前预习 数学还能够知道自己有哪些不明白的知识点,这样在课上就会集中注意力去听,不会出现溜号和走神的情况。同时课前预习还可以将知识点形成体系,可以帮助初中生建立完整的知识结构。

2学习初中数学课上是关键

初中生想要学好学生,在课上就是一个字:跟。上初中数学课时跟住老师,老师讲到哪里一定要跟上,仔细看老师的板书,随时知道老师讲的是哪里,涉及到的知识点是什么。有的初中生喜欢记笔记,在这里提醒大家,初中数学课上的时候尽量不要记笔记。

你的主要目的是跟着老师,而不是一味的记笔记,即使有不会的地方也要快速简短的记下来,可以在课后完善。跟上老师的思维是最重要的,这就意味着你明白了老师的分析和解题过程。

3课后可以适当做一些初中数学基础题

在每学完一课后,初中生可以在课后做一些初中数学的基础题型,在做这样的题时,建议大家是,不要出现错误的情况,做完题后要学会思考和整理。当你的初中数学基础题没问题的时候,就可以做一些有点难度的提升题了,如果做不出来可以根据解析看题。

但是记住千万不要大量的做这类题,初中生偶尔做一次有难度的题还是对数学的学习有帮助的,但是如果将重点放在这上面,没有什么好处。同时要学会整理,将自己错题归纳并总结,

数学是由简单明了的事项一步一步地发展而来,所以,只要学习数学的人老老实实地、一步一步地去理解,并同时记住其要点,以备以后之需用,就一定能理解其全部内容.就是说,若理解了第一步,就必然能理解第二步,理解了第一步、第二步,就必然能理解第三步.这好比梯子的阶级,在登梯子时,一级一级地往上登,无论多小的人,只要他的腿长足以跨过一级阶梯,就一定能从第一级登上第二级,从第二级登上第三级、第四级,…….这时,只不过是反复地做同一件事,故不管谁都应该会做.


八年级数学重点知识点总结相关 文章 :

★ 人教版八年级数学上册知识点总结

★ 八年级数学知识点整理归纳

★ 八年级数学知识点归纳总结

★ 初二数学上册知识点总结

★ 八年级下册数学知识点整理

★ 八年级数学知识点总结

★ 八年级数学知识点归纳

★ 八年级数学上知识点总结

★ 八年级数学上知识点归纳

★ 初二数学重点知识归纳整理

‘贰’ 八年级数学上册知识点

只有学习精彩,生命才精彩,只有学习成功,事业才成功。每一门科目都有自己的 学习 方法 ,数学作为最烧脑的科目之一,需要不断的练习。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。

初二上学期数学知识点归纳

三角形知识概念

1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

8、多边形的内角:多边形相邻两边组成的角叫做它的内角。

9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。

12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

13、公式与性质:

(1)三角形的内角和:三角形的内角和为180°

(2)三角形外角的性质:

性质1:三角形的一个外角等于和它不相邻的两个内角的和。

性质2:三角形的一个外角大于任何一个和它不相邻的内角。

(3)多边形内角和公式:边形的内角和等于?180°

(4)多边形的外角和:多边形的外角和为360°

(5)多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。②边形共有条对角线。

八年级上册数学知识

一、在平面内,确定物体的位置一般需要两个数据。

二、平面直角坐标系及有关概念

1、平面直角坐标系

在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。

3、点的坐标的概念

对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。

点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。

平面内点的与有序实数对是一一对应的。

4、不同位置的点的坐标的特征

(1)、各象限内点的坐标的特征

点P(x,y)在第一象限:x;0,y;0

点P(x,y)在第二象限:x;0,y;0

点P(x,y)在第三象限:x;0,y;0

点P(x,y)在第四象限:x;0,y;0

(2)、坐标轴上的点的特征

点P(x,y)在x轴上,y=0,x为任意实数

点P(x,y)在y轴上,x=0,y为任意实数

点P(x,y)既在x轴上,又在y轴上,x,y同时为零,即点P坐标为(0,0)即原点

(3)、两条坐标轴夹角平分线上点的坐标的特征

点P(x,y)在第一、三象限夹角平分线(直线y=x)上,x与y相等

点P(x,y)在第二、四象限夹角平分线上,x与y互为相反数

(4)、和坐标轴平行的直线上点的坐标的特征

位于平行于x轴的直线上的各点的纵坐标相同。

位于平行于y轴的直线上的各点的横坐标相同。

初二数学 复习方法

一、复习内容:

第一章:勾股定理

第二章:实数第三章:位置与坐标

第四章:一次函数

第五章:二元一次方程组

第六章:数据的分析

第七章:平行线的证明

二、复习目标:

八年级数学本学期知识点多,复习时间又比较短,只有三周的时间。

根据实际情况,应该完成如下目标:

(一)、整理本学期学过的知识与方法:1.第一、七章是几何部分。这三章的重点是勾股定理的应用以及平行线的性质与判别还有三角形内角和定理及其应用。所以记住性质是关键,学会判定是重点,灵活应用是目的。要学会判定方法的选择,不同图形之间的区别和联系要非常熟悉,形成一个有机整体。对常见的证明题要多练多 总结 。2.第四五六章主要是概念的教学,对这几章的考试题型学生可能都不熟悉,所以要以与课本同步的训练题型为主,要列表或作图的,让学生积极动手操作,并得出结论,课堂上教师讲评,尽量是精讲多练,该动手的要多动手,尽可能的让学生自己总结出论证几何问题的常用分析方法。3.第二章主要是计算,教师提前先把概念、性质、方法综合复习,加入适当的练习,在练习计算。课堂上逐一对易错题的讲解,多强调解题方法的针对性。最后针对平时练习中存在的问题,查漏补缺。

(二)、在自己经历过的解决问题活动中,选择一个有挑战问题性的问题,写下解决它的过程:包括遇到的困难、克服困难的方法与过程及所获得的体会,并选择这个问题的原因。

(三)、通过本学期的数学学习,让同学们总结自己有哪些收获;有哪些需要改进的地方。

三、复习方法:

1、强化训练,这个学期计算类和证明类的题目较多,在复习中要加强这方面的训练。特别是一次函数,在复习过程中要分类型练习,重点是解题方法的正确选择同时使学生养成检查计算结果的习惯。还有几何证明题,要通过针对性练习力争达到少失分,达到证明简练又严谨的效果。

2、加强管理严格要求,根据每个学生自身情况、学习水平严格要求,对应知应会的内容要反复讲解、练习,必须做到学一点会一点,对接受能力差的学生课后要加强辅导,及时纠正出现的错误,平时多小测多检查。对能力较强的学生要引导他们多做课外习题,适当提高做题难度。

3、加强证明题的训练,通过近阶段的学习,我发现学生对证明题掌握不牢,不会找合适的分析方法,部分学生看不懂题意,没有思路。在今后的复习中我准备拿出一定的时间来专项练习证明题,引导学生如何弄懂题意、怎样分析、怎样写证明过程。力争让学生把各种类型题做全并抓住其特点。

4、加强成绩不理想学生的辅导,制定详细的复习计划,对他们要多表扬多鼓励,调动他们学习的积极性,利用课余时间对他们进行辅导,辅导时要有耐心,要心平气和,对不会的知识要多讲几遍,不怕麻烦,直至弄懂弄会。

四、课时安排:

本次复习共三周时间,具体安排如下:第一章1课时第二章2课时第三章1课时第四章2课时第五章2课时第六章1课时第七章2课时模拟测试4课时

五、复习阶段采取的 措施 :

1.精心备课上课,针对班级学生出现的错题及所涉及到的重点问题认真挑选试题。2.对于复习阶段作业的布置,少而精,有针对性,并且很抓订正及改错。3.在试题的选择上作到面面俱到,重点难点突出,不重不漏。4.面向全体学生。由于学生在知识、技能方面的发展和兴趣、特长等不尽相同,所以要因材施教。在组织教学时,应从大多数学生的实际出发,并兼顾学习有困难的和学有余力的学生。对学习有困难的学生,要特别予以关心,及时采取有效措施,激发他们学习数学的兴趣,指导他们改进学习方法。减缓他们学习中的坡度,使他们经过努力,能够达到大纲中规定的基本要求。对学有余力的学生,要通过讲授选学内容和组织课外活动等多种形式,满足他们的学习愿望,发展他们的数学才能。5.重视改进 教学方法 ,坚持启发式,反对注入式。教师在课前先布置学生预习,同时要指导学生预习,提出预习要求,并布置与课本内容相关、难度适中的尝试题材由学生课前完成,教学中教师应帮助学生梳理学习的知识,指出重点和易错点,解答学生复习时遇到的问题,使学生在学习中体会成功,调动学习积极性。6.改革作业结构减轻学生负担。将学生按学习能力分成几个层次,分别布置难、中、易三档作业,使每类学生都能在原有基础上提高。


八年级数学上册知识点相关 文章 :

