① 鏁板﹁剧▼镙囧嗳鏁板" 锲涘熀"鍜" 锲涜兘"链夊摢浜
灏忓︽暟瀛︾殑璇剧▼鐩镙囷纴鏄浠ュ︾敓鍙戝𪾢涓烘湰锛屼互镙稿绩绱犲吇涓哄煎悜锛岃繘涓姝ュ己璋冨︾敓銮峰缑鏁板︹滃洓锘衡濓纴鍗冲熀纭鐭ヨ瘑銆佸熀链鎶鑳姐佸熀链镐濇兂鍜屽熀链娲诲姩缁忛獙銆傚悓镞堕渶瑕佸彂灞曡繍鐢ㄦ暟瀛︾煡璇嗕笌鏂规硶鍙戠幇銆佹彁鍑恒佸垎鏋愬拰瑙e喅闂棰樼殑鑳藉姏锛岀亩绉扳滃洓鑳解濄
涓銆佸洓锘烘槸鎸囧熀纭鐭ヨ瘑銆佸熀链鎶鑳姐佸熀链镐濇兂鍜屽熀链娲诲姩缁忛獙
1.1锘虹鐭ヨ瘑
锘虹鐭ヨ瘑鏄瀛︿範浠讳綍涓涓瀛︾戝繀澶囩殑鎶鑳斤纴杩欎负鍏朵粬鎶鑳藉拰镐濇兂镄勫煿鍏绘彁渚涙敮鎾戝拰淇濋㱩銆傛暟瀛﹀︾戠殑锘虹鐭ヨ瘑涓昏佹寚鏁板︿腑镄勬傚康銆佹ц川銆佸叕寮忋佹硶鍒欍佸畾鐞嗕互鍙婄敱鍏跺唴瀹瑰欢鐢冲嚭镄勭壒娈婃柟娉曘
姣斿傚瑰浘褰㈢殑璁よ瘑锛屽姞鍑忎箻闄ょ殑杩愮畻锛屼互鍙婄壒娈婄殑锷犳硶銆佷箻娉曚氦鎹㈠緥鍜岀粨钖埚緥绛夌瓑銆
1.2锘烘湰鎶鑳
锘烘湰鎶鑳芥槸瀹炵幇鐭ヨ瘑杞鍖栥佽繍鐢ㄥ拰鍒涢犵殑閲嶈佹坠娈点傚湪鏁板﹀︾戜腑锛屼富瑕佹槸鎸囱兘澶熸寜镦т竴瀹氱殑绋嫔簭涓庢ラわ纴杩涜岀啛缁冩搷浣灭殑鏁板﹁屼负链棰嗭纴浼桦寲璁$畻銆佸寲绠銆佸彉褰銆佷綔锲俱佹帹鐞嗐佽瘉鏄庣瓑銆
姣斿傦纴瀛︾敓镄勮$畻鑳藉姏锛岄昏緫鎺ㄧ悊鑳藉姏锛岀┖闂存兂璞¤兘锷涳纴鍑犱綍镐濈淮鑳藉姏绛夌瓑銆
1.3锘烘湰镐濇兂
姣斿傦纴灏忓﹂桩娈电殑瀛︿範搴旇ユ敞閲嶅煿鍏诲︾敓镄勬暟瀛︽娊璞℃濇兂銆佹暟瀛︽帹鐞嗘濇兂銆佹暟瀛﹀缓妯℃濇兂绛夌瓑銆傚堕暱鍜岃佸笀鍦ㄧ粰瀛╁瓙杩涜屾暀瀛﹁緟瀵兼椂锛岃佹敞镒忕粰瀛︾敓娓楅忔暟瀛︽濇兂锛岃屼笉鏄浠ユ暀浼氭暟瀛︾煡璇嗕负涓昏佺洰镙囥
1.4锘烘湰娲诲姩缁忛獙
锘烘湰娲诲姩缁忛獙鏄阃氲繃瀹炶返銮峰彇镄勫叿浣撶粡楠屽拰鎶鑳姐傚堕暱鍜岃佸笀搴斿氩氩垱阃犳満浼氾纴璁╁╁瓙阃氲繃浜茶韩缁忓巻鎴栨暀瀛︽椿锷锛屼粠钥岃幏寰楀叿链変釜镐у寲鐗瑰緛镄勭粡楠岋纴浠庤屾洿濂藉湴鐞呜В骞惰繍鐢ㄦ暟瀛︾殑鐭ヨ瘑銆
姣斿傚湪鐢熸椿涓杩涜岃繍绠楋纴瑙e喅瀹为檯镄勬暟瀛﹂梾棰桡纴鍙浠ュ姞寮哄╁瓙镄勮繍绠楄兘锷涳纴钖屾椂涔熻兘璁╁╁瓙娣卞埢镒熷弹鎶借薄鏁板﹀叕寮忚繍绠楁墍浠h〃镄勫叿璞℃剰涔夈
浜屻佸洓鑳芥槸鎸囧彂鐜板拰鎻愬嚭闂棰樼殑鑳藉姏銆佸垎鏋愬拰瑙e喅闂棰樼殑鑳藉姏
2.1鍙戠幇鍜屾彁鍑洪梾棰樼殑鑳藉姏
鍙戠幇鍜屾彁鍑洪梾棰樻槸瀛︽湳镰旂┒鍜岀敓浜х敓娲荤殑閲嶈佸墠鎻愩傚堕暱鍜岃佸笀搴旇ラ紦锷卞︾敓浠ユ暟瀛︾殑瑙掑害铡昏傚疗鐢熸椿锛屽逛竴浜涘父瑙佺殑鎴栭毦浠ヨВ閲婄殑鐜拌薄杩涜屾暟瀛︽濊冦傚湪鍙戠幇闂棰樼殑锘虹涓婏纴鍐嶉噰鐢ㄦ伆褰撶殑鏁板﹁瑷鍜岀﹀彿锛屽归梾棰桦仛杩涗竴姝ョ殑鏁板︽娊璞★纴骞跺湪鐗瑰畾镄勯昏緫妗嗘灦鍜屾暟瀛﹀叧绯讳腑锛屽皢鏁板﹂梾棰樻竻鏅板湴琛ㄨ揪銆
2.2鍒嗘瀽鍜岃В鍐抽梾棰樼殑鑳藉姏
鍒嗘瀽鍜岃В鍐抽梾棰樻槸瀛︿範涓閲嶈佺殑搴旂敤鑳藉姏銆傚湪鍙戠幇鍜屾彁鍑洪梾棰桦悗锛屽︾敓搴旇ュ︿範濡备綍杩涗竴姝ュ归梾锅氩嚭鍒嗘瀽锛岄夋嫨瑙e喅闂棰樼殑绛栫暐鍜屾柟娉曘傛渶缁堥‘鍒╄В鍐抽梾棰樸傝繖涓杩囩▼涔熺獊鍑轰简鑳藉姏锘瑰吇镄勮佹眰锛屾湁鏁埚湴鏀鎾戜简鏁板﹀︾戞牳蹇幂礌鍏荤殑鍙戝𪾢銆
2.3鍒涙柊鑳藉姏
鏁板︾殑瀛︿範瀵瑰垱鏂拌兘锷涙湁杈冮珮镄勮佹眰锛岄樼洰𨱔垫椿澶氩彉锛岃佹眰瀛︾敓镍傚缑涓句竴鍙崭笁銆傛暟瀛︾殑鐭ヨ瘑浣撶郴搴炲ぇ涓斿嶆潅锛屼竴阆挞樼洰链夊氱嶅氭牱镄勮В娉曪纴姣斿傚叕寮忔硶銆佺敾锲炬硶绛夌瓑锛岄渶瑕佸︾敓链夊垱鏂扮殑镐濈淮鑳藉姏锛屾墠鑳借㔉棰栬屽嚭銆
