❶ 高数主要知识点
1. 夹逼定理的用法
假逼定理是在微积分中最常用到的一种计算方法,它分为函数极限的夹逼定理和数列极限的夹逼定理,如果要正确使用该定理,最重要的是理解夹逼定理是用来计算极限的方法,而不是用来判断是否存在极限的方法。如果再通过使用这一方法,能够计算出函数的极限,那么则意味着该的数列的极限存在,但是不能进行反反推,如果极限已经存在,则一定可以用夹逼定理,这句话就是错误的。
2. 单调有界收敛定理
单调有界收敛定理也是高等数学中一个主要的,用来计算数列极限问题的方法。一般情况下,该定理的使用范围是固定的,只有在特定的题目中才能够运用单调有界收敛定理。通过这一方法,可以证明两点重要结论,首先证明数列是有界的,第二个是证明数列的单调性。在高等数学学习中,除了以上两个定理之外,还有其他将近20个重要的定理学生,需要明白定理的推理过程,以及使用对象只有对定理进行合理理解,才能够保证高等数学在学习过程中的做题效率。
❷ 大一高数知识点有哪些
大一高数知识点有集合间的基本关系。
1、“包含”关系—子集。
2、相等”关系:A=B (5≥5,且5≤5,则5=5)。
3、不含任何元素的集合叫做空集,记为Φ。
高数一般指高等数学。高等数学是指相对于初等数学和中等数学而言,数学的对象及方法较为繁杂的一部分,中学的代数、几何以及简单的集合论初步、逻辑初步称为中等数学,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。
通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。主要内容包括:数列、极限、微积分、空间解析几何与线性代数、级数、常微分方程。工科、理科、财经类研究生考试的基础科目。
高等数学分为几个部分为:
1、函数 极限 连续。
2、一元函数微分学。
3、一元函数积分学。
4、向量代数与空间解析几何。
5、多元函数微分学。
6、多元函数积分学。
7、无穷级数。
8、常微分方程。