★ 人教版八年级数学上册知识点总结

★ 初二数学上册知识点总结

★ 八年级数学上册知识点归纳

★ 八年级数学知识点整理归纳

★ 数学八年级上册知识点整理

★ 八年级数学上册知识点北师大版

★ 初二数学上册知识点总结归纳

★ 初二数学知识点归纳上册人教版

★ 数学八年级上册知识点

★ 初二数学上册知识点

‘叁’ 初二数学上册书知识点总结

学习八年级数学知识点的时间不多。学习会使你获得许多你成长所必需的“能源”,以下是我为大家整理的初二数学上册书知识点总结,希望你们喜欢。

初二数学上册书知识点总结1-40

1 全等三角形的对应边、对应角相等 ¬

2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 ¬

3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 ¬

4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 ¬

5 边边边公理(SSS) 有三边对应相等的两个三角形全等 ¬

6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 ¬

7 定理1 在角的平分线上的点到这个角的两边的距离相等 ¬

8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 ¬

9 角的平分线是到角的两边距离相等的所有点的集合 ¬

10 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) ¬

21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 ¬

22 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 ¬

23 推论3 等边三角形的各角都相等,并且每一个角都等于60° ¬

24 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) ¬

25 推论1 三个角都相等的三角形是等边三角形 ¬

26 推论 2 有一个角等于60°的等腰三角形是等边三角形 ¬

27 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 ¬

28 直角三角形斜边上的中线等于斜边上的一半 ¬

29 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 ¬

30 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 ¬

31 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 ¬

32 定理1 关于某条直线对称的两个图形是全等形 ¬

33 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 ¬

34定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 ¬

35逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 ¬

36勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 ¬

37勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形 ¬

38定理 四边形的内角和等于360° ¬

39四边形的外角和等于360° ¬

40多边形内角和定理 n边形的内角的和等于(n-2)×180° ¬

初二数学上册书知识点总结41-80

41推论 任意多边的外角和等于360° ¬

42平行四边形性质定理1 平行四边形的对角相等 ¬

43平行四边形性质定理2 平行四边形的对边相等 ¬

44推论 夹在两条平行线间的平行线段相等 ¬

45平行四边形性质定理3 平行四边形的对角线互相平分 ¬

46平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 ¬

47平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 ¬

48平行四边形判定定理3 对角线互相平分的四边形是平行四边形 ¬

49平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 ¬

50矩形性质定理1 矩形的四个角都是直角 ¬

51矩形性质定理2 矩形的对角线相等 ¬

52矩形判定定理1 有三个角是直角的四边形是矩形 ¬

53矩形判定定理2 对角线相等的平行四边形是矩形 ¬

54菱形性质定理1 菱形的四条边都相等 ¬

55菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 ¬

56菱形面积=对角线乘积的一半,即S=(a×b)÷2 ¬

57菱形判定定理1 四边都相等的四边形是菱形 ¬

58菱形判定定理2 对角线互相垂直的平行四边形是菱形 ¬

59正方形性质定理1 正方形的四个角都是直角,四条边都相等 ¬

60正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 ¬

61定理1 关于中心对称的两个图形是全等的 ¬

62定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 ¬

63逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 ¬

点平分,那么这两个图形关于这一点对称 ¬

64等腰梯形性质定理 等腰梯形在同一底上的两个角相等 ¬

65等腰梯形的两条对角线相等 ¬

66等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 ¬

67对角线相等的梯形是等腰梯形 ¬

68平行线等分线段定理 如果一组平行线在一条直线上截得的线段 ¬

相等,那么在其他直线上截得的线段也相等 ¬

69 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 ¬

70 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 ¬

三边 ¬

71 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 ¬

的一半 ¬

72 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 ¬

一半 L=(a+b)÷2 S=L×h ¬

73 (1)比例的基本性质 如果a:b=c:d,那么ad=bc ¬

如果ad=bc,那么a:b=c:d ¬

74 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d ¬

75 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 ¬

(a+c+…+m)/(b+d+…+n)=a/b ¬

76 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 ¬

线段成比例 ¬

77 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 ¬

78 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 ¬

79 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 ¬

80 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 ¬

初二数学上册书知识点总结81-136

81 相似三角形判定定理1 两角对应相等,两三角形相似(ASA) ¬

82 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 ¬

83 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS) ¬

84 判定定理3 三边对应成比例,两三角形相似(SSS) ¬

85 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三 ¬

角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 ¬

86 性质定理1 相似三角形对应高的比,对应中线的比与对应角平 ¬

分线的比都等于相似比 ¬

87 性质定理2 相似三角形周长的比等于相似比 ¬

88 性质定理3 相似三角形面积的比等于相似比的平方 ¬

89 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 ¬

于它的余角的正弦值 ¬

90任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等 ¬

于它的余角的正切值 ¬

91圆是定点的距离等于定长的点的集合 ¬

92圆的内部可以看作是圆心的距离小于半径的点的集合 ¬

93圆的外部可以看作是圆心的距离大于半径的点的集合 ¬

94同圆或等圆的半径相等 ¬