2.4瀹炶返鑳藉姏
瀹炶返鑳藉姏鏄瀛︾敓阃氲繃瀹为檯镎崭綔浣挞獙鍜屽疄璺垫椿锷ㄤ腑瀛︿範镄勭粡楠屽拰鎶鑳斤纴鏄铻嶆眹杩愮敤瀛︾戠煡璇嗐佹妧鑳藉拰镐濇兂镄勯吨瑕佹坠娈点傞渶瑕佹彁鍗囧︾敓镄勬暟瀛﹀簲鐢ㄦ剰璇嗭纴灏嗙敓娲讳腑镄勫叿璞℃儏鏅鎶借薄涓烘暟瀛﹂梾棰樿繘琛岃В鍐筹纴涓崭粎鑳藉珐锲烘墍瀛︾殑鐭ヨ瘑锛屾洿鑳芥彁鍗囧规暟瀛﹀︿範镄勫叴瓒c
涓夈佸煿鍏烩滃洓锘衡濄佲滃洓鑳解濓纴瀹堕暱搴旇ュ备綍锅氾纻
榧揿姳瀛╁瓙瑕佹暍浜庤川鐤戯纴锘瑰吇鍙戠幇鍜屾彁鍑洪梾棰樼殑鑳藉姏銆
榧揿姳瀛╁瓙澶氲掑害镐濊冮梾棰桡纴阌荤偧镐濈淮鑳藉姏鍜屽垱鏂拌兘锷涖
鏀堕泦阌欓桡纴宸╁浐锘虹鐭ヨ瘑鍜屾妧鑳斤纴锘瑰吇姝g‘镄勬濈淮涔犳傥
锽勭敤鐢熸椿涓鏁板﹀満鏅锛岄敾镣煎╁瓙鏁板﹀疄璺佃兘锷
榧揿姳瀛╁瓙鍕囨暍鎻愬嚭璐ㄧ枒锛屼负浠涔堣佽繖镙疯В锛熷彟涓绉嶈В娉曚笉鏄镟存柟渚垮悧锛熻繖鍙浠ュ煿鍏诲╁瓙鍕囦簬鎻愬嚭鐤戞儜銆侀梾棰樼殑鑳藉姏銆傚傛灉锲犱负濡傛灉浠栫殑璁虹偣鏄阌欑殑锛岃瘉鏄庡╁瓙娌℃湁鍏ㄩ溃鍦拌冭槛闂棰桡纴链夌煡璇嗙洸鍖猴纴浜夎京镄勮繃绋嫔氨鏄瀵瑰熀纭鐭ヨ瘑镓鐩茬殑杩囩▼锛屼篃鍙浠ヤ紭鍖栨濊冦佸垎鏋愰梾棰樼殑鏂瑰纺銆傚傛灉璁虹偣鏄姝g‘镄勶纴闾d粬灏卞珐锲轰简瀵规g‘镐濊矾镄勮板繂锛屾湁锷╀簬锘瑰吇鏁板︽濈淮銆
鍙傝幂瓟妗堜竴鑸鏄涓阆挞樼洰镄勬渶浼樿В锛屽彲鏄澶ч儴鍒嗛樼洰涓岖煡链変竴绉嶈В娉曪纴鎴栬呰翠笉鍙涓绉嶆濊幂殑镐濊矾銆备綔涓哄堕暱锛屽簲璇ラ紦锷卞╁瓙澶氩氭濊冿纴涓嶅簲璇ユ弧瓒充簬鍙傝幂瓟妗堜笂镄勪竴绉嶆柟娉曪纴杩椤叾瀹炰篃鏄鍦ㄩ敾镣煎╁瓙绐佺牬浼犵粺镐濈淮镄勮兘锷涖傚綋瀛╁瓙鑳界伒娲诲湴寰楀嚭澶氱嶆濊矾锛岃瘉鏄庝粬鐪熸g悊瑙d简棰樼洰镄勬剰锲俱傞暱姝や互寰锛屾暟瀛︽濈淮鑳藉姏鍜屽垱鏂拌兘锷涜嚜铹跺彲浠ュ缑鍒版彁鍗囥
鏁寸悊阌欓樼殑杩囩▼涓锛屼篃鏄宸╁浐姝g‘瑙i樻濊矾镄勪竴绉嶆柟寮忋傝屼笖涓崭粎瑕佹敹闆嗛敊棰桡纴杩樿佸皢阌栾褰掔被锛屽崭範镞舵寜阌栾绫诲埆𨱒ユ祻瑙堥樼洰锛岃繖镙峰彲浠ュ珐锲哄熀纭鐭ヨ瘑鍜屽熀纭鎶鑳斤纴锘瑰吇姝g‘镄勬濈淮涔犳傥銆傝繖镙蜂笅涓娆¢亣鍒板悓绫诲瀷镄勯梾棰樻椂锛屽氨鑳借繀阃熷洖𨱍宠捣瑙i樻濊矾锛岀粫寮鏄挞敊镣癸纴椤哄埄绛旈樸
瀹堕暱搴旇ラ紦锷卞╁瓙澶氩氱敤璇惧爞瀛﹀埌镄勬暟瀛︾煡璇嗭纴𨱒ヨВ鍐崇敓娲讳笂瀹为檯阆囧埌镄勫汹闅撅纴鍒╃敤鎴戜滑鐢熸椿涓镄勬暟瀛﹀幓阌荤偧镐濈淮鑳藉姏銆傛瘆濡傝喘鐗╋纴镓嬮噷镄勯挶澶熶笉澶熶拱涓嬫効链涙竻鍗曢噷镄勬墍链変笢瑗匡纻镐庢牱涔帮纴濡备綍鎼閰嶆墠链鍒掔畻锛熸瘆濡傚嚭闂ㄦ梾琛屽湪澶栵纴濡备綍阃氲繃璺鐗屼笂镄勫叕閲屾暟锛屽拰镞堕熻〃涓婄殑鏁板瓧锛屾潵鍒ゆ柇澶ф傞渶瑕佸氢箙镓嶈兘鍒拌揪鐩镄勫湴绛夌瓑銆傝繖链夊姪浜庡╁瓙绉鏀掓椿锷ㄧ粡楠岋纴
鏁版劅鏄熺悆锛屼笓涓哄皬瀛﹂桩娈电殑瀛╁瓙镓挞犵殑鏁板︽濈淮璁缁冨ソ甯镓嬨傚叾灏嗕弗璋ㄧ殑鏁板︾煡璇嗗拰瓒e懗娓告垙鐩哥粨钖堬纴涓哄╁瓙鏋勫缓涓涓澶氩厓镄勬暟瀛﹂梾棰樻帰绱㈢┖闂达纴寰搴忔笎杩涘紩瀵煎╁瓙涓诲姩瑙e喅闂棰桡纴浠庤屾繁鍒荤悊瑙f娊璞$殑鏁板﹀师鐞嗭纴涓烘暟瀛﹀︿範镓扑笅绋冲浐镄勫熀纭銆
② 数学基础知识有哪些
什么是数学基础知识
