1. 八年级上册数学知识点归纳总结
八年级必备数学知识
约分与通分:
1.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分;
分式约分:将分子、分母中的公因式约去,叫做分式的约分。分式约分的根据是分式的基本性质,即分式的分子、分母都除以同一个不等于零的整式,分式的值不变。 约分的方法和步骤包括:
(1)当分子、分母是单项式时,公因式是相同因式的最低次幂与系数的最大公约数的积;
(2)当分子、分母是多项式时,应先将多项式分解因式,约去公因式。
2.通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通。 分式通分:将几个异分母的分式化成同分母的分式,这种变形叫分式的通分。
(1)当几个分式的'分母是单项式时,各分式的最简公分母是系数的最小公倍数、相同字母的最高次幂的所有不同字母的积;
(2)如果各分母都是多项式,应先把各个分母按某一字母降幂或升幂排列,再分解因式,找出最简公分母;
(3)通分后的各分式的分母相同,通分后的各分式分别与原来的分式相等;
(4)通分和约分是两种截然不同的变形.约分是针对一个分式而言,通分是针对多个分式而言;约分是将一个分式化简,而通分是将一个分式化繁。 注意:
(1)分式的约分和通分都是依据分式的基本性质;
(2)分式的变号法则:分式的分子、分母和分式本身的符号,改变其中的任何两个,分式的值不变。
(3)约分时,分子与分母不是乘积形式,不能约分.
八年级数学知识重点
分式的运算: 1.分式的加减法法则:
(1)同分母的分式相加减,分母不变,把分子相加;
(2)异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算。
2.分式的乘除法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
4.分式的混合运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的。
5.对于分式化简求值的题型要注意解题格式,要先化简,再代人字母的值求值。
常见考法
分式的运算通常是综合考查分式的加减、乘除、约分及分解因式等知识,是中考的重点。特别是化简求值已经成近两年中考的热点。题型既有选择、填空题,也有计算题。
误区提醒
(1)互为相反数的因式约分时漏掉负号;
(2)通分时漏乘而出错;
(3)把通分与去分母混淆,本是通分,却把分式中的分母丢掉;
(4)计算顺序搞乱而出错。
八年级数学知识
列分式方程解应用题的步骤:
列分式方程解应用题的一般步骤为:
(1)设未知数:若把题目中要求的未知数直接用字母表示出来,则称为直接设未知数,否则称间接设未知数;
(2)列代数式:用含未知数的代数式把题目中有关的量表示出来,必要时作出示意图或列成表格,帮助理顺各个量之间的关系;
(3)列出方程:根据题目中明显的或者隐含的相等关系列出方程;
(4)解方程并检验;
(5)写出答案。
二.列分式方程解应用题的注意事项:
由于列方程解应用题是对实际问题的解答,所以检验时除从数学方面进行检验外,还应考虑题目中的实际情况,凡不符合实际的,应舍去。
常见考法
列分式方程解应用题是中考命题的热点,命题广泛联系实际,题型新颖开放,但只要把握列分式方程解应用题的几个步骤,解决起来仍不困难。
误区提醒
(1)单位不统一;
(2)解完分式方程后忽略“双检”。
2. 八年级上册数学分式有哪些
八年级上册数学分式有:
1/x,2/(x+1)拆则,3+x/(x+1)。
分式的条件:
1、分式有意义条件:分母不为0。
2、分式值为0条件:分子为0且分母不为0。
3、分磨漏式值为正(负)数条件:分子分母同号得正,异号得负。瞎御烂
4、分式值为1的条件:分子=分母≠0。
5、分式值为-1的条件:分子分母互为相反数,且都不为0。
3. 初二数学分式的运算知识点归纳
初二数学分式的四则运算知识点
分式的四则运算和约分统一构成了分式的运算法则。
分式的四则运算
1.同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减。用字母表示为:a/c±b/c=(a±b)/c
2.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的`分式,然后再按同分母分式的加减法法则进行计算。用字母表示为:a/b±c/d=(ad±cb)/bd
3.分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。用字母表示为:a/b * c/d=ac/bd
4.分式的除法法则:
(1).两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。a/b÷c/d=ad/bc
(2).除以一个分式,等于乘以这个分式的倒数:a/b÷c/d=a/b*d/c
不管什么样的四则运算都会要求同学们做到细心和用心了。
4. 鍏骞寸骇涓婂唽鏁板﹀垎寮忔柟绋嬫槸浠涔堬纻
鍏骞寸骇涓婂唽鏁板﹀垎寮忔柟绋嬫槸鏂圭▼涓镄勪竴绉嶏纴鏄鎸囧垎姣嶉噷钖链夋湭鐭ユ暟鎴栧惈链夋湭鐭ユ暟鏁村纺镄勬湁鐞嗘柟绋嬨
鍒嗗纺鏂圭▼瑙i樻ラわ细
1銆佹渶绠鍏鍒嗘瘝锛屽皢鍒嗗纺鏂圭▼鍖栦负鏁村纺鏂圭▼銆
2銆佹寜瑙f暣寮忔柟绋嬬殑姝ラわ纸绉婚”锛屽悎骞跺悓绫婚”锛岀郴鏁板寲涓1锛夋眰鍑烘湭鐭ユ暟镄勫笺
3銆侀獙镙(姹傚嚭链鐭ユ暟镄勫煎悗蹇呴’楠屾牴锛屽洜涓哄湪鎶婂垎寮忔柟绋嫔寲涓烘暣寮忔柟绋嬬殑杩囩▼涓锛屾墿澶т简链鐭ユ暟镄勫彇鍊艰寖锲达纴鍙鑳戒骇鐢熷炴牴)銆
鍏充簬鏂圭▼镄勫垎绫伙细
1銆佷竴鍏冧竴娆℃柟绋
鍙钖链変竴涓链鐭ユ暟锛屼笖链鐭ユ暟娆℃暟鏄涓镄勬暣寮忔柟绋嫔彨涓鍏冧竴娆℃柟绋嬨傞氩父褰㈠纺鏄痑x+b=0(a锛宐涓哄父鏁帮纴涓攁铌0锛夈
2銆佷簩鍏冧竴娆℃柟绋嬬粍
浜屽厓涓娆℃柟绋嬬粍瀹氢箟锛氱敱涓や釜浜屽厓涓娆℃柟绋嬬粍鎴愮殑鏂圭▼缁勶纴鍙浜屽厓涓娆℃柟绋嬬粍銆
3銆佷竴鍏冧簩娆℃柟绋
钖链変竴涓链鐭ユ暟锛屽苟涓旀湭鐭ユ暟镄勬渶楂樻℃暟鏄2镄勬暣寮忔柟绋嬶纴杩欐牱镄勬柟绋嫔彨锅氢竴鍏冧簩娆℃柟绋嬨
5. 八年级上册数学分式方程是什么
八年级上册数学分式方程知识点如下。
1、分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程。