95到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半 ¬

径的圆 ¬

96和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直 ¬

平分线 ¬

97到已知角的两边距离相等的点的轨迹,是这个角的平分线 ¬

98到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距 ¬

离相等的一条直线 ¬

99定理 不在同一直线上的三点确定一个圆. ¬

100垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 ¬

101推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ¬

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ¬

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 ¬

102推论2 圆的两条平行弦所夹的弧相等 ¬

103圆是以圆心为对称中心的中心对称图形 ¬

104定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 ¬

相等,所对的弦的弦心距相等 ¬

105推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 ¬

弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 ¬

106定理 一条弧所对的圆周角等于它所对的圆心角的一半 ¬

107推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 ¬

108推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 ¬

对的弦是直径 ¬

109推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 ¬

110定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 ¬

的内对角 ¬

111①直线L和⊙O相交 d

②直线L和⊙O相切 d=r ¬

③直线L和⊙O相离 d>r ¬

112切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 ¬

113切线的性质定理 圆的切线垂直于经过切点的半径 ¬

114推论1 经过圆心且垂直于切线的直线必经过切点 ¬

115推论2 经过切点且垂直于切线的直线必经过圆心 ¬

116切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, ¬

圆心和这一点的连线平分两条切线的夹角 ¬

117圆的外切四边形的两组对边的和相等 ¬

118弦切角定理 弦切角等于它所夹的弧对的圆周角 ¬

119推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 ¬

120相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积 ¬

相等 ¬

121推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的 ¬

两条线段的比例中项 ¬

122切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割 ¬

线与圆交点的两条线段长的比例中项 ¬

123推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 ¬

124如果两个圆相切,那么切点一定在连心线上 ¬

125①两圆外离 d>R+r ②两圆外切 d=R+r ¬

③两圆相交 R-r<d r) ¬</d

④两圆内切 d=R-r(R>r) ⑤两圆内含d r) ¬

126定理 相交两圆的连心线垂直平分两圆的公共弦 ¬

127定理 把圆分成n(n≥3): ¬

⑴依次连结各分点所得的多边形是这个圆的内接正n边形 ¬

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 ¬

128定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 ¬

129正n边形的每个内角都等于(n-2)×180°/n ¬

130定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 ¬

131正n边形的面积Sn=pnrn/2 p表示正n边形的周长 ¬

132正三角形面积√3a/4 a表示边长 ¬

133如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 ¬

360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4 ¬

134弧长计算公式:L=n兀R/180 ¬

135扇形面积公式:S扇形=n兀R^2/360=LR/2 ¬

136内公切线长= d-(R-r) 外公切线长= d-(R+r)¬

‘肆’ 初二数学上册知识点总结归纳

因为有知识,我们上了太空,我们延长了人均寿命。更因为有知识,我们超出生死,不再疑惑。下面给大家分享一些关于初二数学上册知识点 总结 归纳,希望对大家有所帮助。

初二数学上册知识点总结:二元一次方程组

1、认识二元一次方程组

①含有两个未知数,并且所含有未知数的项的次数都是1的方程叫做二元一次方程

②共含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组

③二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解

2、求解二元一次方程组

①将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的 方法 称为代入消元法,简称代入法

②通过两式子加减,消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法

3、应用二元一次方程组

①鸡兔同笼

4、应用二元一次方程组

①增减收支

5、应用二元一次方程组

①里程碑上的数

6、二元一次方程组与一次函数

①一般地,以一个二元一次方程的解为坐标的点组成的图像与相应的一次函数的图像相同,是一条直线

②一般地,从图形的角度看,确定两条直线相交点的坐标,相当于求相应的二元一次方程组的解,解一个二元一次方程组相当于确定相应两条直线交点的坐标

7、用二元一次方程组确定一次函数表达式

①先设出函数表达式,再根据所给条件确定表达式中未知的系数,从而得到函数表达式的方法,叫做待定系数法。

8、三元一次方程组

①在一个方程组中,各个式子都含有三个未知数,并且所含有未知数的项的次数都是1,这样的方程叫做三元一次方程

②像这样,共含有三个未知数的三个一次方程所组成的一组方程,叫做三元一次方程组

③三元一次方程组中各个方程的公共解,叫做这个三元一次方程组的解.

初二数学上册知识点总结:数据的分析

1、平均数

①一般地,对于n个数x1x2...xn,我们把(x1+x2+···+xn)叫做这n个数的算数平均数,简称平均数记为。

②在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数

2、中位数与众数

①中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数

②一组数据中出现次数最多的那个数据叫做这组数据的众数

③平均数、中位数和众数都是描述数据集中趋势的统计量

④计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。

⑤中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息

⑥各个数据重复次数大致相等时,众数往往没有特别意义

3、从统计图分析数据的集中趋势

4、数据的离散程度

①实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中最大数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量

②数学上,数据的离散程度还可以用方差或标准差刻画

③方差是各个数据与平均数差的平方的平均数

④其中是x1 ,x2.....xn平均数,s2是方差,而标准差就是方差的算术平方根

⑤一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。

初二数学上册知识点总结:平行线的证明

1、为什么要证明

①实验、观察、归纳得到的结论可能正确,也可能不正确,因此,要判断一个数学结论是否正确,仅仅依靠实验、观察、归纳是不够的,必须进行有根有据的证明

2、定义与命题

①证明时,为了交流方便,必须对某些名称和术语形成共同的认识,为此,就要对名称和术语的含义加以描述,做出明确的规定,也就是给它们的定义

②判断一件事情的 句子 ,叫做命题

③一般地,每个命题都由条件和结论两部分组成。条件是已知的选项,结论是已知选项推出的事项。命题通常可以写成“如果....那么.....”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论

