当前位置:首页 » 基础知识 » 实数七下数学知识点
扩展阅读
1岁儿童怎么吃鱼 2024-11-26 17:40:12
蔡徐坤在动漫里算什么 2024-11-26 17:40:11

实数七下数学知识点

发布时间: 2024-07-18 02:41:39

㈠ 七年级下册数学实数的知识点

一、实数的概念及分类

1、实数的分类、正有理数、有理数零有限小数和无限循环小数

负有理数

正无理数

无理数无限不循环小数

负无理数

整数包括正整数、零、负整数。

正整数又叫自然数。

正整数、零、负整数、正分数、负分数统称为有理数。

2、无理数

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

(1)开方开不尽的数,如7,2等;

π(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;3

(3)有特定结构的数,如0、1010010001…等;

二、实数的倒数、相反数和绝对值

1、相反数

实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。

2、绝对值

一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于

零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数

如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。

4、实数与数轴上点的关系:

每一个无理数都可以用数轴上的一个点表示出来,数轴上的点有些表示有理数,有些表示无理数,实数与数轴上的点就是一一对应的`,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。

初中数学线段的性质

(1)线段公理:所有连接两点的线中,线段最短。也可简单说成:两点之间线段最短。

(2)连接两点的线段的长度,叫做这两点的距离。

(3)线段的中点到两端点的距离相等。

(4)线段的大小关系和它们的长度的大小关系是一致的。

初一学数学的最快方法

课前预习阅读

预习课文时,要准备一张纸、一支笔,将课本中的关键词语、产生的疑问和需要思考的问题随手记下,对定义、公理、公式、法则等,可以在纸上进行简单的复述,推理。重点知识可在课本上批、划、圈、点。这样做,不但有助于理解课文,还能帮助我们在课堂上集中精力听讲,有重点地听讲。

课后巩固

课后巩固自己的知识点也很重要。课后巩固可以让你的知识点得到一个再记忆的效果,加深记忆数学知识点的效果。

会比较

在学习基础知识(如概念、定义、法则、定理等)时,要运用对比、类比、举反例等思维方式,理解它们的内涵和外延,将类似的、易混淆的基础知识加以区分、如学习棱柱时,我们可以将其和我们已经熟悉的圆柱作对比,总结归纳他们的相同点和不同点,达到加深记忆和理解目的。

写数学学习总结

每周写一次数学学习总结,也是一种提高初中数学学习成绩的好方法。在写初中数学学习总结的时候,我们可以回顾一下本周的数学学习概况,同时可以写一些自己下一周、下一个月的数学学习规划,这样既能对过去的学习有所总结,还能够对未来的数学学习有所计划,两者加起来的话,将会让我们的数学学习思路和目标更加明确。

㈡ 初中数学实数知识点总结

很多同学对于实数的知识掌握的不全面,我整理了一些数学实数知识点,大家一起来看看吧。

1.无理数

⑴无理数:无限不循环小数

⑵两个无理数的和还是无理数

2.平方根

⑴算术平方根、平方根

一个正数有两个平方根,0只有一个平方根,它是0本身;负数没有平方根。

⑵开平方:求一个数的平方根的运算叫开平方

被开方数

3.立方根

⑴立方根,如果一个数x的立方等于a,即,那么这个数x就叫a的立方根.

⑵正数的立方根是正数,负数的立方根是负数,0的立方根是0.

⑶开立方、被开方数

4.公园有多宽

求根式、估算根式、根据面积求边长

5.实数的运算

运算法则(加、减、乘、除、乘方、开方)

运算定律(五个-加法[乘法]交换律、结合律;[乘法对加法的]分配律)

运算顺序:A.高级运算到低级运算;B.(同级运算)从"左"

到"右"(如5÷×5);C.(有括号时)由"小"到"中"到"大"。

6.实数的概念是每年中考的必考知识点,尤其是相反数、倒数和绝对值都是高频考点。我们不仅需要会求一个数的相反数,求一个数的倒数,求一个数的绝对值;还要注意0是没有倒数的,倒数等于它本身的有±1,相反数等于它本身的只有0。