众所周知,概念是思维的基本形式之一,是对一切事物进行判断和推理的基础.数学概念是构成数学知识的基础,是基础知识和基本技能教学的核心,正确地理解数学概念是掌握数学知识的前提.因此数学概念的教学是数学教学的一个重要方面,但数学概念的抽象性使得数学概念的教学相对棘手. 概念的产生都有其必然性,我们要抓住概念产生的背景,让学生了解数学概念的产生、发展、演变的原因以及在这些原因中所隐藏着数学概念间的内在联系,将数学概念在数学思想的整体连贯性中的作用体现出来. 因此,教师在讲授新的概念时,可以分析概念产生的背景.找出合适学生理解的、有趣而生动的切入点,让学生更容易理解新概念,更容易对新知识找到共鸣,才能让学生有更多的机会参与发现需要建立新概念的时机并加入到这一创造活动中去,从中感受和谐、连贯、严密、有用的数学之美.下面浅谈一下在概念教学中用到的几种方法. 一、从概念的产生背景着手,层层深入 对数这一概念就是学生在数学学习中遇到的一个非常抽象的概念,直接讲授的方式会使学生难于理解.其实我们分析一下对数产生的背景,可以发现这是数学运算发展到一定的阶段后,必然产生的一种新运算.加法发展到一定程度必然要引入减法,乘方发展到一定阶段必然要出现开方一样,对数也是为了生产生活中的计算需要而必然产生的.如果把这些概念的背景、运算方式列成表格,在对比过程中自然而然形成新的概念,使学生轻松地接受并理解它. 教师可以设置了一个这样的教学引入过程: 首先提出两个问题1、1个细胞一次分裂成两个细胞,请问1个细胞需要分裂多少次以后才能分裂成128个?2、某人原来年薪为a万元,假设他的工资以每年10%的速度增长,请问经过多少年以后他的年薪增长为原来的2倍? 这两个例题中,运用的运算都是解指数方程:1、,2、.但第一题答案是特殊值,不需要引入新运算;第二题答案则不是特殊值了,在现有的运算中,答案算不出来.如何让解决这一问题? 紧接着,教师再提出了几种具有互逆关系的运算进行对比,如:3+x=10 x=10-3、5=8 x=、 . 在接下来的教学中,我们就可以自然的将指数式化成对数式x=,引入新的运算概念.并且指出:指数式与对数式的关系(1)是等价的(2)它们只是写法不一样,读法不一样,a、b、N的名称不一样,所在位置不一样,但代表的数一样,含义一样,数的范围也是一样,只要牢牢记住指数式和对数式中的字母a、b、N交换的方式、交换的位置,就可以自由的将指数式和对数式进行互化.在这个过程中,指数对数与加减、乘除、乘方开方之间关系是相类似的,这些概念之间的对比要贯穿教学始终,以便于学生的理解. 二、从概念的生活背景出发,创设学习情境 很多数学概念是人们在长期的现实生活中对事物进行高度抽象概括的产物,有具体的素材为基础,有生动的现实原型,教师要善于结合生活实际,通过多种方式创造良好的学习情境激发学生的学习兴趣,使学生觉得这些抽象的数学概念仿佛就在自己的身边,伸手可摸. 等比数列这样的概念就是直接源于生活的概念,在讲授的过程中,现实生活中的实例随手可得,如常见的细胞分裂问题,商店打折问题,放射性物质的重量问题,银行利率,为自己家选择合适的还贷方式等等实例可以信手拈来穿插在概念的讲解、巩固的过程中. 为了让学生积极性充分发挥出来,我还设计了一个有趣的问题情境引入等比数列这一概念: 阿基里斯(希腊神话中的善跑英雄)和乌龟赛跑,乌龟在前方1里处,阿基里斯的速度是乌龟的10倍,当......>>
小学数学的基础知识有哪些
小学数学学习概述
数学学习主要是对学生数学思维能力的培养.这要以数学基础知识和基本技能为基础,以数学问题为诱因,以数学思想方法为核心,以数学活动为主线,遵循数学的内在规律和学生的思维规律开展教学.