④正确的命题称为真命题,不正确的命题称为假命题

⑤要说明一个命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例

⑥欧几里得在编写《原本》时,挑选了一部分数学名词和一部分公认的真命题作为证实其他命题的出发点和依据。其中数学名词称为原名,公认的真命题称为公理,除了公理外,其他命题的真假都需要通过演绎推理的方法进行判断

⑦演绎推理的过程称为证明,经过证明的真命题称为定理,每个定理都只能用公理、定义和已经证明为真的命题来证明

a. 本套教科书选用九条基本事实作为证明的出发点和依据,其中八条是:两点确定一条直线

b. 两点之间线段最短

c. 同一平面内,过一点有且只有一条直线与已知直线垂直

d. 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行(简述为:同位角相等,两直线平行)

e. 过直线外一点有且只有一条直线与这条直线平行

f. 两边及其夹角分别相等的两个三角形全等

g. 两角及其夹边分别相等的两个三角形全等

h. 三边分别相等的两个三角形全等

⑧此外,数与式的运算律和运算法则、等式的有关性质,以及反映大小关系的有关性质都可以作为证明的依据

⑨定理:同角(等角)的补角相等

同角(等角)的余角相等

三角形的任意两边之和大于第三边

对顶角相等

3、平行线的判定

①定理:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简述为:内错角相等,两直线平行

②定理:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简述为:同旁内角互补,两直线平行。

4、平行线的性质

①定理:两条平行直线被第三条直线所截,同位角相等。简述为:两直线平行,同位角相等

②定理:两条平行直线被第三条直线所截,内错角相等。简述为:两直线平行,内错角相等

③定理:两条平行直线被第三条直线所截,同旁内角互补。简述为:两直线平行,同旁内角互补

④定理:平行于同一条直线的两条直线平行

5、三角形内角和定理

①三角形内角和定理:三角形的内角和等于180°

②定理:三角形的一个外角等于和它不相邻的两个内角的和

定理:三角形的一个外角大于任何一个和它不相邻的内角

③我们通过三角形的内角和定理直接推导出两个新定理。像这样,由一个基本事实或定理直接推出的定理,叫做这个基本事实或定理的推论,推论可以当定理使用。


初二数学上册知识点总结归纳相关 文章 :

★ 初二数学上册知识点总结

★ 人教版八年级数学上册知识点总结

★ 人教版八年级数学上册知识点总结

★ 初二上册数学知识点总结

★ 八年级上册数学的知识点归纳

★ 初二上册数学知识点总结与学习方法

★ 八年级上册数学知识点总结

★ 八年级上册数学知识点总结与八年级数学学习技巧

★ 初二数学上册知识点的测试题汇总

★ 初二数学上册三角形及四边形重点知识归纳

‘伍’ 八年级上册数学重要知识点归纳

有很多学生在复习八年级上册数学时,因为之前没有对知识进行系统的总结,导致复习时整体效率低下。下面是由我为大家整理的“八年级上册数学重要知识点归纳”,仅供参考,欢迎大家阅读本文。

八年级上册数学重要知识点归纳

一、勾股定理

1、勾股定理

直角三角形两直角边a,b的平方和等于斜边c的平方,即a²+b²=c²。

2、勾股定理的逆定理

如果三角形的三边长a,b,c有这种关系,那么这个三角形是直角三角形。

橡核备3、勾股数

满足的三个正整数,称为勾股数。

常见的勾股数组有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数)。

二、证明

1、对事情作出判断的句子,就叫做命题。即:命题是判断一件事情的句子。

2、三角形内角和定理:三角形三个内角的和等于180度。

(1)证明三角形内角和定理的思路是将原三角形中的三个角凑到一起组成一个平角。一般需要作辅助。

(2)三角形的外角与它相邻的内角是互为补角。

3、三角形的外角与它不相邻的内角关系

(1)三角形的一个外角等于和它不相邻的两个内角的和。

(2)三角形的一个外角大于任何一个和它不相邻的内角。

4、证明一个命题是真命题的基本步骤

(1)根据题意,画出图形。

(2)根据条件、结论,结合图形,写出已知、求证。

(3)经过分析,找出由已知推出求证的途径,写出证明过程。在证明时需注意:①在一般情况下,分析的过程不要求写出来。②证明中的每一步推理都要有根据。如果两条直线都和第三条直线平行,那么这两条直线也相互平行。

三、数据的分析

1、平均数

①一般地,对于n个数x¹x²...x^n,我们把(x¹+x²+???+x^n)叫做这n个数的算数平均数,简称平均数记为。

②在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数。

2、中位数与众数

①中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平梁毁均数)叫做这组数据的中位数。

②一组数据中出现次数最多的那个数据叫做这组数据的众数。

③平均数、中位数和众数都是描述数据集中趋势的统计量。

④计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。

⑤中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息。

⑥各个数据重复次数大致相等时,众数往往没有特别意义。

3、从统计图分析数据的集中趋势

4、数据的离散程度

①实际生活中,除了关心数据的集中趋势外,人们还氏皮关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量。