2、分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根。
3、分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根。
4、分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加验增根的程序。
6. 人教版八年级数学知识点
学习知识要善于思考,思考,再思考。每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲练的。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。
初二上学期数学知识点归纳
分式方程
一、理解定义
1、分式方程:含分式,并且分母中含未知数的方程——分式方程。
2、解分式方程的思路是:
(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程。
(2)解这个整式方程。
(3)把整式方程的根带入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必须舍去。
(4)写出原方程的根。
“一化二解三检验四 总结 ”
3、增根:分式方程的增根必须满足两个条件:
(1)增根是最简公分母为0;(2)增根是分式方程化成的整式方程的.根。
4、分式方程的解法:
(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;
(3)解整式方程;(4)验根;
注:解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
5、分式方程解实际问题
步骤:审题—设未知数—列方程—解方程—检验—写出答案,检验时要注意从方程本身和实际问题两个方面进行检验。
二、轴对称图形:
一个图形沿一条直线对折,直线两旁的部分能够完全重合。这条直线叫做对称轴。互相重合的点叫做对应点。
1、轴对称:
两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。这条直线叫做对称轴。互相重合的点叫做对应点。
2、轴对称图形与轴对称的区别与联系:
(1)区别。轴对称图形讨论的是“一个图形与一条直线的对称关系”;轴对称讨论的是“两个图形与一条直线的对称关系”。
(2)联系。把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。
3、轴对称的性质:
(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
三、用坐标表示轴对称
1、点(x,y)关于x轴对称的点的坐标为(x,-y);
2、点(x,y)关于y轴对称的点的坐标为(-x,y);
3、点(x,y)关于原点对称的点的坐标为(-x,-y)。
四、关于坐标轴夹角平分线对称
点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)
点P(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x)
八年级数学知识点
1、全等三角形的对应边、对应角相等
2、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等
3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等
4、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等
5、边边边公理(SSS)有三边对应相等的两个三角形全等
6、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等
7、定理1在角的平分线上的点到这个角的两边的距离相等
8、定理2到一个角的两边的距离相同的点,在这个角的平分线上
9、角的平分线是到角的两边距离相等的所有点的集合
10、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
11、推论1等腰三角形顶角的平分线平分底边并且垂直于底边
12、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
13、推论3等边三角形的各角都相等,并且每一个角都等于60°
14、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
15、推论1三个角都相等的三角形是等边三角形
16、推论2有一个角等于60°的等腰三角形是等边三角形
17、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
18、直角三角形斜边上的中线等于斜边上的一半
19、定理线段垂直平分线上的点和这条线段两个端点的距离相等
20、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
21、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
22、定理1关于某条直线对称的两个图形是全等形
23、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
24、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
25、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
26、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
27、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形
初二 数学学习方法 十大技巧
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂4、判别式法与韦达定理
一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