学习类型分析
1.方式性分类
(1)接受学习与发现学习
定义:将学习的内容以定论的形式呈现给学习者的学习方式.
模式:呈现材料—讲解分析—理解领会—反馈巩固
(2)发现学习
定义:向学习者提供一定的背景材料,由学习者独立操作而习得知识的学习方式.
模式:呈现材料—假设尝试—认知整合—反馈巩固.
2.知识性分类一
(1)知识学习 定义:以理解、掌握数学基础知识为主的学习活动.过程:选择—领会—习得——巩固
(2)技能学习
定义:将一连串(内部或外部的)动作经练习而形成熟练的、自动化的反应过程.
过程:演示—模仿—练习—熟练—自动化
(3)问题解决学习
以关心问题解决过程为主、反思问题解决思考过程的一种数学学习活动.
提出问题—分析问题—解决问题—反思过程
3.知识性分类二
(1)概念性(陈述性)知识的学习
把数学中的概念、定义、公式、法则、原理、定律、规则等都称为概念性知识.
概念学习:同化与形成.
利用已有概念来学习相关新概念的方式,称概念同化;依靠直接经验,从大量的具体例子出发,概括出新概念的本质属性的方式,称为概念形成.概念形成是小学生获得数学概念的主要形式.
(2)技能性(程序性)知识的学习
小学数学技能主要是运算技能. 运算技能的形成分为三个阶段:
①认知阶段:“引导式”的尝试错误.从老师演算例题或自学法则中初步了解运算法则,在头脑中形成运算方法的表征.②联结阶段:法则阶段,即按法则一步步地运算,保证算对(使用法则解决问题,陈述性知识提供了基本的操作线索)—程序化阶段(将相关的小法则整合为整体的法则系统,此时概念性知识已退出),能算得比较快速正确.③自动化阶段:更清楚更熟练地应用第二阶段中的程序,通过较多的练习,不再思考程序,达到一定程序的自动化,获得了运算的速度和较高的正确率.
(3)问题解决(策略性知识)的学习
通过重组所掌握的数学知识,找出解决当前问题的适用策略和方法,从而获得解决问题的策略的学习.
小学生解决问题的主要方式,一是尝试错误式(又称试误法),即通过进行无定向的尝试,纠正暂时性
尝试错误,直至解决问题;二是顿悟式(也称启发式),好像答案或方法是突然出现的,而实际上是有一
定的“心向”作基础的,这就是问题解决所依据的规则、原理的评价和识别.
4.任务性分类
(1)记忆操作类学习
如口算、尺规作(画)图和掌握基本的运算法则并能进行准确计算等.
(2)理解性的学习
如认识并掌握概念的内涵、懂得数学原理并能用于解释或说明、理解一个数学命题并能用于推得新命题.
(3)探索性的学习
如需要让学生经过自己探索,发现并提出问题或学习任务,让学生通过自己的探究能总结出一个数学规律或规则,让学生通过自己的探究过程而逐步形成新的策略性知识等.
小学生数学认知学习
一、小学生数学认知学习的基本特征
1.生活常识是小学生数学认知的起点
要在儿童的生活常识和数学知识之间构建一座桥梁,让儿童从生活常识和经验出发,不断通过尝试、探索和反思,从而达到“普通常识”的“数学化”.
2.小学生数学认知是一个主体的数学活动过程
数学认知过程要成为一个“做数学”的过程,让儿童从生活常识出发,在“做数学”的过程中,去发现、了解、体验和掌握数学,去认识数学的价值、了解数学的特性、总结数学的规律,去学会用数学、提高数学修养、发展数学能力......>>
小学数学基础知识包括哪几个方面?