②数学上,数据的离散程度还可以用方差或标准差刻画。

③方差是各个数据与平均数差的平方的平均数。

④其中是x1,x.....xn平均数,s2是方差,而标准差就是方差的算术平方根。

⑤一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。

拓展阅读:初中数学补救措施

代数方面的薄弱点提升方法:

从初一阶段的有理数运算开始,如果前面落下的太多。可以有选择性的做实数运算。基础运算能力不能落下。

初二阶段的乘法公式,幂的运算等。利用现有的代数公式,再根据题目进行化简,主要是借助计算模型,加以一定量的题目训练。

应用问题的薄弱点提升方法

学生遇到应用问题最大的诟病就是“看不懂题目”,数学来源于生活,阅读理解能力要强,好比是玩文字游戏,有些学生总是忽略题干的部分条件,急于下笔从而错误率特别好。题干正确审题来源于对数字的敏感。

数学思维的培养方法:

(1)有针对性的进行专题训练,切忌盲目的题海战术。

(2)建立数学的知识网络,融会贯通,互通有无的。

(3)勤能补拙,适当的巩固旧知,进行复习拓展。能有效锻炼数学思维。

‘陆’ 初二上册数学重点提纲

很多的学生对于数学都感到头痛,因为数学的分数每次都不高,并且很多的知识点都不太懂,下面我给大家分享一些初二上册数学重点提纲,希望能够帮助大家,欢迎阅读!

初二上册数学重点提纲

实数知识点

1、实数的分类:有理数和无理数

2、数轴:规定了原点、正方向和单位长度的直线叫数轴.实数和数轴上点一一对应.

3、相反数:符号不同的两个数,叫做互为相反数.a的相反数是-a,0的相反数是0.(若a与b护卫相反数,则a+b=0)

4、绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.

5、倒数:乘积为1的两个数

6、乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂.(平方和立方)

7、平方根:一般地,如果一个数x的平方等于a,即x2=a那么这个数x就叫做a的平方根(也叫做二次方根).一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.(算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,0的算术平方根是0.)

实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的点相对应的数。实数可以直观地看作有限小数与无限小数,它们能把数轴“填满”。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。

实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后n位,n为正整数,包括整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。

1)相反数(只有符号不同的两个数,它们的和为零,我们就说其中一个是另一个的相反数,叫做互为相反数)实数a的相反数是-a,a和-a在数轴上到原点0的距离相等。

2)绝对值(在数轴上一个数a与原点0的距离)实数a的绝对值是:|a|

①a为正数时,|a|=a(不变),a是它本身;

②a为0时,|a|=0,a也是它本身;

③a为负数时,|a|=-a(为a的绝对值),-a是a的相反数。

(任何数的绝对值都大于或等于0,因为距离没有负数。)

3)倒数(两个实数的乘积是1,则这两个数互为倒数)实数a的倒数是:1/a(a≠0)

4)数轴

定义:规定了原点,正方向和单位长度的直线叫数轴

(1)数轴的三要素:原点、正方向和单位长度。

(2)数轴上的点与实数一一对应。

平方根与立方根知识点

平方根:

概括1:一般地,如果一个数的平方等于a,这个数就叫做a的平方根(或二次方根)。就是说,如果x=a,那么x就叫做a的平方根。如:23与-23都是529的平方根。

因为(±23)=529,所以±23是529的平方根。问:(1)16,49,100,1100都是正数,它们有几个平方根?平方根之间有什么关系?(2)0的平方根是什么?

概括2:一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根。

概括3:求一个数a(a≥0)的平方根的运算,叫做开平方。

开平方运算是已知指数和幂求底数。平方与开平方互为逆运算。一个数可以是正数、负数或者是0,它的平方数只有一个,正数或负数的平方都是正数,0的平方是0。但一个正数的平方根却有两个,这两个数互为相反数,0的平方根是0。负数没有平方根。因为平方与开平方互为逆运算,因此我们可以通过平方运算来求一个数的平方根,也可以通过平方运算来检验一个数是不是另一个数的平方根。

一、算术平方根的概念

正数a有两个平方根(表示为?

根,表示为a。

0的平方根也叫做0的算术平方根,因此0的算术平方根是0,即0?0。“

”是算术平方根的符号,a就表示a的算术平方根。a的意义有两点:

a),我们把其中正的平方根,叫做a的算术平方

(1)被开方数a表示非负数,即a≥0;

(2)a也表示非负数,即a≥0。也就是说,非负数的“算术”平方根是非负数。负数不存在算术平方根,即a<0时,a无意义。

如:=3,8是64的算术平方根,?6无意义。

9既表示对9进行开平方运算,也表示9的正的平方根。

二、平方根与算术平方根的区别在于

①定义不同;

②个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个;③表示 方法 不同:正数a的平方根表示为?a,正数a的算术平方根表示为a;④取值范围不同:正数的算术平方根一定是正数,正数的平方根是一正一负.⑤0的平方根与算术平方根都是0.三、例题讲解:

例1、求下列各数的算术平方根:

(1)100;

(2)49;

(3)0.8164

注意:由于正数的算术平方根是正数,零的算术平方根是零,可将它们概括成:非负数的算

术平方根是非负数,即当a≥0时,a≥0(当a<0时,a无意义)

用几何图形可以直观地表示算术平方根的意义如有一个面积为a(a应是非负数)、边长为

的正方形就表示a的算术平方根。

这里需要说明的是,算术平方根的符号“”不仅是一个运算符号,如a≥0时,a表示对非负数a进行开平方运算,另一方面也是一个性质符号,即表示非负数a的正的平方根。

3、立方根

(1)立方根的定义:如果一个数x的立方等于a,这个数叫做a的立方根(也叫做三次方根),即如果x?a,那么x叫做a的立方根

(2)一个数a的立方根,读作:“三次根号a”,其中a叫被开方数,3叫根指数,不能省略,若省略表示平方。

(3)一个正数有一个正的立方根;0有一个立方根,是它本身;一个负数有一个负的立方根;任何数都有的立方根。

(4)利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数。

直角三角形知识点

一、解直角三角形

1.定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

2.依据:①边的关系:初中数学复习提纲

②角的关系:A+B=90°

③边角关系:三角函数的定义。

注意:尽量避免使用中间数据和除法。

二、对实际问题的处理

1.初中数学复习提纲俯、仰角

2.方位角、象限角

3.坡度:

4.在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。

图形的轴对称知识点

I线段的垂直平分线

①定义:垂直并且平分已知线段的直线叫做线段的垂直平分线或中垂线

②性质:

a、线段的垂直平分线上的点到线段两端点的距离相等的点在线段的垂直平分线上;

b、到线段两端点距离相等的点在线段的垂直平分线上;

c、线段是轴对称图形,线段的垂直平分线是线段的一条对称轴,另一条是线段所在的直线。

II角平分线的性质

①角平分线上的点到已知角两边的距离相等

②到已知角两边距离相等的点在已知角的角平分线上

③角是轴对称图形,角平分线所在的直线是该角的对称轴。

二次根式知识点

1.二次根式:式子(≥0)叫做二次根式。

2.最简二次根式:

(1)最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或因式;③分母中不含根式。

(2)最简二次根式必须同时满足下列条件:

①被开方数中不含开方开的尽的因数或因式;

②被开方数中不含分母;

③分母中不含根式。

3.同类二次根式(可合并根式):

几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式。

4.二次根式的性质

非负性:是一个非负数.

注意:此性质可作公式记住,后面根式运算中经常用到.

①字母不一定是正数.

②能开得尽方的因式移到根号外时,必须用它的算术平方根代替.

③可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.

(4)公式与的区别与联系:

①表示求一个数的平方的算术根,a的范围是一切实数.

②表示一个数的算术平方根的平方,a的范围是非负数.

③和的运算结果都是非负的.

估算知识点

1.四舍五入

例题:2的算数平方根(保留到0.01)

解:根号2=1.414.....≈1.41

2.进一法

例题:一支笔2.6元,四支需多少钱(保留到整数)

解:2.6x=10.4元≈11元

如果四舍五入的话是10元,是不够的,所以是要进上去的

3.去尾法

例题:有20元,买3元一支的笔,可卖多少支?

解:20/3=6.6666....支≈6支

如果四舍五入的话是7支,买不到,所以是要去掉的

按照一般方法就是把854估做840,840除以7等于120.但这样在尺度上让学生不好把握.我们可以直接算出854除以7等于122.再看122最接近那个整十或整百数.我们不难看出122字接近120,所以估算结果等于120.这样学生通过求除法的准确值,再找出商最接近的整十或整百数就容易多了

比如2个数或多个数相乘或则相加、相减、相除,我们不能很快且正确的算出来,就是只有打开的算出来。

中考数学答题技巧

1、直接推演法

直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法。

2、验证法

由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。

3、特殊元素法

用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。

4、排除法

对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。

5、图解法

借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。

数学 学习方法

1、基础很重要

是不是感觉数学都能考满分的同学,连书都不用看,其实数学学霸更重视基础。,数学公式,几何图形的性质,函数的性质等,都是数学学习的基础,甚至可以说基础的好坏,直接决定中考数学成绩的高低。

李现良表示,班里某位同学来找自己讲题,其实题目并不难,但这位同学就是因为一些最基础的知识没有掌握透彻,导致做题的时候没有思路。基础不牢、地动山摇,一个小小的知识漏洞可能导致你在整一个题中都没有思路,非常危险。

2、错题本很重要

在所有科目中,数学这个科目最重要错题本学习法。李现良同学也特别提倡大家整理错题,李现良对于错题本有一些小窍门,那就是平时如果坚持整理错题,最终会导致自己错题本很多很厚,我们可以定期复习,对于一些彻底掌握的,可以做个标记,以后就不用再次复习,这样错题本使用起来就会效率更高。