7.科学记数法可以说是是每年中考的必考题,在解决具体问题时,需要记清楚相关概念;另外注意单位换算。对于近似数和精确度需要注意的是带计算单位的数的精确度,需要统一为以“个”为计算单位的数,再来确定。

8.科学记数法可以说是是每年中考的必考题,在解决具体问题时,需要记清楚相关概念;另外注意单位换算。对于近似数和精确度需要注意的是带计算单位的数的精确度,需要统一为以“个”为计算单位的数,再来确定。

9.实数比较大小也是中考热点,主要方法可用数轴比较法、估算法和作差法。至于倒数法和平方法不是很常见,所以只需简单了解即可。

10.计算是数学的基础,也是我们解决问题的必要手段。提高实数的运算能力,先要审题,理解有关概念。要注意零指数、负整指数、乘法、特殊角三角函数值、二次根式化简和绝对值等知识点。在计算时需要先确定符号,再确定结果,把好符号关。

以上就是实数相关的信息,希望对大家有所帮助。

㈢ 初一数学知识点总结归纳

数学在初中学习中是一门十分重要的科目,下面是总结的初一重点数学知识点,希望能帮助到大家。

实数

1.平方根

平方根,又叫二次方根,表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根。一个正数有两个实平方根,它们互为相反数,负数没有平方根。

2.立方根

如果一个数的立方等于a,那么这个数叫a的立方根,也称为三次方根。

立方根性质

①在实数范围内,任何实数的立方根只有一个

②在实数范围内,负数不能开平方,但可以开立方。

③0的立方根是0

3.实数

实数,是有理数和无理数的总称。实数具有封闭性、有序性、传递性、稠密性、完备性等。

有理数

1.定义:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。

2.数轴:在数学中,可以用一条直线上的点表示数,这条直线 叫做数轴。

3.相反数:相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。

4.绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

5.有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

(3)一个数同0相加,仍得这个数。

6.有理数的乘法

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘,积为0. 例:0×1=0

7.有理数的除法

除以一个不为0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不为0的数,都得0。

相交线与平行线

1.平行线的性质

性质1:两直线平行,同位角相等。 性质2:两直线平行,内错角相等。 性质3:两直线平行,同旁内角互补。 平行线的判定:

判定1:同位角相等,两直线平行。 判定2:内错角相等,两直线平行。 判定3:同旁内角相等,两直线平行。

2.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

平行线:在同一平面内,不相交的两条直线叫做平行线。 同位角、内错角、同旁内角:

3.同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。

内错角:∠2与∠6像这样的一对角叫做内错角。

同旁内角:∠2与∠5像这样的一对角叫做同旁内角。 命题:判断一件事情的语句叫命题。

4.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

几何图形

(1)几何图形

将从实物中抽象出的各种图形统称为几何图形。几何图形分为立体图形和平面图形。

(2)立体图形

立体图形是各部分不在同一平面内的几何图形,由一个或多个面围成的可以存在于现实生活中的三维图形。点动成线,线动成面,面动成体。

分类:柱体、锥体、旋转体、截面体等。

(3)平面图形

平面图形是几何图形的一种,指所有点都在同一平面内的图形,如直线、三角形、平形四边形等都是基本的平面图形。

分类:圆形、多边形、弓形、多弧形。

(4)点、线、面、体

点:点是最简单的形,是几何图形最基本的组成部分。点是空间中只有位置,没有大小的图形。

线:线是由无数个点集合成的图形。

面:在空间中,到两点距离相同的点的轨迹。

体:多面体是指四个或四个以上多边形所围成的立体。

(5)直线、射线、线段

直线:直线由无数个点构成。没有端点,向两端无限延长,长度无法度量。直线是轴对称图形。

射线:是指由线段的一端无限延长所形成的直的线,射线有且仅有一个端点,无法测量长度。

线段:是指直线上两点间的有限部分(包括两个端点) ,有别于直线、射线。

(6)角:在几何学中,角是由两条有公共端点的射线组成的几何对象。这两条射线叫做角的边,它们的公共端点叫做角的顶点。

(7)余角:两角之和为90°则两角互为余角,等角的余角相等。

(8)补角:两角之和为180°则两角互为补角,等角的补角相等。

平面直角坐标系

1.定义

在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称直角坐标系。

2.有序数对

在直角坐标系中,对于平面上的任意一点,都有唯一的一个有序数对(即点的坐标)与它对应;反过来,对于任意一个有序数对,都有平面上唯一的一点与它对应。

㈣ 初中数学实数知识点总结

数与代数A:数与式:
1:有理数

有理数:①整数→正整数/0/负整数 ②分数→正分数/负分数
数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴

②任何一个有理数都可以用数轴上的一个点来表示。<br>
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。<br>
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。<br>
④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。<br>
<br>
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。<br>
②正数的绝对值是他本身/负数的绝对值是他的相反数/0的绝对值是0。两个负数比较大小,绝对值大的反而小。<br>
<br>
有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。<br>
减法: 减去一个数,等于加上这个数的相反数。<br>
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。<br>
除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。<br>
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。<br>
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。<br>
<br>
2:实数<br>
无理数:无限不循环小数叫无理数<br>
<br>
平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。<br>
<br>
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数/0的立方根是0/负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。<br>
<br>
实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。<br>
<br>
3:代数式<br>
代数式:单独一个数或者一个字母也是代数式希望对你有帮助!

㈤ 初一下学期数学知识点总结归纳

初一下册数学中,实数,相交线与平行线,不等式是重点,我整理了一些重要的知识点。

实数的相关概念

1、相反数

(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.

(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.

(3)互为相反数的两个数之和等于0.a、b互为相反数a+b=0.

2、绝对值|a|≥0.

3、倒数

(1)0没有倒数

(2)乘积是1的两个数互为倒数

4、平方根

(1)如果一个数的平方等于a,这个数就叫做a的平方根,一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根。

(2)一个正数a的正的平方根,叫做a的算术平方根。

5、立方根

如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.

相交线

对顶角相等。

过一点有且只有一条直线与已知直线垂直。

连接直线外一点与直线上各点的所有线段中,垂线段最短。

平行线

1、经过直线外一点,有且只有一条直线与这条直线平行。

2、 如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

3、直线平行的条件:

4、两条直线被第三条直线所截,如果同位角相等,那么两直线平行 两条直线被第三条直线所截,如果内错角相等,那么两直线平行(内错角相等,两直线平行)。

5、两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行(同旁内角互补,两直线平行)。

平行线的性质

1、两条平行线被第三条直线所截,同位角相等(两直线平行,同位角相等)。

2、两条平行线被第三条直线所截,内错角相等(两直线平行,内错角相等)。

3、两条平行线被第三条直线所截,同旁内角互补(两直线平行,同旁内角互补)。 判断一件事情的语句,叫做命题(本考点可能会出现在填空题中命题的改写和选择题中判断命题的真假性)。

不等式

1、用小于号或大于号表示大小关系的式子,叫做不等式。

2、使不等式成立的未知数的值叫做不等式的解。

3、能使不等式成立的x的取值范围,叫做不等式的解的集合,简称解集。

4、含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。

5、不等式的性质:

不等式两边加(或减)同一个数(或式子),不等号的方向不变。

不等式两边乘(或除以)同一个正数,不等号的方向不变。

不等式两边乘(或除以)同一个负数,不等号的方向改变。

三角形中任意两边之差小于第三边。

三角形中任意两边之和大于第三边。

以上是我整理的初一下册数学的知识点,希望能帮到你。

㈥ 初一数学下册知识点梳理

没有加倍的勤奋,就没有才能,也没有天才。天才其实就是可以持之以恒的人。勤能补拙是良训,一分辛苦一分才,勤奋一直都是学习通向成功的最好捷径。下面是我给大家整理的一些初一数学的知识点,希望对大家有所帮助。

初一下学期数学知识点 总结

【知识点一】实数的分类

1、按定义分类: 2.按性质符号分类:

注:0既不是正数也不是负数.