数学与计算、量与计量、百分数、比和比例、应用题、代数初步知识、几何初步知识、统计初步知识八大部分
初中数学基础知识点有哪些
初中数学基础知识大全:直角座标系与点的位置
1. 直角座标系中,点A(3,0)在y轴上。
2. 直角座标系中,x轴上的任意点的横座标为0。
3. 直角座标系中,点A(1,1)在第一象限。
4. 直角座标系中,点A(-1,1)在第二象限。
5. 直角座标系中,点A(-1,-1)在第三象限。
6. 直角座标系中,点A(1,-1)在第四象限。
初中数学基础知识大全:特殊三角函数值
1.cos30°=√3/2
2.sin2 60°+ cos2 60°= 1
3.2sin30°+ tan45°= 2
4.tan45°= 1
5.cos60°+ sin30°= 1
初中数学基础知识大全:圆的基本性质
1.半圆或直径所对的圆周角是直角。
2.任意一个三角形一定有一个外接圆.
3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
4.在同圆或等圆中,相等的圆心角所对的弧相等。
5.同弧所对的圆周角等于圆心角的一半。
6.同圆或等圆的半径相等。
7.过三个点一定可以作一个圆。
8.长度相等的两条弧是等弧。
9.在同圆或等圆中,相等的圆心角所对的弧相等。
10.经过圆心平分弦的直径垂直于弦。
数学的基础理论有哪些
“数与代数”领域中主要是最基本的数、式、方程(及不等式)和函数的内容.
⑴在顾及知识的纵向逻辑结构的前提下,突出重点,适当精简整合.
⑵螺旋上升地呈现重要的概念和思想,不断深化对它们的认识,例如:使方程和函数交替出现,即按一次方程“组”,一次函数,二次方程,二次函数的顺序螺旋上升.
⑶联系实际,体现知识的形成和应用过程,突出建立数学模型的思想.
初三数学基础知识有哪些?
方程,平面几何,概率
③ 幼儿数学教学中有哪些知识点
1. 幼儿数学教育的基本观点 1.幼儿学习数学开始于动作 自从皮亚杰提出“抽象的思维起源于动作”后,这已成为幼儿数学教育中广为接受的观点: ① 我们经常能观察到,幼儿在学习数学时,最初是通过动作进行的。例如“对应排列相关联的物体”活动,随着幼儿动作的逐渐内化,他们才能够在头脑中进行这样的对应。 ② 幼儿表现出的这些外部动作,实际上是协调事物之间关系的过程,这对于他们理解数学中的关系是不可或缺的。在幼儿学习某一数学知识的初级阶段,特别需要这种外部的动作。对于那些表现出抽象思维有困难的幼儿,也需要给予他们充分摆弄的机会,这既符合他们的心理需要,也有助于他们的学习。 2.幼儿数学知识的内化需要借助于表象的作用 ①幼儿对数学知识的理解开始于外部的动作,但是要把它们变成头脑中抽象的数学概念,还有赖于内化的过程,即在头脑中重建事物之间的逻辑关系。表象的作用即在于帮助幼儿完成这一内化的过程。 ②但把表象的作用无限夸大也是不适当的做法。 3.幼儿对数学知识的理解要建立在多样化的经验和体验基础上。 由于数学知识是一种抽象的知识,它的获得需要摆脱具体事物的其他无关特征。而幼儿对于数学知识的抽象意义的理解,却是从具体的事物开始。所以幼儿在概念形成的过程中所依赖的具体经验越丰富,他们对数学概念的理解就越具有概括性。因此,为他们提供丰富多样的经验,能帮助幼儿更好地理解数学概念的抽象意义。 4.幼儿抽象数学知识的获得需要符号和语言的关键作用 ①数学知识具有抽象性的特点,幼儿学习数学,最终要从具体的事物中摆脱出来,形成抽象的数学知识。但幼儿头脑中往往只是保存着一些具体的经验,要使之变成概念化的知识,则需要符号体系的参与。 ② 语言在幼儿学习数学的过程中也很重要。数学是一种精练的语言,而语言则是思维的工具。 5.幼儿数学知识的巩固有赖于练习和应用的活动 幼儿数学知识的掌握是一个持续不断地过程。幼儿用自己已有的认知结构内化外部世界,同时也建构着新的知识。
④ 小学数学史常识
1.数学小知识
1、在生活中,我们经常会用到0、1、2、3、4、5、6、7、8、9这些数字。
那么你知道这些数字是谁发明的吗? 这些数字符号原来是古代印度人发明的,后来传到 *** ,又从 *** 传到欧洲,欧洲人误以为是 *** 人发明的,就把它们叫做“ *** 数字”,因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做 *** 数字。 现在, *** 数字已成了全世界通用的数字符号。
2、九九歌就是我们现在使用的乘法口诀。 远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。
在当时的许多着作中,都有关于九九歌的记载。最初的九九歌是从“九九八十一”起到“二二得四”止,共36句。
因为是从“九九八十一”开始,所以取名九九歌。大约在公元五至十世纪间,九九歌才扩充到“一一得一”。
大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的一样,从“一一得一”起到“九九八十一”止。 现在我国使用的乘法口诀有两种,一种是45句的,通常称为“小九九”;还有一种是81句的,通常称为“大九九”。
3、圆形,是一个看来简单,实际上是很奇妙的圆形。 古代人最早是从太阳,从阴历十五的月亮得到圆的概念的。
就是现在也还用日、月来形容一些圆的东西,如月门、月琴、日月贝、太阳珊瑚等等。 是什么人作出第一个圆呢? 十几万年前的古人作的石球已经相当圆了。
前面说过,一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很圆。 山顶洞人是用一种尖状器转着钻孔的,一面钻不透,再从另一面钻。
石器的尖是圆心,它的宽度的一半就是半径,一圈圈地转就可以钻出一个圆的孔。 以后到了陶器时代,许多陶器都是圆的。
圆的陶器是将泥土放在一个转盘上制成的。 当人们开始纺线,又制出了圆形的石纺缍或陶纺缍。
6000年前的半坡人(在西安)会建造圆形的房子,面积有十多平方米。 古代人还发现圆的木头滚着走比较省劲。
后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走,这样当然比扛着走省劲得多。当然了,因为圆木不是固定在重物下面的,走一段,还得把后面滚出来的圆木滚到前面去,垫在重物前面部分的下方。
大约在6000年前,美索不达米亚人,做出了世界上第一个轮子--圆的木盘。 大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。
因为轮子的圆心是固定在一根轴上的,而圆心到圆周总是等长的,所以只要道路平坦,车子就可以平衡地前进了。 会作圆,但不一定就懂得圆的性质。
古代埃及人就认为:圆,是神赐给人的神圣图形。一直到两千多年前我国的墨子(约公元前468-前376年)才给圆下了一个定义:"一中同长也"。
意思是说:圆有一个圆心,圆心到圆周的长都相等。这个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。
圆周率,也就是圆周与直径的比值,是一个非常奇特的数。 《周髀算经》上说"径一周三",把圆周率看成3,这只是一个近似值。
美索不达来亚人在作第一个轮子的时候,也只知道圆周率是3。 魏晋时期的刘徽于公元263年给《九章算术》作注。
他发现"径一周三"只是圆内接正六边形周长和直径的比值。他创立了割圆术,认为圆内接正多连形边数无限增加时,周长就越逼近圆周长。