3、做题要多 反思

数学学习要大量做题去巩固,但做题不要只讲究数量,更要讲究质量,遇到经典题,综合性高的题目时,每道题写完解答过程后,需要进行分析和反思,多问几个为什么,这样才能把题真正做透。

4、把数学知识形成体系

数学学霸李现良表示,课本上的知识都是零散的,建议大家自己画 思维导图 把知识串起来,画思维导图的过程,就是不断理解,让知识变成结构的过程。


初二上册数学重点提纲相关 文章 :

★ 八年级上册数学复习提纲整理

★ 八年级上册数学复习提纲2020

★ 数学八年级上册知识点整理

★ 初二数学上册知识点总结

★ 八年级上册期末数学重点笔记

★ 八年级上册数学总复习知识点

★ 初二数学知识点归纳上册人教版

★ 2021初二上学期数学复习提纲

★ 2021八年级上册数学复习提纲

★ 鲁教版八年级上册数学提纲

‘柒’ 初二数学上册重点知识点总结

初中生在学习数学的过程中应该注意知识点的总结,下面总结了初二数学上册知识点,供大家参考。

位置与坐标

1.确定位置

在平面内,确定一个物体的位置一般需要两个数据。

2.平面直角坐标系

①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或者横轴,竖直的数轴叫y轴和纵轴,二者统称为坐标轴,它们的公共原点o被称为直角坐标系的原点。

③建立了平面直角坐标系,平面内的点就可以用一组有序实数对来表示。

④在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆时针方向叫做第二象限,第三象限,第四象限,坐标轴上的点不在任何一个象限。

⑤在直角坐标系中,对于平面上任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上唯一的一点与它对应。

3.轴对称与坐标变化

关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。

一次函数

(一)一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。特别地,当b=0时,y=kx+b(k为常数,k≠0),y叫做x的正比例函数。

(二)函数三要素

1.定义域:设x、y是两个变量,变量x的变化范围为D,如果对于每一个数x∈D,变量y遵照一定的法则总有确定的数值与之对应,则称y是x的函数,记作y=f(x),x∈D,x称为自变量,y称为因变量,数集D称为这个函数的定义域。

2.在函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。

3.对应法则:一般地说,在函数记号y=f(x)中,“f”即表示对应法则,等式y=f(x)表明,对于定义域中的任意的x值,在对应法则“f”的作用下,即可得到值域中唯一y值。

(三)一次函数的表示方法

1.解析式法:用含自变量x的式子表示函数的方法叫做解析式法。

2.列表法:把一系列x的值对应的函数值y列成一个表来表示的函数关系的方法叫做列表法。

3.图像法:用图象来表示函数关系的方法叫做图象法。

(四)一次函数的性质

1.y的变化值与对应的x的变化值成正比例,比值为k。即:y=kx+b(k≠0)(k不等于0,且k,b为常数)。

2.当x=0时,b为函数在y轴上的交点,坐标为(0,b)。当y=0时,该函数图象在x轴上的交点坐标为(-b/k,0)。

3.k为一次函数y=kx+b的斜率,k=tanθ(角θ为一次函数图象与x轴正方向夹角,θ≠90°)。

4.当b=0时(即y=kx),一次函数图象变为正比例函数,正比例函数是特殊的一次函数。

5.函数图象性质:当k相同,且b不相等,图像平行;当k不同,且b相等,图象相交于Y轴;当k互为负倒数时,两直线垂直。

6.平移时:上加下减在末尾,左加右减在中间。

全等三角形

1.经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形,而该两个三角形的三条边及三个角都对应相等。

2.三角形全等的判定

(1)SSS(边边边)

三边对应相等的三角形是全等三角形。

(2)SAS(边角边)

两边及其夹角对应相等的三角形是全等三角形。

(3)ASA(角边角)

两角及其夹边对应相等的三角形全等。

(4)AAS(角角边)

两角及其一角的对边对应相等的三角形全等。

(5)RHS(直角、斜边、边)

在一对直角三角形中,斜边及另一条直角边相等。

3.角平分线

(1)从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线。

(2)性质

①角平分线分得的两个角相等,都等于该角的一半。

②角平分线上的点到角的两边的距离相等。

分式

(一)分式的运算

分式四则运算,顺序乘除加减,

乘除同级运算,除法符号须变(乘),

乘法进行化简,因式分解在先,

分子分母相约,然后再行运算,

加减分母需同,分母化积关键,

找出最简公分母,通分不是很难,

变号必须两处,结果要求最简。

(二)分式的运算法则

(1)约分

①如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去。

②分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。

(2)公因式的提取方法

系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式。

(3)除法

两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。

(4)乘方

分子乘方做分子,分母乘方做分母,可以约分的约分,最后化成最简。

图形的平移与旋转

1.平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。

2.平移性质

(1)图形平移前后的形状和大小没有变化,只是位置发生变化。

(2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等。