6、构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
7、反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;/至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
8、面积法
平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
9、几何变换法
在数学问题的研究中,,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。
几何变换包括:(1)平移;(2)旋转;(3)对称。
10、客观性题的解题方法
选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。
要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。
(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。
(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。
(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。
(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。
(5)图解法:借助于符合题设条件的图形或图像的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。
(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法。
人教版八年级数学知识点相关 文章 :
★ 人教版八年级数学上册知识点总结
★ 八年级数学上册知识点总结人教版
★ 人教版八年级数学上册知识点整理
★ 八年级数学知识点整理归纳
★ 八年级数学知识点整理
★ 人教版八年级上册数学课本知识点归纳
★ 初二数学知识点归纳上册人教版
★ 人教版八年级数学上册知识点
★ 人教版八年级上册数学知识点总结
★ 新人教版八年级数学上册知识点
7. 八年级数学必备知识点总结
没有加倍的勤奋,就没有才能,也没有天才。天才其实就是可以持之以恒的人。勤能补拙是良训,一分辛苦一分才,勤奋一直都是学习通向成功的最好捷径。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。
初二上学期数学知识点归纳
分式方程
一、理解定义
1、分式方程:含分式,并且分母中含未知数的方程——分式方程。
2、解分式方程的思路是:
(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程。
(2)解这个整式方程。
(3)把整式方程的根带入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必须舍去。
(4)写出原方程的根。
“一化二解三检验四 总结 ”
3、增根:分式方程的增根必须满足两个条件:
(1)增根是最简公分母为0;(2)增根是分式方程化成的整式方程的.根。
4、分式方程的解法:
(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;
(3)解整式方程;(4)验根;
注:解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
分式方程检验 方法 :将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
5、分式方程解实际问题
步骤:审题—设未知数—列方程—解方程—检验—写出答案,检验时要注意从方程本身和实际问题两个方面进行检验。
八年级上册数学知识点
(一)运用公式法
我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。
(二)平方差公式
平方差公式
(1)式子:a2-b2=(a+b)(a-b)
(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。
(三)因式分解
1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点
①项数:三项
②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
八年级数学重要知识点
【概率初步】
23.1确定事件和随机事件
1.在一定条件下必定出现的现象叫做必然事件
2.在一定条件下必定不出现的现象叫做不可能事件
3.必然事件和不可能事件统称为确定事件
4.那些在一定条件下可能出现也可能不出现的现象叫做随机时间,也称为不确定事件23.2事件发生的可能性
23.3时间的概率
1.用来表示某事件发生的可能性大小的数叫做这个事件的概率
2.规定用0作为不可能事件的概率;用1作为必然时间的概率
3.事件A的概率我们记作P(A);对于随机事件A,可知0
4.如果一项可以反复进行的试验具有以下特点:
(1)试验的结果是有限个,各种结果可能出现的机会是均等的;
(2)任何两个结果不可能同时出现
那么这样的试验叫做等可能试验
5.一般地,如果一个试验共有n个等可能的结果,事件A包含其中的k个结果,那么事件A的概率P(A)=事件A包含的可能结果数/所有的可能结果总数=k/n
6.列举法、树状图、列表
23.4概率计算举例
八年级数学必备知识点总结相关 文章 :
★ 八年级数学知识点整理归纳
★ 人教版八年级数学上册知识点总结
★ 初二数学知识点归纳整理
★ 八年级下册数学知识点整理
★ 初中八年级数学知识点总结
★ 初二数学知识点归纳梳理
★ 初二数学基础知识点归纳
★ 初二数学上册知识点总结
★ 初二数学知识点整理归纳
★ 初二数学知识点整理
8. 八年级上册数学提纲人教版
初中数学和小学相比:知识量加大,知识综合性加强;对应用能力要求加大:如观察、阅读、记忆、思维、想象、操作、表达等能力。以下是我给大家整理的 八年级 上册数学提纲人教版,希望对大家有所帮助,欢迎阅读!