他算到圆内接正3072边形的圆周率,π= 3927/1250,请你将它换算成小数,看约等于多少? 刘徽已经把极限的概念运用于解决实际的数学问题之中,这在世界数学史上也是一项重大的成就。 祖冲之(公元429-500年)在前人的计算基础上继续推算,求出圆周率在3.1415926与3.1415927之间是世界上最早的七位小数精确值,他还用两个分数值来表示圆周率:22/7称为约率,355/113称为密率。
请你将这两个分数换成小数,看它们与今天已知的圆周率有几位小数数字相同? 在欧洲,直到1000年后的十六世纪,德国人鄂图(公元1573年)和安托尼兹才得到这个数值。 现在有了电子计算机,圆周率已经算到了小数点后一千万以上了。
4、数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系。 数学符号的发明和使用比数字晚,但是数量多得多。
现在常用的有200多个,初中数学书里就不下20多种。它们都有一段有趣的经历。
例如加号曾经有好几种,现在通用"+"号。 "+"号是由拉丁文"et"("和"的意思)演变而来的。
十六世纪,意大利科学家塔塔里亚用意大利文"più"(加的意思)的第一个字母表示加,草为"μ"最后都变成了"+"号。 "-"号是从拉丁文"minus"("减"的意思)演变来的,简写m,再省略掉字母,就成了"-"了。
也有人说,卖酒的商人用"-"表示酒桶里的酒卖了多少。以后,当把新酒灌入大桶的时候,就在"-"上加一竖,意思是把原线条勾销,这样就成了个"+"号。
到了十五世纪,德国数学家魏德美正式确定:"+"用作加号,"-"用作减号。 乘号曾经用过十几种,现在通用两种。
一个是"*",最早是英国数学家奥屈特1631年提出的;一个是"· ",最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:"*"。
2.数学知识都有哪些
1过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等22边角边公理 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理 有两角和它们的夹边对应相等的两个三角形全等24 推论 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理 有三边对应相等的两个三角形全等 26 斜边、直角边公理 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的 *** 30 等腰三角形的性质定理 等腰三角形的两个底角相等 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的 *** 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c 47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形 48定理 四边形的内角和等于360° 49四边形的外角和等于360° 50多边形内角和定理 n边形的内角的和等于(n-2)*180° 51推论 任意多边的外角和等于360° 52平行四边形性质定理1 平行四边形的对角相等 53平行四边形性质定理2 平行四边形的对边相等 54推论 夹在两条平行线间的平行线段相等 55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60矩形性质定理1 矩形的四个角都是直角 61矩形性质定理2 矩形的对角线相等 62矩形判定定理1 有三个角是直角的四边形是矩形 63矩形判定定理2 对角线相等的平行四边形是矩形 64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66菱形面积=对角线乘积的一半,即S=(a*b)÷2 67菱形判定定理1 四边都相等的四边形是菱形 68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等 70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71定理1 关于中心对称的两个图形是全等的 72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 74等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75等腰梯形的两条对角线相等 76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77对角线相等的梯形是等腰梯形 78平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等 79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 三边 81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 的一半 82 梯形中位线定理 梯形的中位。
3.数学小知识,要六年级的
1、杨辉三角是一个由数字排列成的三角形数表,一般形式如下: 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 … … … … … 杨辉三角最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和。
其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。
杨辉,字谦光,北宋时期杭州人。在他1261年所着的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。
而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。现在要求我们用编程的方法输出这样的数表。
2、一个故事引发的数学家 陈景润一个家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了着名的“陈氏定理”,所以有许多人亲切地称他为“数学王子”。但有谁会想到,他的成就源于一个故事。
1937年,勤奋的陈景润考上了福州英华书院,此时正值抗日战争时期,清华大学航空工程系主任留英博士沈元教授回福建奔丧,不想因战事被滞留家乡。几所大学得知消息,都想邀请沈教授前进去讲学,他谢绝了邀请。
由于他是英华的校友,为了报达母校,他来到了这所中学为同学们讲授数学课。 一天,沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,28=5+23,100=11+89。
每个大于4的偶数都可以表示为两个奇数之和。因为这个结论没有得到证明,所以还是一个猜想。
大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。 它像一个美丽的光环,在我们不远的前方闪耀着眩目的光辉。
……”陈景润瞪着眼睛,听得入神。 从此,陈景润对这个奇妙问题产生了浓厚的兴趣。
课余时间他最爱到图书馆,不仅读了中学辅导书,这些大学的数理化课程教材他也如饥似渴地阅读。因此获得了“书呆子”的雅号。