【知识点二】实数的相关概念

1.相反数

(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.

(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.

(3)互为相反数的两个数之和等于0.a、b互为相反数 a+b=0.

2.绝对值 |a|≥0.

3.倒数 (1)0没有倒数 (2)乘积是1的两个数互为倒数.a、b互为倒数 .

4.平方根

(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.

(2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作 .

5.立方根

如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.

【知识点三】实数与数轴

数轴定义: 规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.

【知识点四】实数大小的比较

1.对于数轴上的任意两个点,靠右边的点所表示的数较大.

2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.

3.无理数的比较大小:

初一下册数学复习资料

1.二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次方程,一般形式是ax+by=c(a≠0,b≠0)。

如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。二元一次方程组,则一般有一个解,有时没有解,有时有无数个解。

2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。

3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。

4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。

5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。

归纳:基本思路:“消元”——把“二元”变为“一元”。

6.代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种 方法 叫做代入消元法,简称代入法。

7.加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。

初中 七年级数学 算术平方根教案

一、教学目标

1.理解一个数平方根和算术平方根的意义;

2.理解根号的意义,会用根号表示一个数的平方根和算术平方根;

3.通过本节的训练,提高学生的 逻辑思维 能力;

4.通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣.

二、教学重点和难点

教学重点:平方根和算术平方根的概念及求法.

教学难点:平方根与算术平方根联系与区别.

三、 教学方法

讲练结合.

四、教学手段

多媒体

五、教学过程

(一)提问

1.已知一正方形面积为50平方米,那么它的边长应为多少?

2.已知一个数的平方等于1000,那么这个数是多少?

3.一只容积为0.125立方米的正方体容器,它的棱长应为多少?

这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的.下面作一个小练习:填空

1.()2=9;2.()2 =0.25;

5.()2=0.0081.

学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正.

由练习引出平方根的概念.

(二)平方根概念

如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根).

用数学语言表达即为:若x2=a,则x叫做a的平方根.

由练习知:±3是9的平方根;

±0.5是0.25的平方根;

0的平方根是0;

±0.09是0.0081的平方根.

由此我们看到 3与-3均为9的平方根,0的平方根是0,下面看这样一道题,填空:

()2=-4

学生思考后,得到结论此题无答案.反问学生为什么?因为正数、0、负数的平方为非负数.由此我们可以得到结论,负数是没有平方根的.下面总结一下平方根的性质(可由学生总结,教师整理).

(三)平方根性质

1.一个正数有两个平方根,它们互为相反数.

2.0有一个平方根,它是0本身.

3.负数没有平方根.

(四)开平方

求一个数a的平方根的运算,叫做开平方的运算.

由练习我们看到 3与-3的平方是9,9的平方根是 3和-3,可见平方运算与开平方运算互为逆运算.根据这种关系,我们可以通过平方运算来求一个数的平方根.与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。

(五)平方根的表示方法

一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“- ”表示,a的平方根合起来记作 ,其中 读作“二次根号”, 读作“二次根号下a”.根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”.

练习:1.用正确的符号表示下列各数的平方根:

①26②247③0.2④3⑤

解:①26 的平方根是

②247的平方根是

③0.2的平方根是

④3的平方根是

⑤ 的平方根是


初一数学上册知识点梳理相关 文章 :

★ 初一数学上册知识点归纳

★ 初一数学上册知识点汇总归纳

★ 初一数学上册知识点总结

★ 初一上册数学知识点归纳整理

★ 初一数学上册知识点

★ 初一数学上册重点知识整理

★ 初一人教版数学上册知识点总结归纳

★ 初一数学上册知识点大全

★ 初一数学上册知识点思维导图

★ 七年级数学上册知识归纳