八年级上册数学提纲人教版
分式知识点
1、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
2、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是:确定几个分式的最简公分母。确定最简公分母的一般 方法 是:(1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的次幂、所有不同字母及指数的积。
(2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去确定。
3、约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
在约分时要注意:(1)如果分子、分母都是单项式,那么可直接约去分子、分母的公因式,即约去分子、分母系数的公约数,相同字母的最低次幂;(2)如果分子、分母中至少有一个多项式就应先分解因式,然后找出它们的公因式再约分;(3)约分一定要把公因式约完。
实数知识点
1、实数的分类:有理数和无理数
2、数轴:规定了原点、正方向和单位长度的直线叫数轴.实数和数轴上点一一对应.
3、相反数:符号不同的两个数,叫做互为相反数.a的相反数是-a,0的相反数是0.(若a与b护卫相反数,则a+b=0)
4、绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.
5、倒数:乘积为1的两个数
6、乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂.(平方和立方)
7、平方根:一般地,如果一个数x的平方等于a,即x2=a那么这个数x就叫做a的平方根(也叫做二次方根).一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.(算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,0的算术平方根是0.)
实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的点相对应的数。实数可以直观地看作有限小数与无限小数,它们能把数轴“填满”。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。
实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后n位,n为正整数,包括整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。
1)相反数(只有符号不同的两个数,它们的和为零,我们就说其中一个是另一个的相反数,叫做互为相反数)实数a的相反数是-a,a和-a在数轴上到原点0的距离相等。
2)绝对值(在数轴上一个数a与原点0的距离)实数a的绝对值是:|a|
①a为正数时,|a|=a(不变),a是它本身;
②a为0时,|a|=0,a也是它本身;
③a为负数时,|a|=-a(为a的绝对值),-a是a的相反数。
(任何数的绝对值都大于或等于0,因为距离没有负数。)
3)倒数(两个实数的乘积是1,则这两个数互为倒数)实数a的倒数是:1/a(a≠0)
4)数轴
定义:规定了原点,正方向和单位长度的直线叫数轴
(1)数轴的三要素:原点、正方向和单位长度。
(2)数轴上的点与实数一一对应。
如何提高初中数学成绩
想提高初中的数学成绩首先我们需要认真学习,且认真完成老师每节课布置的作业,这样子才能跟上学习进度。
在上课的时候我们一定要认真听讲,而且最好能够提前一节课就把这些数学课所要讲到的内容提前进行预习,这样子才能够更快地了解相关内容。
在下课的时候大家也可以一起来讨论一下自己不会的题目或者相互给对方出数学题,让对方做。
如果说实在跟不上趟的话,也可以给自己聘请一个专门的老师进行一对一的辅导。一般来说,初中的数学还停留在套公式的阶段,并不是特别的难,只要认真学都是可以学会的。
当然需要提高成绩,最好的办法就是努力、勤奋的学习,不要总是想着靠他人或想着天上掉馅饼,那是不现实的。好好努力吧。
数学答题技巧
迅速摸清“题情”
刚拿到试卷的时候心情一定会比较紧张,在这种紧张的状态下不要匆匆作答。首先要从头到尾、正面反面浏览全卷,尽可能从卷面上获取最多的信息。摸清“题情”的原则是:轻松解答那些一眼就可以看出结论来的简单选择题或者填空题;对不能立即作答的题目可以从心里分为比较熟悉和比较陌生两大类。对这些信息的掌握,可以确保不出现“前面难题做不出,后面易题没时间做”的尴尬局面。
做题原则“一快一慢”
这里所谓的“一快一慢”指的是审题要慢,做题要快。
题目本身实际上是这道题目的全部信息源,所以在审题的时候一定要逐字逐句地看清楚,力求从语法结构、逻辑关系、数学含义等各方面真正地看清题意。有一些条件看起来没有给出,但实际上细致审题你才会发现,这样就可以收集更多的已知信息,为做题正确率寻求保障。
当思考出解题方法和思路之后,解答问题的时候就一定要简明扼要、快速规范。这样不仅给后面的题目赢得时间,更重要的是在保证踩到得分点上的基础上尽量简化解题步骤,可使得阅卷老师更加清晰地看出你的解题步骤。
把握技巧“分段得分”
对于中考数学 中的难题,并不是说只让成绩优秀的学生拿分而其他学生不得分。实际上,中考数学的大题采取的是“分段给分”的策略。简单说来就是做对一步就给一步的分。这样看来,我们确保会做的题目不丢分,部分理解的题目力争多得分。
八年级上册数学提纲人教版相关 文章 :
★ 初二数学知识点归纳上册人教版
★ 八年级上册数学复习提纲整理
★ 人教版八年级数学上册知识点总结
★ 八年级上册数学复习提纲2020
★ 初二数学上册知识点总结
★ 人教版八年级上册数学教材分析
★ 数学八年级上册知识人教版
★ 2017人教版八年级数学上册知识点归纳
★ 2021八年级上册数学复习提纲
★ 数学八年级上册知识点整理