兴趣是第一老师。正是这样的数学故事,引发了陈景润的兴趣,引发了他的勤奋,从而引发了一位伟大的数学家。
3、为科学而疯的人 由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战。
他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷 *** ”问题发表了一系列文章,通过严格证明得出了许多惊人的结论。
康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托尔的 *** 论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”。
来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院。 真金不怕火炼,康托尔的思想终于大放光彩。
1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作。”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。
1918年1月6日,康托尔在一家精神病院去世。 康托尔(1845—1918),生于俄国彼得堡一丹麦犹太血统的富商家庭,10岁随家迁居德国,自幼对数学有浓厚兴趣。
23岁获博士学位,以后一直从事数学教学与研究。他所创立的 *** 论已被公认为全部数学的基础。
4、数学家的“健忘” 我国数学家吴文俊教授六十寿辰那天,仍如往常,黎明即起,整天浸沉在运算和公式中。 有人特地选定这一天的晚间登门拜门拜访,寒暄之后,说明来意:“听您夫 人说,今天是您六十大寿,特来表示祝贺。”
吴文俊仿佛听了一件新闻,恍然大悟地说:“噢,是吗?我倒忘了。” 来人暗暗吃惊,心想:数学家的脑子里装满了数字,怎么连自己的生日也记不住? 其实,吴文俊对日期的记忆力是很强的。
他在将近花甲之年的时候,又先攻 了一个难题——“机器证明”。这是为了改变了数学家“一支笔、一张纸、一个脑袋”的劳动方式,运用电子计算机来实现数学证明,以便数学家能腾出更多的时间来进行创造性的工作,他在进行这项课题的研究过程中,对于电子计算机安装的日期、为计算机最后编成三百多道“指令”程序的日期,都记得一清二楚。
后来,那位祝寿的来客在闲谈中问起他怎么连自己生日也记不住的时候,他知着回答: “我从来不记那些没有意义的数字。在我看来,生日,早一天,晚一天,有 什么要紧?所以,我的生日,爱人的生日,孩子的生日,我一概不记,他从不想 要为自己或家里的人庆祝生日,就连我结婚的日子,也忘了。
但是,有些数字非记不可,也很容易记住……” 5、苹果树下的例行出步 1884年春天,年轻的数学家阿道夫·赫维茨从哥廷根来到哥尼斯堡担任副教授,年龄还不到25。
4.数学的小知识
阿基米德(Archimedes)1、《砂粒计算》,是专讲计算方法和计算理论的一本着作。
阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。2、《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为:3.1408 3、《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。
阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的 。在这部着作中,他还提出了着名的"阿基米德公理"。
4、《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:"任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四。"他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。
5、《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。
在同一着作中,阿基米德还导出几何级数和算术级数求和的几何方法。 6、《平面的平衡》,是关于力学的最早的科学论着,讲的是确定平面图形和立体图形的重心问题。
7、《浮体》,是流体静力学的第一部专着,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。8、《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体的体积。
毕达哥拉斯1、勾股定理:任何一个学过代数或几何的人,都会听到毕达哥拉斯定理.这一着名的定理,在许多数学分支、建筑以及测量等方面,有着广泛的应用.古埃及人用他们对这个定理的知识来构造直角.他们把绳子按3,4和5单位间隔打结,然后把三段绳子拉直形成一个三角形.他们知道所得三角形最大边所对的角总是一个直角(32+42=52). 毕达哥拉斯定理: 给定一个直角三角形,则该直角三角形斜边的平方,等于同一直角三角形两直角边平方的和. 反过来也是对的: 如果一个三角形两边的平方和等于第三边的平方,则该三角形为直角三角形. 虽然这个定理以后来的希腊数学家毕达哥拉斯(大约公元前540年)的名字命名,但有证据表明,该定理的历史可以追溯到华达哥拉斯之前1000年的古巴比伦的汉漠拉比年代.把该定理名字归于毕达哥拉斯,大概是因为他第一个对自己在学校中所写的证明作了记录.毕达哥拉斯定理的结论和它的证明,遍及于世界的各个大洲、各种文化及各个时期.事实上,这一定理的证明之多,是其他任何发现所无法比拟的!2、无理数毕达哥拉斯学派认为,任意数都可以用整数或整数的比来表示。但有一个学生叫希伯斯发现:若一个等腰直角三角形的边为1,那么根据毕达哥拉斯定理(即勾股定理,只是西方这么叫,事实上还是咱们的祖先最先发现的!^.^),斜边长的平方应为1+1=2,平方等于2的数就无法用整数或分数来表示。
他把这个发现告诉了别人,但这一发现就推倒了“毕”学派的根本思想。于是他就被人扔河里处死了。
后来人们肯定了这一发现,为区别“毕”派有理数,所以取名为无理数。无理数的口诀记忆 √2≈1.41421:意思意思而已 √3≈1.7320:一起生鹅蛋 √5≈2.2360679:两鹅生六蛋(送)六妻舅 √7≈2.6457513:二妞是我,气我一生 e≈2.718:粮店吃一把 π≈3.14159:山巅一寺一壶酒。
5.我需要3个数学知识、故事(越短越好)
说四个,很短的:高斯上小学的时候老师要同学们计算1+2+3+……+98+99+100。
老师本人都是老老实实挨着计算,高斯很快算完并告知其方法是首尾数字相加再乘以50,另老师惊叹。 公元六世纪,毕达哥拉斯学派学者希伯斯在研究长为1的正方形的对角线长度的时候发现了无理数,不被毕达哥拉斯学派承认,将其扔进海里淹死,造成数学史上第一次危机,即不承认无理数并阻止其传播。
着名数学家阿贝尔有一次给他的恩师霍姆伯写信时,信尾署的日期是 三次根号6064321219,涉及开方,开出来是1823.5908275。(年),而 365*0.5908275=215.652(日)≈216日,那年是平年,所以应该是1823年八月四日。
华罗庚有次出国访问,在飞机上,旁边一个乘客看一本数学杂志,上面一道题是:三次根号59319是多少,华罗庚看完脱口而出是39,另大家惊叹。(他解释的算法略去)。
6.数学小知识有啥
看看[杨辉三角]吧!
杨辉三角是一个由数字排列成的三角形数表,一般形式如下:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
… … … … …
杨辉三角最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和。其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。杨辉,字谦光,北宋时期杭州人。在他1261年所着的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。现在要求我们用编程的方法输出这样的数表。
奇*奇=奇
奇+偶=奇
奇+奇=偶
奇*偶=偶
偶+偶=偶
偶*偶=偶
无声胜有声
在数学上也不乏无声胜有声这种意境。1903年,在纽约的一次数学报告会上,数学家科乐上了讲台,他没有说一句话,只是用粉笔在黑板上写了两数的演算结果,一个是2的67次方-1,另一个是193707721*761838257287,两个算式的结果完全相同,这时,全场爆发出经久不息的掌声。这是为什么呢?
因为科乐解决了两百年来一直没弄清的问题,即2是67次方-1是不是质数?现在既然它等于两个数的乘积,可以分解成两个因数,因此证明了2是67次方-1不是质数,而是合数。
科尔只做了一个简短的无声的报告,可这是他花了3年中全部星期天的时间,才得出的结论。在这简单算式中所蕴含的勇气,毅力和努力,比洋洋洒洒的万言报告更具魅力。
7.关于数学的小知识
中国古代数学史曾经有自己光辉灿烂的篇章..。
在国外,这也叫做"帕斯卡三角形"。而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。
现在要求我们用编程的方法输出这样的数表。 同时 这也是多项式(a+b)^n 打开括号后的各个项的二次项系数的规律 即为 0 (a+b)^0 (0 nCr 0) 1 (a+b)^1 (1 nCr 0) (1 nCr 1) 2 (a+b)^2 (2 nCr 0) (2 nCr 1) (2 nCr 2) 3 (a+b)^3 (3 nCr 0) (3 nCr 1) (3 nCr 2) (3 nCr 3) . 。
,b都为1的时候) [ 上述y^x 指 y的 x次方,而杨辉三角的发现就是十分精彩的一页。杨辉,字谦光,北宋时期杭州人。
在他1261年所着的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图. ,称之为“开方作法本源”图。 而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。
具体的用法我们会在教学内容中讲授..,而其余的数则是等于它肩上的两个数之和。其实..,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位..,辑录了如上所示的三角形数表。
在他1261年所着的《详解九章算法》一书中杨辉三角是一个由数字排列成的三角形数表,一般形式如下,字谦光,它的两条斜边都是由数字1组成的。 杨辉,而杨辉三角的发现就是十分精彩的一页. . 。
中国古代数学史曾经有自己光辉灿烂的篇章;(a nCr b) 指 组合数] 其实. 因此 杨辉三角第x层第y项直接就是 (y nCr x) 我们也不难得到 第x层的所有项的总和 为 2^x (即(a+b)^x中a,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位: 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 … … … … … 杨辉三角最本质的特征是,北宋时期杭州人。
⑤ 数学学科内容知识与学科教学知识各指什么区别在哪里
数学学科内容知识与学科教学知识区别和含义:
1、基础知识:一般是指数学课程中所涉及的基本概念、基本性质、基本法则、基本公式等。基本技能:包括基本的运算、测量、绘图技能。数学基本思想:抽象、推理、建模。
2、学科教学知识是指一个学科领域主题和问题怎样组织以及对教学的理解。它是教师的特殊区域,即教师自己的专业知识和理解的形式.从字面就可以看出,PCK是教师个人独一无二的教学经验,教师独特领域学科内容和教育学的特殊整合,是教师自己对专业理解的特定形式.此外,学科教学知识也是区分学科教师与学者的一种知识体系.学者去创造某一学科领域里的新知识,教师则是帮助学生去理解这些新知识,而且也是优秀教师与新任教师的差别之所在。同时也是学科专家和经验丰富教师的区别之所在。在这个模式槐搏老中,作为知识的一种形式,它是由事实、概念、技巧、过程、信念和态度组成的,不同的是它是许多种知识银厅基础的融合,而且它是教师的特殊领域,所铅升有知识基础促成了最丰富的学科教学知识的生成与发展.要完全理解学科教学知识有许多关键的思想需把握,如重要的教学表达思想、师生相互作用知识基础的思想、熟练教学行为的思想、所有的知识基础整合在一起等的思想。
3、学科教学(数学)是教育学专硕下的一个专业,而课程与教学论(数学)是教育学学硕下的一个方向。